
Extending Model Checking with Dynamic

Analysis

Alex Groce and Rajeev Joshi

Laboratory for Reliable Software
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA ⋆

Abstract. In model-driven verification a model checker executes a pro-
gram by embedding it within a test harness, thus admitting program
verification without the need to translate the program, which runs as
native code. Model checking techniques in which code is actually exe-
cuted have recently gained popularity due to their ability to handle the
full semantics of actual implementation languages and to support verifi-
cation of rich properties. In this paper, we show that combination with
dynamic analysis can, with relatively low overhead, considerably extend
the capabilities of this style of model checking. In particular, we show
how to use the CIL framework to instrument code in order to allow the
SPIN model checker, when verifying C programs, to check additional
properties, simulate system resets, and use local coverage information to
guide the model checking search. An additional benefit of our approach is
that instrumentations developed for model checking may be used without
modification in testing or monitoring code. We are motivated by experi-
ence in applying model-driven verification to JPL-developed flight soft-
ware modules, from which we take our example applications. We believe
this is the first investigation in which an independent instrumentation
for dynamic analysis has been integrated with model checking.

1 Introduction

Dynamic analysis [1] is analysis of a running program, usually performed by
the addition of instrumentation code or execution in a virtual environment [24].
Model checking [4] is a technique for exploring all states of a program’s execution
space, which may be a static analysis of an extracted model, as in CBMC [17] or
SLAM [2], or a dynamic analysis in which a program is executed, as in CMC [22]
or SPIN’s model-driven verification. In model-driven verification [16] (our focus
in this work) a harness embeds code and the model checker runs the program
being verified in order to take a transition in its state space.

⋆ The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration. Funding was also provided by NASA ESAS 6G.

In this paper we show that the power and ease of use of model-driven verifi-
cation can be significantly enhanced using dynamic analysis. Our approach ex-
tends the capabilities of the model checker by introducing instrumentation into
the executed code — instrumentation which interacts with the model checker
to perform property checks, modify control flow of the program, compute cov-
erage metrics, and to guide the state-space search. Our approach is motivated
by our experience with model-driven verification. In particular, our frustration
when debugging model-driven verification harnesses and our interest in proper-
ties requiring fine-grained observation or control of execution suggested the use
of automated instrumentation. Our examples are taken from JPL flight software
produced or tested by our group: NVDS, a module used to store critical space-
craft parameters on flash [10] (5K lines of C for the module, plus 2K lines for
a harness/reference), Launchseq, a model of the launch sequence for a recent
mission (1K lines), and a replacement for string.h. Another motivation was
our interest in random testing [10]: using independent dynamic analysis (rather
than modifying SPIN), we are able to use the same instrumentation during a
model checking run and a random test execution. We simply instrument and
compile the program to be tested, and link to the same instrumented binary.

A further interest in such a combination is based on a common objection
to dynamic analysis: it is fundamentally unsound. Model checking offers the
possibility of combining a dynamic analysis with a complete exploration of the
reachable state space (or an abstraction of that state space). It is true that, for
realistic programs, the state space is often too large for an exhaustive search
(even after abstraction); it is also often the case that analysis for a particular
property adds variables to the program state and increases the state space size.
Nonetheless, in some non-trivial cases, model checking offers an easy path to
sound dynamic analysis.

Below, we discuss the particular instrumentations we developed. We first
present a method for checking modifies clauses, also useful in debugging model-
driven verification harnesses (Sections 4.1 and 4.2). We then show how the same
framework supports a method for simulating software resets (Section 4.3), better
coverage measures during model checking (Section 4.4) and, perhaps most inter-
estingly, a novel search approach based on path coverage information produced
by instrumentation (Section 4.5). Experimental results confirm our intuition that
overhead will be low for most of these approaches (Section 4.6).

2 Model-Driven Verification

Model-driven verification [16] is a form of software model checking that works
by executing code embedded in a model1. The SPIN model checker [14] operates
by translating a model written in PROMELA into a (C) program to model
check that program: in a sense, SPIN is less a model checker than it is a model

1 In the current implementation, the executed code must be C, but this is not a
fundamental limitation of the technique; in fact, we occasionally make calls to C++
functions in embedded C code.

