

Mini-Crowdsourcing End-User
Assessment of Intelligent Assistants:

A Cost-Benefit Study
Amber Shinsel1, Todd Kulesza1, Margaret Burnett1, William Curran1,

Alex Groce1, Simone Stumpf2, Weng-Keen Wong1
1Oregon State University

Corvallis, U.S.A.
{shinsela, kuleszto, burnett, alex,

curranw, wong}@eecs.oregonstate.edu

2City University London
London, U.K.

Simone.Stumpf.1@city.ac.uk

Abstract—Intelligent assistants sometimes handle tasks
too important to be trusted implicitly. End users can
establish trust via systematic assessment, but such
assessment is costly. This paper investigates whether,
when, and how bringing a small crowd of end users to
bear on the assessment of an intelligent assistant is useful
from a cost/benefit perspective. Our results show that a
mini-crowd of testers supplied many more benefits than
the obvious decrease in workload, but these benefits did
not scale linearly as mini-crowd size increased—there was
a point of diminishing returns where the cost-benefit ratio
became less attractive.

Keywords: end-user programming; testing;
crowdsourcing; machine learning

I. INTRODUCTION
Intelligent assistants customize their work around

an end user’s needs—they learn how to recognize
everything from junk e-mail to photos of friends. These
assistants are taking on increasingly critical roles, such
as assisting in qualitative research [11]. Work like this
may be too important to blindly trust to an assistant,
particularly since even well trained assistants are not
100% reliable.

This paper focuses on assistants that serve small
groups of people—a smart home security system may
serve a family in their home or the tenants of an
apartment building, a classifier for a department’s
electronic bulletin board serves those employees, and a
research “coding” assistant helps the group of
researchers working on a project.

We refer to these groups as “mini-crowds” rather
than “teams” because assessing the assistant is rarely
(if ever) an individual user’s primary task. Since
assessment itself is not the user’s goal, we expect that
when users do test the assistant’s reliability, they test
only enough to meet their own objectives. Group
members may not know each other (such as the tenants
of an apartment complex), and they may work
asynchronously, only assessing the assistant when
necessary. These groups share more traits with the
anonymous crowds associated with crowdsourcing than

the teams and workgroups studied in computer-
supported cooperative work (CSCW) research, yet are
much smaller than what we traditionally think of as a
“crowd”.

To enable individual end users to assess intelligent
assistants, we recently introduced WYSIWYT/ML [12]
to support systematic testing of an assistant’s overall
accuracy and to help testers understand the kinds of
mistakes their assistant may make. Assessing an
intelligent assistant is different from in-house testing,
beta testing, and user product reviews. In-house testing
is done before deployment, while beta testing and
product reviews are done on a fixed version of
software. Intelligent assistants, however, continually
change as they learn new behavior from their users.
WYSIWYT/ML allows end users to assess this
evolving behavior.

Using WYSIWYT/ML, end users were able to test
more than half of an assistant’s work on about 200
items in only 10 minutes. This efficiency is
encouraging, but most users failed to find all of the
assistant’s errors. Could testing with a mini-crowd
produce more systematic and cost effective results?

The benefits of this idea seem obvious at first, but
people’s time is not free. Thus, it is important to weigh
the benefits of mini-crowdsourcing a testing effort
against the costs of involving an increasing number of
people in the task.

This paper presents an empirical study considering
mini-crowdsourcing from a cost-benefit perspective.
We compare the attitudes and testing outcomes of end
users working alone against those working with three
mini-crowds to answer three research questions:

RQ1: Finding errors: Can mini-crowds help end
users find more of their assistant’s errors than they
would find working alone? What costs are associated
with distributing this error finding among a crowd?

RQ2: Behavior changes: How do users’ behaviors
and attitudes change in the presence of a mini-crowd?

2011 IEEE Symposium on Visual Languages and Human-Centric Computing

978-1-4577-1247-0/11/$26.00 ©2011 IEEE 47

Do they find the crowd reliable?

RQ3: Greatest benefits at lowest costs: What is the
interaction between the benefits derived from a mini-
crowd and the costs of employing one? Are there
situations where the benefits are eclipsed by the costs?