1 c decl {
2 extern struct s t *arr;

3 extern int cnt;

4 extern int new n(void);

5 int tmp;

6 };
7 c track "arr" "sizeof(struct s t) * 100" "Matched"

8 c track "&cnt" "sizeof(int)" "Matched"

9 c track "&tmp" "sizeof(int)" "UnMatched"

10

11 int r;

12 active proctype harness () {
13 c code { cnt = 0; };
14 do

15 :: c expr {cnt < MAX} -> c code { tmp = cnt; now.r = new n(); };
16 assert(r != -1);

17 assert(c expr {cnt == tmp+1})
18 :: else -> break

19 od

20 }

Fig. 1: PROMELA Model with Embedded C Code

checker generator. Model-driven verification exploits this fact to embed C code
within PROMELA models2. With model-driven verification, it is possible to
check a C program against specifications written in linear temporal logic, using
all the features of SPIN, including bitstate hashing, abstraction, and multi-core
execution [14, 16, 15].

Figure 1 illustrates the use of SPIN’s primitives for embedding C code. The
c decl primitive is used to declare external C types and data objects that are
used in the embedded C code. The c track declarations are tracking statements,
which provide knowledge to SPIN of what state is being manipulated by the C
program. We describe c track statements in more detail below. The PROMELA
process defined by the proctype declaration also uses the c expr construct to
embed C expressions that are used as guards and the c code construct to embed
blocks of C code within the PROMELA model.

During its depth first search3, the model checker may reach states with no
successors (e.g., the break from the do loop on line 18, which leads to a final
state) or states that have already been visited. In such cases, the model checker
backtracks to an earlier state to explore alternative successors. For variables in
the SPIN model, such as r, restoration of an earlier value when backtracking is
automatic. In order to restore data objects of the C program, however, the model
checker needs knowledge of the set of memory locations that can be modified by
the C code, which we call the tracked locations. For each data object modified

2 This feature was introduced in SPIN version 4.0
3 Note that SPIN currently supports embedded C code only with DFS.

by the C program, a c track statement is used (see lines 7-9) to indicate three
pieces of information needed by SPIN: the starting address in memory where the
data object is stored, the size (in bytes) of the C representation of the data, and
whether or not the data should be matched, i.e., whether it should be included
in the check determining if a state has been seen before.

2.1 Tracking and Matching

It is important to note the distinction between tracking and matching. Tracked
data objects are stored as part of the state on the stack used by depth first search
(DFS). This allows SPIN to properly restore data values on each backtracking
step during the DFS. As a rule, all data objects that can be modified by a C
program should be tracked (with some exceptions, as discussed below).

Matching, on the other hand, allows SPIN to recognize when a state has
been seen before. The set of matched data objects therefore constitutes the state
descriptor, which is examined whenever a state is generated, to determine if the
state has been seen before. The ‘‘Matched’’ and ‘‘UnMatched’’ keywords are
used in a c track declaration to indicate whether an object is matched or not.

Since the amount of data modified by a C program can be large, declaring all
data objects as matched makes the state descriptor very large, and increases the
size of the state space to be explored. In such cases, careful distinction between
matched and unmatched data allows on-the-fly abstractions to be applied during
model checking. A simple example is symmetry reduction: e.g., if program states
are equivalent (with respect to verification of a property φ) up to any ordering
of the items in a linked list, we may track the concrete variable but match only
on a sorted version of the list, greatly reducing the size of the state space needed
to verify φ. This approach to abstraction is discussed at length in the original
paper on model-driven verification [16].

Note that not all data needs to be tracked. Data that does not change after
a deterministic initialization process, or data that is not relevant to the search,
does not require tracking. We refer to such data as ignored data.4 There is
no memory overhead for ignored data, but of course such data is not restored
when backtracking occurs. Program state that is not modified in a way that is
visible to SPIN can be ignored. It is also important to ignore memory that stores
cumulative or statistical information over an entire model checking run.

2.2 Limitations of Previous Work

Each fragment of C code embedded in a SPIN model (using either the c expr

or c decl constructions) is executed as a (deterministic) atomic step. This leads
to several limitations of the SPIN approach to model-driven verification: (a) we
cannot check properties (such as program invariants) within embedded C code,
(b) we cannot interrupt control flow within a C function (for instance to simulate

4 There are also situations where it is useful to declare matched data that is untracked;
however, these are beyond the scope of this paper.

an asynchronous interrupt or an unexpected reset), and (c) we cannot interleave
different fragments of C code (to check multithreaded C programs).

In this paper, we discuss how to address the first two limitations by using
program instrumentation. In particular, we describe (i) how we check properties
within C code, for instance on every write to global data, (ii) how we check C
programs against unexpected events, for instance a warm reboot in which the
program stack is cleared, but global data and the heap are not affected, (iii) how
we can dynamically check modifies clauses [19], which constrain what data can
be modified by a C function, (iv) how we can compute various coverage metrics

(such as predicate coverage) of a C program over a model checking run, and (v)
how we can dynamically apply various (sound and unsound) abstractions (for
instance, a dynamic form of path coverage).

3 Dynamic Analysis via CIL Instrumentation

We insert instrumentation for dynamic analysis via source-to-source transfor-
mation. Our applications do not involve binaries without source, and we enjoy
the benefits of adding instrumentation before optimization. Running the model
checker itself under instrumentation is too expensive (and in some cases im-
possible), and it is very easy to instrument only certain compilation units. Our
interest is in the use of instrumentation for analysis during model checking, not
in the specific method used for inserting instrumentation.

3.1 Instrumentation with CIL

CIL (the C Intermediate Language) is a high-level intermediate language for
representing C programs, and includes a set of tools that enable analysis and
transformation of C programs [23]. CIL rewrites C programs in a semantically
clean subset of C. User-written modules may modify the code as it is rewritten.
The CIL distribution includes modules providing points-to analysis, array heapi-
fication, and other useful transformers and analyses. We use CIL because we find
it to be a robust and easy-to-use tool for C source-to-source transformations.

Most of our analysis tools are adapted from the logwrites.ml module pro-
vided with CIL. This module “logs” all writes to non-stack-local memory, seen
in CIL as Set or Call instructions. Because CIL analyzes program source, it can
conservatively avoid instrumenting writes to stack local variables in a function.

void checkWrite (void *p, /* Address of the memory */

size t size, /* Size (in bits) of the write */

const char* lv, /* Pretty-print of source lval */

const char* f, /* Name of the file */

unsigned int ln /* Line number of the write */);

Fig. 2: Prototype for checkWrite

in stack(p) = ((p > stack beg loc) && (p < &stack end)) ||

((p > &stack end) && (p < stack beg loc))

Fig. 3: Definition for in stack

Our adaptation is to change logwrites.ml to call, in place of a logging function
expecting a string, a function checkWrite that expects more information. The
prototype for checkWrite is shown in Figure 2.

3.2 Tracking the Location of the Stack

Our most common instrumentation involves checking writes to global memory.
CIL distinguishes between local and global variables when this is possible, but
cannot statically determine if certain pointers always target the stack. In order to
determine the location of the stack, we add a global variable (stack beg loc) to
the model checker, containing the address of a local variable of the main function,
and declare another local variable (stack end) in the scope of checkWrite. We
assume that stack variables lie in the region formed by these boundaries, and
define in stack (p) to handle different stack orientations (Figure 3).

3.3 Replacing Memory Modification and Allocation Library Calls

Unfortunately, accesses visible to CIL as Sets and Calls to lvalues do not capture
all memory writes. C programs also modify state by calls to system libraries — in
particular, by using memset, memcpy, memmove, and the destructive string library
functions (strncpy, strcat, etc.). We do not wish to recompile these libraries
with CIL, but do wish to instrument the writes they produce. We therefore use
another CIL module to rewrite these calls, making the memory writes visible.