II. RELATED WORK
Crowdsourced software testing by end users has not

been investigated empirically before, but research in
nearby applications suggests the idea has merit. For
example, a recent study pointed to potential benefits
from crowdsourcing software testing by professional
developers [16]. Formative research has also identified
benefits of crowdsourcing assessment tasks such as
document relevance [5] and machine-assisted language
translation [1]. An investigation of reCAPTCHA,
which applies collaborative assessment to the
digitization of print media, found that when as few as
five end users agreed with one another, their collective
answer was correct 96% of the time [20]. A study of
Mechanical Turk’s suitability for usability assessment
found that crowds of end users have great potential for
rapidly collecting user measurements at a low cost [8].
A similar study of Mechanical Turk’s viability for
assessing visualization design showed that
crowdsourcing could contribute new insights for such
designs [7].

Like the above scenarios, testing an intelligent
assistant involves a series of user assessments (one for
each of the assistant’s predictions). Intelligent
assistants, however, may change their predictions as
they learn from a user’s behavior, and the number of
potential users is likely to be much smaller (assistants
may be shared among a family, building, or
workgroup) than in traditional crowdsourcing.

Closely related to software testing are the concepts
of software debugging and software comprehension: a
programmer must test software to identify failures,
understand the software’s logic (e.g., its source code)
in order to find and fix the faults responsible, and then
test the software again to verify that the failures have
been resolved. There is recent work supporting end-
user debugging and comprehension of intelligent
assistants that allows users to interactively correct their
assistants. Examples include why… and why not…
descriptions of the assistant’s logic [10, 14] and visual
depictions of the assistant’s correct predictions versus
its failures [19]. As a basis for creating explanations,
researchers have also investigated the types of
information users want before assessing the
trustworthiness of an intelligent agent [4, 11]. Recent
work by Lim and Dey has resulted in a toolkit for
applications to generate explanations for popular
machine learning systems [15], and a few systems add
debugging capabilities to explanations [10, 11].
Supporting testing of intelligent assistants—with or
without crowdsourcing—is a necessary component for
supporting explanation and debugging approaches like

these.

The crowdsourced testing platform used in this
paper’s experiment extends WYSIWYT/ML, a non-
crowdsourced approach to systematic software testing
for end users of intelligent assistants [12]. Systematic
testing for end users (without crowdsourcing) was
pioneered by the WYSIWYT (What You See Is What
You Test) approach for spreadsheet users [18].
WYSIWYT/ML applies many WYSIWYT design
principles to the problem of assessing intelligent
assistants, leveraging statistical properties of the
assistant’s behavior to reveal likely software failures.
WYSIWYT/ML also adapts traditional software testing
concepts, such as test case selection/prioritization and
coverage metrics [2], to the domain of intelligent
assistants. This paper evaluates the benefits and costs
of adding mini-crowds to this end-user testing context.

III. EXPERIMENT DESIGN
To examine the effects of mini-crowds on end-user

testing, we designed an experiment that let end users
test an intelligent assistant with support from three
different crowd sizes. Participants worked with an
assistant that automatically classified textual messages
and were asked to find all of the assistant’s mistakes
and to estimate the assistant’s overall accuracy.

A. Participants and Procedures
We randomly selected 48 participants from a pool

of responses to a campus-wide recruitment notice.
These participants were all university students (21 male
and 27 female) with little or no programming
experience, and none were computer science majors.

To investigate the effects of different sizes of mini-
crowds, we established four treatments: Treatment 0
had no crowd (the participant worked alone);
Treatment 1 had one other user’s tests present;
Treatment 6 had six other users’ tests present; and
Treatment 11 involved eleven other users’ tests.

We used a within-subject design where each
participant worked with every treatment and message
set. The message sets (holding 194 to 199 messages
each) were chosen from the well-studied “20
Newsgroups” corpus of public newsgroup postings [9].
We pre-trained the assistant such that it was able to
predict each message set with 85%-88% accuracy, as
defined by the “gold standard” (the topic assigned by
the message’s original author, e.g. the topic “Cars” for
messages posted to the rec.autos newsgroup). The
pairing and the ordering of the treatments and message
sets was balanced via a Graeco-Latin square (a
composition of two orthogonal Latin squares where
every row and column contains each element exactly
once).

We began by verbally introducing participants to
the concept of testing an intelligent assistant’s
predictions. A researcher then led participants through

48

a 20-minute hands-on tutorial to acquaint them with the
features of the software. The tutorial covered basic
usage instructions only; it did not detail software
testing strategies or approaches.

During the experiment, participants viewed
messages the assistant had classified into one of four
topics (Computers, Religion, Cars, and Motorcycles).
Participants had 10 minutes with each treatment to test
as many of these topic predictions as they could,
deciding which were correct and which were not. (The
10-minute limit allowed us to see how well time-
pressured users could assess their assistants.) After
each treatment, participants answered the NASA-TLX
questionnaire [6] to assess their attitudes. The
experiment ended with a final questionnaire asking
participants about their behaviors and responses to the
crowds’ judgments.