We use a similar CIL module to replace calls to the malloc family with calls
to spin malloc, in order to make dynamic allocation visible. The spin malloc

functions use a static region that is tracked. This method also optionally pro-
vides checks for common memory-safety properties (no use after free, etc.) and
ensures that tracked and allocated regions are equivalent if they overlap.

4 Applications and Experimental Results

We now present the uses we have made of dynamic analysis during model check-
ing, and present experimental results indicating the utility and efficiency of our
approach. Significantly, we show that the relative overhead for our instrumenta-
tion is quite low: the model checking engine is not instrumented, and tends to
consume a large portion of runtime during model-driven verification.

Our applications include novel ideas specific to model checking (Sections
4.2 and 4.5). We also present more common analyses applicable in testing, in
order to show the degree of reusability provided by independent analysis and to

compare analysis overheads for testing and model checking. The range of possible
applications is potentially that of most runtime analyses for C programs.

4.1 Checking Modifies Clauses

Modifies clauses are used in ESC/Java [8], JML [3], Larch [27], and other lan-
guages to specify which variables a function may alter. We take a lower level
approach and consider a specification of which memory locations a C function
or block may change. These (named) locations are specified as a set of ranges,
which may be dynamically computed during execution. A checkWrite function
determines the correctness of each memory write:

void checkWrite (void* p, ...)

forall (range ∈ modifiable ranges)

if (p ∈ range ∧ allowed(range))

return; /* Ok, p is in a modifiable range */

/* p is not in any modifiable range! */

ERROR;

A range is not statically defined, but is a dynamically evaluated region
specified by expressions for starting and ending address. Whether a range can
be written to can by dynamically toggled, depending on conditions. E.g., the
stack will typically be included in the allowed ranges, but not in all cases. In
our test harness for a replacement version of the C string library used in a
JPL flight module, the r strncat range is computed based on the arguments
to the n strncat function — r strncat = (t+strlen(t), t+strlen(t)+n).
Code that calls n strncat (the module’s version of strncat) is rewritten with
CIL to set up the restrictions:

disallow all ranges(); /* Clear set of modifiable ranges */

allow range(r strncat); /* Allow range for n strncat */

char *result = n strncat(t, s, n);

An advantage of our approach to combining model checking and dynamic
analysis is that the analysis can be used in other kinds of testing or as a runtime
monitor in deployment. We used the same instrumentation to check modifies
clauses in a randomized differential testing harness [10] for the string library,
comparing results of operations on randomly generated strings to those returned
by the standard string library. These tests detected a minor error in argument
checking in one function.

Extending Modifies Clause Checking to Library Calls In addition to
restrictions on memory writes, we also support limitations on which libraries
can be called. The most common application may be to restrict write access
to devices (such as flash storage in our case) accessed through driver calls. In
addition to device access properties, this also allows us to check performance
properties, e.g. that no expensive library calls occur while interrupts are disabled
on the flight CPU.

4.2 Debugging SPIN Models with Embedded C Code

One application of modifies clause checking is to assist in developing the harness
for model-driven verification. A common error in such cases is to leave an impor-
tant variable untracked, resulting in spurious counterexamples when the model
checker backtracks but only partially restores a previous state. Our approach to
debugging memory tracking during model-driven verification is to automatically
generate a checkWrite function from the c track statements in the SPIN har-
ness. Our tool also supports a c ignore statement, used to indicate modifiable
memory that does not require tracking. During model checking, checkWrite acts
as a modifies clause checker, ensuring that the program being verified does not
modify any locations that are not tracked or ignored.