B. The Mini-Crowd
Our study used an asynchronous crowd,

representing a group of end users working at different
times. The crowd’s tests were visible to participants for
the full duration of each treatment and remained static
during the experiment.

To obtain the mini-crowd’s judgments, we started
with the work of all 12 participants (university students
without programming backgrounds, each of whom was
compensated for his or her time) from a previous
“work-alone” study [12] involving the same testing
tool features, message sets, and time limits as the
current study. We discarded one outlier because his

performance was so much higher than everyone else’s
(almost 3 times as high) that including his work would
have left our new participants with little to do. The 11
remaining participants constituted the mini-crowd for
Treatment 11. We then selected the median performer
as the “partner” for Treatment 1; and used every
second participant (when ordered by performance) for
the mini-crowd of 6 (Treatment 6). This method
assured that both good and bad testers were equally
represented in all treatments.

C. Software Environment
E-mail interfaces are well understood by end users

and already involve intelligent assistants (e.g., SPAM
filters), so our prototype was designed to mimic an e-
mail reader. The environment had five components: (1)
the “assistant” itself, a machine learning classifier
powered by LibSVM [3] for predicting message topics;
(2) a mini-crowd (the size of which varied by
treatment) that had previously tested the assistant; (3)
an interface enabling participants to test each topic
prediction; (4) reasoning devices to notify the user
whether WYSIWYT/ML, the participant, or the crowd
had tested each message; and (5) devices to explain
how much of the assistant’s logic had been assessed.

These five components are shown in Figure 1. The
top panel included each message’s subject, date, and
predicted topic (component 1). The mini-crowd’s tests
appeared as in Figure 1’s component 2. A participant
could judge the assistant’s predictions as right, maybe
right, maybe wrong, or wrong using the widget in
Figure 2, and their judgment would appear in the

Figure 1. The software prototype participants worked with. (Component 1) The classifier’s predicted topic. (Component 2) The crowd’s decision

about this prediciton (size of mark shows how many of the crowd members voted this way). (Component 3) The user marked this prediction as
correct, using the affordance in Figure 2. (Component 4) WYSIWYT/ML infers user tests to similar messages. (Component 5) A test coverage bar
informs users how many of the assistant’s predictions have been judged (by the user, the crowd, or WYSIWYT/ML), as correct (!) or incorrect (X).

49

Tested? column (Figure 1, component 3). Instead of
marking wrong, a participant could fix the topic using
the drop-down topic list (Figure 1, component 1)—this
acted as a shortcut for wrong, followed by the topic
change, followed by right. After each participant test,
WYSIWYT/ML attempted to infer more tests of
similar messages (Figure 1, component 4) [12].

If the participant tested a message that had already
been tested by the mini-crowd, the system picked the
participant’s test to display. Otherwise, the system
showed the mini-crowd’s tests (if there were any), or
WYSIWYT/ML’s inferred test otherwise. If members
of the crowd disagreed, the displayed check- and X-
marks were scaled such that the more common
response was larger.

WYSIWYT/ML’s responsibilities were to prioritize
which predictions participants should test, infer
additional tests, measure test coverage (how much of
the assistant’s logic had been tested), and track this
coverage over time [12]. We summarize its reasoning
here.

To prioritize which predictions participants should
test, WYSIWYT/ML used the assistant’s confidence in
each prediction, and communicated this priority via a
green square’s brightness (Test Priority column in
Figure 1). A pie graph shows how this priority was
computed—the size of each slice represents the
assistant’s estimated probability that the message
belonged in the topic associated with that color.

To show test coverage (how many predictions had
been tested), WYSIWYT/ML maintained the progress
bar shown in Figure 1, component 5. This bar was
updated after each interaction, allowing participants to
see how much of their assistant had been tested. The
History column (Figure 1, right) showed participants
the previous two testing priorities and judgments for
each prediction, allowing them to spot changes (if any)
in response to their tests. To aid in their problem-
solving, participants could sort messages by any
column (Subject, Date, …). For consistency with other
e-mail systems, the initial sort order was by Date.

Participants were instructed to use these tools as
desired to find as many of the assistant’s errors as they
could.

IV. RESULTS
To explore mini-crowdsourced testing, we

investigated how participants (and the mini-crowds
helping them) found the assistant’s errors, the ways in

which participants relied on the crowd, and how these
results changed with the size of the crowd.

A. In Crowds we Trust?
1) Errors Found

 Did a mini-crowd find more errors than a
participant working alone (RQ1)? Figure 3 (light bars)
illustrates what one would suspect: that as mini-crowd
size grew, the number of detected errors also increased
(repeated measures ANOVA, F(3,136)=46.5 p<.001).
Table 1 reveals that the mini-crowd was largely
responsible for this increase. The crowd played an
important role in finding the assistant’s errors, leaving
only a handful undetected at crowd size 11 (Table 1).

The dark bars in Figure 3, however, reveal a more
nuanced story. The error-finding benefit of additional
testers swiftly shrank as the mini-crowd’s size grew.
Many crowd members repeatedly found the same
errors, possibly as a result of working asynchronously.
While larger crowd sizes found more errors overall,
they did so increasingly inefficiently.

Participants clearly benefited from the mini-
crowd’s help in identifying the assistant’s errors, but
RQ2 asks whether participants found the crowd
reliable—did they trust the crowd to correctly find
errors? Questionnaire responses indicate that
participants were keeping a close eye on the crowd’s
work. When asked whether they thought the crowd’s
judgments were correct, four participants said “No”,
while 10 said “Yes”. A majority (24 participants)
responded with “Yes” followed by a qualifying phrase
(e.g., “I think they were for the most part…”). These
participants appeared to pay attention to the crowd’s
error-finding successes, as well as its failures.

2) Where the Errors Aren’t

One method for finding errors is to eliminate non-
errors (i.e., tests that pass) from the user’s search space.
This can be accomplished with tests covering some
strategic fraction of the input space.

As described in Section 3, our measure of coverage
included tests the user and crowd explicitly performed,
as well as messages similar to (and sharing the same

Figure 2. A prediction could be marked as wrong (X), maybe

wrong (x), maybe right (!), right (!), or “?” to revert to untested.

Figure 3. (light) The number
of errors identified increased
with mini-crowd size. (dark)

The benefit/cost ratio decreased
as crowd size increased (errors

found over cumulative time
spent testing).

Figure 4. (light) The total
coverage went up as crowd size

increased. (dark) The crowd
heavily contributed to total

coverage.

0!

10!

20!

30!

0! 1! 6! 11!

Er
ro

rs
 F

ou
nd
!

0%!
25%!
50%!
75%!

100%!

0! 1! 6! 11!

C
ov

er
ag

e!

50

predicted topic as) those explicitly tested. Thus, a
single participant test could cover several of the
assistant’s predictions, allowing users to quickly
eliminate these “safe” predictions from their search
space.

As Figure 4 shows, participants working alone
achieved a mean coverage of 51%, but as crowd size
increased, so did total coverage. By crowd size 11, the
average coverage was 89%, leaving only 22 untested
predictions. Thus, the mini-crowd’s tests helped to not
only identify errors, but also isolate the areas of the
assistant likely to still contain errors. By reducing this
search space, participants faced a more manageable
subset of predictions requiring their attention.

3) Frustration, Engagement, and Reliability

We have shown that larger mini-crowds helped
participants find more errors, but what role did the
crowd have on participant attitudes and behaviors?

Participants were involved in approximately the
same amount of testing regardless of crowd size,
despite the fact that larger mini-crowds identified far
more errors (Table 1). The NASA-TLX questionnaire
data suggests an explanation—participants reported
feeling much less discouraged, stressed, and irritated
when testing with a crowd of at least six other end
users (Table 2, row Frustration). These participants
could not have felt successful because they were
individually finding more errors (they were not), but
we hypothesize that their attitudes were buoyed by a
sense of belonging to a larger group that was
successfully finding errors.

The above explanation assumes participants trusted
the crowd’s testing. There is a critical distinction
between responsible trust versus blind trust. The
former assumes some amount of verification to confirm
that trust is still warranted, while the later represents a
form of disengagement, with all decision-making ceded
to a third party. To further explore RQ2, we examined
how participants formed their judgments about the
crowd’s reliability.

Table 3 shows that the amount of time participants
spent verifying the crowd increased with the mini-
crowd’s size, suggesting that participants did not
blindly trust the mini-crowd. Such verifications seem
necessary to fully benefit from the crowd’s work, but
the link between crowd size and the effort participant’s

expended while forming judgments about the crowd’s
reliability reveals a cost: it took more effort to establish
trust in a larger crowd. Only one participant achieved
100% coverage, so it is unlikely participants were
verifying the mini-crowd because they had nothing left
to do.