If the model checked program does write to untracked/ignored locations,
SPIN will produce a warning for each such write — e.g. in the NVDS example:

UNTRACKED WRITE: 0x73b980 (nvds npart) at nvds init.c:377

UNTRACKED WRITE: 0x73b9d0 (nvds ptsem[pt]) at nvds init.c:258

In addition to c track and c ignore, we support a c constant declaration.
Unlike the C const type attribute, this does not indicate that an address is
never assigned to (in which case we could simply leave the value out of our
declarations). Instead, it produces a check that the value written to an address
is always the same as the previous contents of that address. Because many of
our models include simulations of system resets, we often call initialization code
(such as would be called when a spacecraft reboots) setting global parameters,
such as the size of a file system’s memory region. The c constant declaration
provides warnings if this initialization code is faulty and changes the previous
value of such a parameter, while avoiding spurious warnings about non-modifying
assignments. Such declarations incur the additional overhead of a memcpy, but
only before assignments to these addresses.

We used this approach to detect three untracked writes in a SPIN harness
for a critical piece of flight software (the NVDS system), and to confirm that
these writes were safe. We also verified the tracking of state for launch sequence
modeling code derived from an upcoming mission.

4.3 Simulating Warm Resets

Another application of instrumentation is to return control to the model checker
to simulate system resets. This is useful in two cases: simulation of cold resets on
systems with a persistent hardware state that survives reboot, and simulation
of warm resets, used in some experimental flight software at JPL.

In a warm reset, all data on the program stack is cleared and the program is
restarted, but global data is not cleared. In some applications, this memory may
need to be recovered, if possible, even after the software has been terminated
in mid-operation and re-started. Because stack memory is lost on a reset we
can reduce the state space of possible reset points by only considering resets at
global writes. Again, we make use of a checkWrite function:

if (in stack(p))

return; /* p on stack, no need to consider reset */

if (reset trap > 0)

reset trap--;

else if (reset trap == 0) /* Trap goes off, reset */

reset trap = -1; /* Clear the trap */

longjmp (context, code);

As with modifies clauses, this checkWrite requires the model checker to
set certain variables before calling the tested code. In particular, it expects
reset trap to indicate if a warm reset is scheduled (-1 indicates no trap, a
positive number n indicates that a warm reset is to take place on the nth write).
A setjmp call to establish the context for longjmp to control to SPIN is also
required. The model checking harness places resets nondeterministically.

We use this module in both model checking and random testing. The method
has exposed subtle errors, including a very low probability scenario arising from
the precise placement of a reset during a memcpy in a spacecraft RAM file system
— a checksum used to detect memory corruption was too weak [10]. Detecting
the error required a precisely placed reset during a memory copy.

4.4 Granularity of Coverage Measurements

Dynamic analysis also allows us to compute (abstraction) coverage at a finer
granularity than atomic step boundaries. In our model checking of flash storage
systems we use a number of unsound abstractions, as the state spaces for the
rich properties we wish to check (essentially full functional correctness) are not
amenable to sound abstraction and are large for even small flash devices. We may
abstract the state of the flash device by only considering, e.g., the state of each
block on the device (used, free, bad) and the number of live, dirty, and free pages
on that block [25, 10]. When SPIN reaches a state in which the abstract state
has previously been visited, it will backtrack. Because it may not be possible,
under this abstraction, to reach all abstract states (indeed, certain states are
defined as errors), we compute the coverage in cumulative fashion as we model
check the file system. Unfortunately, computing coverage after every call to the
file system does not measure actual abstraction coverage. Before an operation
returns control to the harness, it may perform multiple writes to the flash device.
In this case, our coverage is a measure of “stable states” of the flash with respect
to the storage API, but is an underestimate of all covered states. We remedy
this by instrumenting all driver calls for the flash device to recompute coverage
after each modification. Again, this coverage instrumentation is as useful in
randomized testing as in model checking.

4.5 Using Local Path Coverage to Guide Exploration

Another useful CIL module instruments every branch choice to update a bit
vector representing the program path as shown in Figure 4. Before each entry

if (buff == NULL) {
return;

} else {
copy(x, buff);

}

(a) Before

if (buff == NULL) {
add to bv(pathBV, 1);

return;

} else {
add to bv(pathBV, 0);

copy(x, buff);

}

(b) After

Fig. 4: Before and after insertion of path tracking.

into the tested program the model checking harness clears pathBV. At the end of
each call, pathBV contains information sufficient to reproduce the control path
taken by the tested function, e.g. [] for branch-free code, and [1] or [0, . . .] for
our example, (where . . . represents any branching taken inside copy). We limit
the size of pathBV in some fashion — in our case, simply by taking only the first
k bits of history, though other schemes, such as a sliding window, might also
yield useful results.