We also observed a link between the size of a
crowd and its overall reliability as an oracle—the more
people in the crowd, the more their assessments agreed
with our gold standard (in the case of disagreements,
we used the assessment shared by the majority of
testers). This agreement began with an average
reliability of 88% for crowd size 1 and rose to 94% for
crowd size 11 (ANOVA contrast, F(2,136)=24.8,
p<.001). Input from more people generally resulted in
more reliable error finding.

Thus, the benefits of a larger crowd are significant
(RQ3). While participants spent more time verifying
crowd tests as mini-crowd size increased, those crowd
tests became more reliable. Larger crowds found more
errors correctly, reduced the level of stress and
frustration experienced by participants, and yet did not
leave participants feeling disengaged.

B. The Bugs That Got Away
Even with a mini-crowd’s support, some errors

remained unseen, or worse, imitated non-errors. We
term such incorrect predictions that the crowd
nonetheless marked as correct false negatives. False
negatives reflect bugs still lurking in the assistant’s
reasoning.

Interestingly, crowd size 6 had the most false
negatives, as Figure 5 shows. An ANOVA contrast
revealed that the number of false negatives in crowd
size 6 is significantly higher than both crowd size 1 and
crowd size 11 (Table 2, row False Negatives). We
hypothesize that this mini-crowd revealed two nuances

TABLE I. NUMBER OF ERRORS IDENTIFIED BY EACH ACTOR.

Crowd
Size Crowd WYSIWYT/

ML Participant Total1 Remaining

0 n/a 2.9 11.1 12.7 15.79
1 9.8 3.1 10.3 17.0 10.54
6 19.6 2.8 10.7 21.8 5.46

11 22.5 2.9 12.1 24.1 4.10
1Totals do not add up because some errors were jointly identified by multiple actors

(e.g., both the crowd and the participant).

TABLE II. ANOVA CONTRASTS ILLUSTRATING THE DIFFERENCES IN SEVERAL CROWD METRICS BETWEEN TREAMENTS.

 Mean value per crowd size (p-value for contrast with shaded cell)
df F p

0 1 6 11

Errors identified n/a 9.8 (p<.001) 19.6 (n/a) 22.5 (p<.001) 2,136 124.2 <.001
False negatives n/a 3.1 (p<.001) 8.2 (n/a) 6.9 (p=.034) 2,136 36.7 <.001
Coverage n/a 26% (p<.001) 72% (n/a) 80% (p<.001) 2,136 1345.0 <.001
Reliability n/a 88% (p<.001) 91% (n/a) 94% (p<.001) 2,136 24.8 <.001
Frustration (max 21) 7.4 (n/a) 6.0 (p=.143) 5.4 (p=.042) 5.3 (p=.033) 3,182 1.9 =.122

51

of crowdsourced assessment.

First, crowd size 1 tested fewer predictions than
crowd size 6, so the latter had more opportunities to
provide false negatives (e.g., if each member of a
crowd marks one false negative during their testing, it
follows that a larger crowd will have more false
negatives overall). If the crowd and problem sizes
match up so that each member is working on a unique
subset of the task (i.e., no redundancy), then we would
expect to see more false negatives introduced as crowd
size increases—a dangerous situation that masks bugs
remaining in the assistant’s logic. Thus, even though
crowd size 6 accomplished a high level of coverage
(nearly as high as crowd size 11), their judgments were
less reliable than the larger crowd’s.

The second nuance explains why crowd size 11 did
not introduce more false negatives than crowd size 6;
as our mini-crowd grew, the problem size remained
constant. Thus, an erroneous judgment by one crowd
member had ample chance to be overruled by a
majority of others in the crowd; their redundant testing
helped to isolate false negatives. Our crowd size 6 had
little testing overlap, so majority decisions did not
effectively safeguard judgment reliability.

The opposite of a false negative is a false positive,
i.e., the crowd believes a correct prediction is actually
an error. False positives waste users’ time by forcing
them to analyze purportedly incorrect predictions that
were correct all along. The number of false positives
was reasonably small, averaging between 3 and 4 for
each crowd size. This is fortunate—a large number of
such errors could reduce the testing system’s
effectiveness to that of ad hoc testing, wherein the end
user has no systematic method for quickly identifying
errors.

The number of false positives did not follow the
same parabolic trend as false negatives. This may be

the result of positive test bias [17] (the phenomenon
where a user tends to choose tests that confirm their
own hypotheses, rather than refute them). This theory
suggests that if our participants were unsure of a topic
prediction, they were more likely to mark the test as a
correct prediction than an error.

Besides false negatives and false positives, a third
influence may have allowed some bugs to slip through
the cracks: surprise errors. A surprise error occurs
when an assistant is at least 80% confident about an
incorrect prediction. These errors are challenging to
find with systems like WYSIWYT/ML, which attempt
to guide users toward mistakes using (among other
methods) the assistant’s confidence in each prediction.
Crowd size had a positive effect on the number of
surprise errors found (Figure 6). As with false
negatives and false positives, our largest mini-crowd
yielded the greatest benefit to participants.

C. How Many Eyes?
1) The Point of Diminishing Returns

 We have shown that when testing an intelligent
assistant, a crowd led to increased test coverage and
error finding without additional participant effort. We
also revealed situations where a larger crowd was
associated with increased costs, such as the high
number of false negatives from crowd size 6, or the
amount of effort required to establish trust in a larger
crowd. At some point, the benefit to end users may not
increase proportionally with crowd size, so it is useful
to identify factors leading to a point of diminishing
returns (RQ3).

Recall Figures 3 and 4: both show that while the
number of errors found and test coverage grew with
crowd size, neither increased linearly. There are large
improvements from crowd size 0 to crowd size 1, and
again to crowd size 6. When the crowd size was
increased to 11, however, the increases in both errors
found and test coverage were markedly smaller.

Why these diminishing returns? Unlike many
domains where crowdsourcing has been successfully
employed (such as language translation or word
recognition, e.g. [20]), both of our performance metrics
(errors found and logic covered) have respective upper
bounds. Thus, adding more crowd members implies
there must be a point of diminishing returns—
eventually, all of the errors in the assistant’s current
predictions will be uncovered. In a problem domain
where the measure of a crowd’s work is bounded,
adding more workers is unlikely to increase this
measure linearly. For example, we ran offline
experiments to assess our initial crowd coverage on
crowd sizes from one to 11. Our findings showed large
jumps in coverage at sizes two and six, with much
smaller increases for other crowd sizes.

Redundancy is another source of diminishing
returns. In our study, time was limited to 10 minutes,

TABLE III. PERCENT OF PARTICIPANT TESTS THAT VERIFIED
EXISTING CROWD JUDGEMENTS.

Crowd
Size

Overlap between
participant and crowd tests

Disagreements with
crowd judgment

1 48.7% 2.3
6 79.2% 3.9

11 86.7% 4.4

Figure 5. (light) False positives

remained constant across
treatments. (dark) Larger mini-
crowds introduced more false
negatives, especially size 6.

Figure 6. (light) Smaller mini-
crowds left more surprise errors
hidden in the assistant. (dark)
Larger crowds found more of

these errors.

0!

3!

6!

9!

0! 1! 6! 11!

Er
ro

rs
 F

ou
nd
!

0!
1!
2!
3!
4!

0! 1! 6! 11!

Er
ro

rs
!

52

preventing any single participant from individually
testing each of the assistant’s predictions. With the
addition of a mini-crowd, however, participant tests
began to overlap with crowd tests. This overlap became
more severe as crowd size increased. In fact, the crowd
itself frequently duplicated its own testing efforts, as is
clear from the bars representing errors found per time
spent testing (Figure 3).

As Section 4.B revealed, a major benefit of having
more eyes searching for errors was not simply finding
possible errors, but correctly identifying these
mistakes. Clearly, the value of redundancy will be
domain specific—when a family assesses their smart
home security system, there is little value to having
multiple confirmations of a security threat, whereas co-
workers evaluating a shared SPAM filter may have
very different ideas of which messages are undesirable.
We will discuss methods that may alleviate this
duplication of work in Section 5.

2) Leveling the Playing Field

Prior research in end-user testing has uncovered
various stratagems employed by end users [12], such as
focusing on high priority tests to find errors or
leveraging WYSIWYT/ML’s inferred tests to cover
most of the assistant’s logic. The use of these
stratagems led some participants to notably outperform
their peers, but encouraging the adoption of strategies
remains an open research area. Perhaps a mini-crowd
of end users working together could level the playing
field; each user brings his or her own talents to the
task, and everyone shares the benefits.

Participants in our study had the option of sorting
the assistant’s predictions on WYSIWYT/ML’s Test
Priority, which we know from earlier work [12] is a
strategy resulting in successfully finding most of the
assistant’s errors. The vast majority of participants who
used this sort method at all used it for most of the
experiment, with a median of 4 minutes and 55
seconds. We split our results into two groups based on
whether the participant used this Priority stratagem for
more or less than the median time. Figure 7 shows the
number of errors found by participants who used the
Priority stratagem (dark bars) and those who did not
(light bars). The differences in crowd size 0 and crowd
size 1 are particularly striking.