Making pathBV a matched location adds path coverage of tested functions
to the state space abstraction used in SPIN. This provides no benefit if we are
matching on all aspects of the program state, but produces a new exploration
strategy when combined with coarse abstractions. Consider the extreme case
where we match on no program state. Without path information, no path will
involve more than one entry-point function from the test-harness loop and will
never discover any error requiring more than one function call. However, if we
match on pathBV, SPIN will explore deeper paths, until such exploration fails
to cover new paths in the tested functions. In the extreme case, this is unlikely
to provide significantly deeper coverage, but for even very coarse abstractions
may reach deeper state without the need to guess what additional program state
should be tracked.

We applied this approach to our NVDS example, removing all matched state
(other than the SPIN variables controlling inputs to tested functions) from the
model, and adding matched path information. We ranged k from 0 to 20 bits (at
20 bits, the state space was large enough to exhaust memory on our 8GB ma-
chine). As expected, statement coverage of the module increased monotonically
with the number of bits – but only by a few statements. The number of states
explored increased dramatically — from 607K states for the 0-bit (no coverage)
experiment to 48,100K states with 20 bits of path information. Most interest-
ingly, coverage of the abstraction discussed above, approximating the physical
state of the flash device (with respect to storage semantics of live and dirty
pages) also increased. This increase was not monotonic, but showed a general
upwards trend with k, ranging from 39 states at 0 bits to 53 states at 18 bits
(falling back to 52 states at 21 bits). Matching the abstract state itself (and
thus preventing backtracking whenever a new abstract state was reached) only
improved on this by one state, covering 54 of the 55 reachable abstract states.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20
 0

 10

 20

 30

 40

 50

W
rit

e-
or

de
rin

g
st

at
es

F
la

sh
 s

ta
te

s

Bits of path information

Write-ordering
Flash state

Fig. 5: Preliminary reachability results

In other words, considering only path information when determining whether
to backtrack was almost as effective (in covering the abstract state space) as
explicitly basing the search on abstract coverage5.

Calculating coverage of another coarse abstraction (the ordering of writes to
locations) showed even better results — in the two configurations we examined,
the path-based approach quickly improved on matching the abstraction in ques-
tion. With only 3 bits of path information, we were able to cover 87 abstract
states, vs. 72 when matching on the abstract state. Figure 5 shows the general
trend of increased coverage for both abstractions. Of course, given the high sen-
sitivity of DFS to ordering of transitions [6], these results are at best suggestive.
However, given the low overhead of the instrumentation and the difficulty of for-
mulating useful (even unsound) abstractions for rich properties of systems with
large state spaces, we believe this strategy merits further investigation.

4.6 Impact of Instrumentation on Model Checking Performance

Table 1 shows the overhead of instrumentation for model checking on our JPL ex-
amples. NVDS-1 and NVDS-2 designate different harness configurations. For the
string library, two modes of verification were used — exhaustive model checking

5 Coverage is incomplete in these cases because the abstraction is unsound and does
not over-approximate successors.

Uninstrumented Instrumented

Model Checking

Program Time SPIN Time SPIN Check Slowdown Type

NVDS-1 123.8 95% 137.1 88% 5.2% 10.5% track
NVDS-1 (bitstate) 581.9 93% 621.3 86% 3.03% 6.8% track

NVDS-2 437.4 93% 490.8 89.7% 2.08% 12.2% pathBV(20)

Launchseq 97.6 99% 98.3 98% 0.06% 0.7% track

n strncpy 34.6 99.5% 34.9 99.4% 0.22% 0.86% modifies
n strncat 29.3 99.6% 29.4 99.5% 0.04% 0.34% modifies

Random Testing

Program Time Test Time Test Check Slowdown Type

stringtest 202.9 80% 250.3 41.1% 24.4% 23.4% modifies

All times in seconds. SPIN/Test are % time spent in core SPIN or in generating tests. Check is

% time spent in checkWrite or in the pathBV update functions. Experiments performed on dual-core

Xeon (3.2 GHz) with 8 GB of RAM, under Red Hat FC 4.