The advantage, especially at the smallest crowd
sizes, of using the Priority stratagem has two
implications. First, using the WYSIWYT/ML-
supported stratagem of Priority was approximately as
good as having a helpful mini-crowd the next size
larger, providing a low-cost way of achieving the same
benefit as with a mini-crowd. Second, after a certain
small size (here, 6), a mini-crowd was able to
compensate for lack of good strategies. Thus, in
situations where convincing end users to employ
certain strategies is difficult or unrealistic, mini-
crowdsourced testing may be able to achieve an
equivalent level of accuracy.

Our test coverage measure (Figure 8) reflects this
“leveled playing field” in reverse—participants
employing the Priority stratagem averaged less
coverage than others, until increasing crowd sizes
mitigated the effect. Prior work [12] also found that
participants employing the Priority stratagem achieved
lower coverage than other participants, likely because
high priority tests were, by a number of different
measures, extremely unlike anything in the assistant’s
training set. Because similarity to the training set was
used to determine which similar predictions would be
“covered” by each participant test, it logically follows
that focusing on high priority tests would result in
lower coverage. Figure 8, however, reveals very little
difference in coverage obtained by both groups of
participants at larger crowd sizes. We hypothesize that
a crowd is likely to include testers using different
strategies, imparting the benefits of each strategy to
everyone in the crowd and minimizing each strategy’s
drawbacks. This is particularly evident when the
strategies are complementary (as in this study).

V. DISCUSSION
A common concern regarding group tasks is the

phenomenon of “social loafing” [13]. In essence, this
theory predicts people are likely to be more productive
on their own than in a group, with the size of the group
predicting the drop in productivity. Critically, we found
no evidence of social loafing among our participants.
Our results in Section 4.A.3 reveal that participants
remained engaged throughout each task, suggesting
that, while other costs (such as decreased efficiency)
should be weighed against the benefits of mini-
crowdsourced testing, decreasing productivity is not
one of them.

The duplication of effort by an asynchronous crowd
is another common concern. As discussed in Section
4.B, this redundancy increased oracle reliability, but at
some point redundancy seems unlikely to provide a
benefit worth its cost. For example, [20] found that
once five people agreed about an assessment, they were
correct 96% of the time. To help address this issue, it
may be possible to control redundancy. For example,
WYSIWYT/ML could prioritize tests based on crowd
disagreement, so that each crowd member will have

Figure 7. (light) Participants

who avoided the Priority
stratagem needed the mini-

crowd’s help to find as many
errors as other participants (dark).

Figure 8. Participants who used
the Priority stratagem (dark)

needed the mini-crowd’s help to
achieve similar coverage as other

participants (light).

0!

10!

20!

30!

0! 1! 6! 11!

Er
ro

rs
 F

ou
nd
!

0%!
25%!
50%!
75%!

100%!

0! 1! 6! 11!

C
ov

er
ag

e!

53

more opportunities to assess areas of the assistant that
have conflicting tests. Conversely, tests with a high
level of agreement could have a very low testing
priority, thereby redirecting user effort toward the areas
it will be most beneficial.

Finally, our focus has been on anonymous mini-
crowds, but there are situations where members of a
mini-crowd may be quite familiar with one another. A
promising area for future work involves building upon
computer-supported collaborative work (CSCW)
research to support small groups of collaborating end
users assessing a shared assistant, such as with family
homes or small workgroups.

VI. CONCLUSION
This paper provides the first empirical evaluation of

mini-crowdsourcing the assessment of intelligent
assistants. As these assistants take on more critical
tasks, assessing when to rely on them will become
increasingly important. Our results show that using an
asynchronous mini-crowd to assess these assistants
confers benefits to end users, but not without costs.
This paper has empirically investigated the trade-offs
to better understand the “price” of these benefits.

Larger mini-crowds, as expected, found more of an
assistant’s errors, tested more of its logic, and
introduced enough redundancy to reduce crowd
mistakes, as compared with smaller mini-crowds.
However, results we did not expect were:

• Bigger was not always better: the mini-crowd of 6
was worse about introducing false negatives than
the mini-crowd of 11.

• Diminishing returns: even in metrics where larger
mini-crowds outperformed smaller crowds, the
benefit of increasing the crowd size quickly
dropped, while the cost scaled linearly.

• No loafing: contrary to the phenomena of social
loafing, participants working with large mini-
crowds did not overly rely upon the crowd.