Table 1: Impact of instrumentation on performance

tests for each function and a random test system for the entire library. We report
on modifies clause and path coverage instrumentations as representative — reset
simulation instruments the same program points as modifies clause checking.

The slowdown for introducing instrumentation in no case exceeded 12.2%,
whether instrumenting every global memory write or every branch, during model
checking (stringtest is a random tester). For some of the programs, the over-
head was below 1%. The overhead for modifies clause instrumentation is low
enough that it can be used throughout the development of a SPIN harness to
refine tracking statements, even when directly model checking flight software
modules. The reason for the low (relative) overhead is clear: profiling shows that
the time spent running instrumented code is trivial compared to the time spent
hashing and storing states in the model checker. The percent of time executing
checkWrite is typically an order of magnitude or more less than the percent
spent executing the SPIN verifier. In unusual cases, it might happen that pro-
gram execution dominates model checking state storage time, but we have never
observed such a profile, even with complex modules such as NVDS. Note that
the (relative) overhead for random testing (stringtest) of the string library is
much higher than the other examples, as the generation of random tests is not
computationally intensive. We also note that there was no overhead for checking
n strlen and n strncmp, as CIL observes no global writes.

5 Related Work

Musuvathi et al. note that it should be possible to use a dynamic analysis, such
as Purify [20] or StackGuard [5], in combination with CMC, a model checker
that, like SPIN, executes C code [22]. In their experience, however, the overhead

of binary instrumentation is too high to be practical, which supports our decision
to rely on source-to-source instrumentation [21].

In a sense, any analysis performed in an explicit-state model checker in which
code is executed can be considered to be an instance of dynamic analysis during
model checking. For example, the Java Pathfinder model checker [26] has been
used to generate Daikon [7] traces to detect invariants [11]. Our contribution is
to combine model checking with independent dynamic analysis, introduced via
traditional source-to-source transformations. Our approach stands in contrast
to the more common approach to applying a “dynamic” analysis during model
checking, in which the model checker itself is extended to carry out the analysis,
as with JPF [11]. We preserve a separation of concerns in which code may be
instrumented just as in testing or regular execution, without substantial change
to the model checker. Any analysis developed for model checking can also be used
during normal testing or as a monitor for execution (as well as the reverse —
instrumentation developed during testing can be applied while model checking).
Perhaps more importantly, instrumented native code executes much faster than
code executed in a virtual environment, such as JPF’s JVM, and the techniques
described in this paper should be applicable (with similar overhead) to any of
the numerous model checkers featuring actual execution of C code, including
CMC [22], VeriSoft [9], and CRunner [18].

6 Conclusions and Future Work

Applying independent dynamic analysis during model checking enables a large
number of useful checks and measurements and saves effort by making it possible
to use the same analyses during model checking, testing, and monitoring after
deployment. Dynamic analysis can be at least as useful in execution-based model
checking as it is in testing, especially given that relative overheads are typically
much lower than in testing. We are exploring a number of other applications.

In runtime verification, certain program events are observed by a monitor,
and temporal properties of program execution are checked [13]. We hope to reuse
monitoring specifications developed for testing or deployed execution. We plan
to integrate the RMOR runtime verification system [12] with SPIN to analyze
properties of flight software. RMOR’s instrumentation is already implemented
as a CIL module, and uses only static structures for monitoring, which makes
producing c track statements to support monitoring relatively easy.

Another application is the inference, rather than checking, of properties.
Daikon [7] infers state invariants of program execution and Perracotta [29, 28]
infers temporal properties of program paths. The information necessary for these
tools can be produced using our instrumentation approach. With Perracotta, it
is critical to track path information and backtrack it during the search, to avoid
inference of spurious properties. This idea also raises a question: when a tool
examines traces offline, which traces should we generate during model checking?
The most conservative approach would only produce traces at final states of
the model. Given that an unbounded loop is the most common structure for a

verification harness this is not useful. The opposite extreme would be to produce
a trace at each state reached. This would produce a very large (and highly
redundant) set of traces. We suggest producing a trace every time the model
checker backtracks due to reaching a final state or due to reaching an already
visited state (but not after exploring all successors): this would produce one
trace for each path by which the model checker reached any particular program
state, even if that state was produced many times during model checking; no
trace which is a prefix of another trace would be generated. Only empirical
investigation can determine if such a strategy produces too many traces.

References

1. Thomas Ball. The concept of dynamic analysis. In European Software Engineering
Conference/Foundations of Software Engineering, pages 216–234, 1999.

2. Thomas Ball and Sriram Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN Workshop on Model Checking of Software, pages
103–122, 2001.

3. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. International Journal on Software Tools for Technology Transfer,
7(3):212–232, 2005.

4. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 2000.

5. Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Proc.
7th USENIX Security Conference, pages 63–78, 1998.

6. Matthew Dwyer, Suzette Person, and Sebastian G. Elbaum. Controlling factors in
evaluating path-sensitive error detection techniques. In Foundations of Software
Engineering, pages 92–104, 2006.

7. Michael Ernst, Jake Cockrell, William Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. In Interna-
tional Conference on Software Engineering, pages 213–224, 1999.

8. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 234–245, 2002.

9. Patrice Godefroid. Verisoft: a tool for the automatic analysis of concurrent soft-
ware. In Computer-Aided Verification, pages 172–186, 1997.

10. Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential test-
ing as a prelude to formal verification. In International Conference on Software
Engineering, 2007.

11. Alex Groce and Willem Visser. What went wrong: Explaining counterexamples.
In SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

12. Klaus Havelund. RMOR Version 2.0 user manual. Kestrel Technology, California,
USA, 2006.

13. Klaus Havelund and Allen Goldberg. Verify your runs. In Verified Software:
Theories, Tools, Experiments, 2005.

14. Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

15. Gerard J. Holzmann and Dragan Bosnacki. The design of a multi-core extension of
the Spin model checker. In IEEE Transactions on Software Engineering, volume 33,
pages 659–674, October 2007.

16. Gerard J. Holzmann and Rajeev Joshi. Model-driven software verification. In
SPIN Workshop on Model Checking of Software, pages 76–91, 2004.

17. Daniel Kroening, Edmund M. Clarke, and Flavio Lerda. A tool for checking ANSI-
C programs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 168–176, 2004.

18. Daniel Kroening, Alex Groce, and Edmund M. Clarke. Counterexample guided
abstraction refinement via program execution. In International Conference on
Formal Engineering Methods, pages 224–238, 2004.

19. K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, January 1995.

20. IBM Rational Software. Purify: Advanced runtime error checking for C/C++ de-
velopers. http://www-306.ibm.com/software/awdtools/purify/.

21. Madanlal Musuvathi. Email communications. 2007.
22. Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and David Dill.

CMC: A pragmatic approach to model checking real code. In Symposium on Op-
erating System Design and Implementation, 2002.

23. George Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. CIL: Inter-
mediate language and tools for analysis and transformation of C programs. In
International Conference on Compiler Construction, pages 213–228, 2002.

24. Nicolas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), 2007.

25. Various. A collection of NAND Flash application notes, whitepapers and articles.
Available at http://www.data-io.com/NAND /NANDApplicationNotes.asp.

26. Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engineering, 10(2):203–
232, April 2003.

27. Jeannette M. Wing. A two-tiered approach to specifying programs, 1983.
28. Jinlin Yang and David Evans. Dynamically inferring temporal properties. In

Workshop on Program Analysis For Software Tools and Engineering, pages 23–28,
2004.

29. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
Perracotta: Mining temporal API rules from imperfect traces. In International
Conference on Software Engineering, pages 282–291, 2006.