• Tool-supported strategies versus mini-crowds:
participants using the WYSIWYT/ML-supported
“priority” strategy found as many errors as
participants working with larger mini-crowds.

Overall, our results are encouragingly positive
about a future in which shared testing is paired with
shared debugging, to support small ecosystems of end
users to quickly and effectively assess intelligent
assistants that support important aspects of their work
and lives.

ACKNOWLEDGMENTS
We thank our participants, Shubhomoy Das, Travis

Moore, Shalini Shamasunder, and Katie Shaw. This
work was supported in part by NSF 0803487.

REFERENCES
[1] Ambati, V., Vogel, S., Carbonell, J. Active learning and crowd-

sourcing for machine translation. Proc. LREC (2010), 2169-
2174.

[2] Beizer, B. Software Testing Techniques. International Thomson
Computer Press (1990).

[3] Chang, C. and Lin, C. LIBSVM: A library for support vector
machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001).

[4] Glass, A., McGuinness, D. Wolverton, M. Toward establishing
trust in adaptive agents. Proc. IUI, ACM (2008), 227-236.

[5] Grady, C. and Lease, M. Crowdsourcing document relevance
assessment with Mechanical Turk. Proc. NAACL HLT Wkshp.
Creating Speech and Language Data with Amazon’s
Mechanical Turk (2010), 172-179.

[6] Hart, S. and Staveland, L. Development of a NASA-TLX (Task
load index): Results of empirical and theoretical research,
Hancock, P. and Meshkati, N. (Eds.), Human Mental Workload
(1988), 139-183.

[7] Heer, J. and Bostock, M. Crowdsourcing graphical perception:
Using Mechanical Turk to assess visualization design, Proc.
CHI, ACM (2010), 203-212.

[8] Kittur, A. Chi, E., and Su, B. Crowdsourcing user studies with
Mechanical Turk, Proc. CHI, ACM (2008), 453-456.

[9] Kniesel, G. and Rho, T. Newsgroup data set.
http://www.ai.mit.edu/jrennie/20newsgroups (2005).

[10] Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R.,
Burnett, M., Oberst, I., and Ko, A. Fixing the program my
computer learned: Barriers for end users, challenges for the
machine. Proc. IUI, ACM (2009), 187-196.

[11] Kulesza, T., Stumpf, S., Burnett, M., Wong, W., Riche, Y.,
Moore, T., Oberst, I., Shinsel, A., McIntosh, K. Explanatory
debugging: Supporting end-user debugging of machine-learned
programs. Proc. VL/HCC, IEEE (2010), 41-48.

[12] Kulesza, T., Burnett, M., Stumpf, S., Wong, W., Das, S.,
Groce, A., Shinsel, A., Bice, F., and McIntosh, K. Where are
my intelligent assistant’s mistakes? A systematic testing
approach, Proc. IS-EUD (LNCS 6654), 171-186.

[13] Latané, B., Williams, K., and Harkins, S. Many hands make
light the work: The causes and consequences of social loafing.
J. Personality and Social Psychology, 37, 6 (1979), 822-832.

[14] Lim, B., Dey, A. and Avrahami, D. Why and why not
explanations improve the intelligibility of context-aware
intelligent systems. Proc. CHI, ACM (2009), 2119-2128.

[15] Lim, B. and Dey, A. Toolkit to support intelligibility in
context-aware applications. Proc. Int. Conf. Ubiquitous
Computing, ACM (2010), 13-22.

[16] Riungu, L., Taipale, O., and Smolander, K. Research issues for
software testing in the cloud, Int. Conf. Cloud Computing
Technology and Science, IEEE (2010), 557-564.

[17] Ruthruff, J., Prabhakararao, S., Reichwein, J., Cook, C.,
Creswick, E., and Burnett, M. Interactive, visual fault
localization support for end-user programmers. J. Visual
Languages and Computing, Volume 16 (2005), 3-40.

[18] Rothermel, G., Burnett, M., Li, L., Dupuis, C., and Sheretov, A.
A methodology for testing spreadsheets. ACM Trans. Software
Engineering and Methodology 10, 1 (2001), 110-147.

[19] Talbot, J., Lee, B., Kapoor, A. and Tan, D.S. EnsembleMatrix:
Interactive visualization to support machine learning with
multiple classifiers. Proc. CHI, ACM (2009), 1283-1292.

[20] Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., and
Blum, M. reCAPTCHA: Human-based character recognition
via web security measures. Science, 321 (2008), 1465-1468.

54

