
TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 1

Modular Verification of

Software Components in C

Sagar Chaki Edmund Clarke Alex Groce

Carnegie Mellon University

{chaki|emc|agroce}@cs.cmu.edu
Somesh Jha, University of Wisconsin

jha@cs.wisc.edu

Helmut Veith, Technische Universität München

veith@in.tum.de

(Invited Paper)

This research was supported by the ONR under Grant No. N00014-01-1-0796, by the NSF under Grant No. CCR-9803774,

CCR-0121547 and CCR-0098072, by the ARO under Grant No. DAAD 19-01-1-0485, the Austrian Science Fund Project NZ29-

INF, the EU Research and Training Network GAMES and graduate student fellowships from Microsoft and NSF. Any opinions,

findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect

the views of NSF or the United States Government.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 2

Abstract

We present a new methodology for automatic verification of C programs against finite state machine

specifications. Our approach is compositional, naturally enabling us to decompose the verification of

large software systems into subproblems of manageable complexity. The decomposition reflects the

modularity in the software design. We use weak simulation as the notion of conformance between the

program and its specification. Following the counterexample guided abstraction refinement (CEGAR)

paradigm, our tool MAGIC first extracts a finite model from C source code using predicate abstraction

and theorem proving. Subsequently, weak simulation is checked via a reduction to Boolean satisfiability.

MAGIC is able to interface with several publicly available theorem provers and SAT solvers. We report

experimental results with procedures from the Linux kernel and the OpenSSL toolkit.

Index Terms

Software Engineering, Formal Methods, Verification.

I. INTRODUCTION

State machines have been recognized repeatedly as an important artifact in the software

development process; in fact, variants of state machines have been proposed for virtually all

software engineering methodologies, including, most notably, Statecharts [1] and the UML [2].

The sustained success of state machines in software engineering stems from the fact that state

machines provide for both a concise mathematical theory, and an intuitive semantics of system

behavior which naturally allows for visualization, hierarchy, and abstraction.

Traditionally, state machines have been mainly used in the design phase of the software life-

cycle; they are intended to guide and constrain the implementation and the test phase, and may

later be reused for documentation purposes. In most cases, however, the assertion that a state

machine safely abstracts an existing implementation is kept implicit and informal.

With the rise of Internet-based technologies, the significance of state machines has only

increased. In particular, security protocols and communication protocols are naturally specified

in terms of state machines [3], [4], [5]. Similar applications of state machines can be found in

other safety-critical domains including medicine and aerospace.

Moreover, the dramatic change of focus from relatively monolithic systems to highly

distributed and heterogeneous systems whose development cycles are interdependent, calls

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 3

for new specification methodologies; for example, on August 2002, IBM, Microsoft, and

BEA announced the publication of three specifications (WS-Coordination, WS-Specification,

BPEL4WS [6]) which ”collectively describe how to reliably define, create and connect multiple

business processes in a Web services environment”. We foresee state machines being used for

contracts describing software capabilities. In both cases – protocol specification and distributed

computation – we observe that state machines are no longer just tools for internal use, but are

being introduced increasingly into the public domain.

In this paper, we describe our tool MAGIC (Modular Analysis of proGrams In C) [7] which is

capable of verifying whether a state machine (or, more precisely, a labeled transition system) is

a safe abstraction of a C procedure; the C procedure in turn may invoke other procedures which

are themselves specified in terms of state machines. Our approach has a number of tangible

benefits:

• Utility. The capability of MAGIC to formally verify the correctness of state-machine speci-

fications closes an evident gap in many software development methodologies, most notably,

but not only, for security-related system features. In the future, we envision that tools based

on ideas from MAGIC will assist the contracting process with third party software providers.

• Compositionality. MAGIC verification can be used early on during the development cycle, as

specifications can be plugged in for missing system components. Compositionality evidently

fosters concurrent development by independent groups of developers.

• Complexity. State-space explosion [3] remains the bottleneck of most automated verification

tools. Due to compositionality, the size of the individual system parts to be verified by MAGIC

remains manageable, as demonstrated by our experiments. Moreover, the verification process

in MAGIC is reduced to computing a weak simulation relation between finite state systems,

for which we can provide highly efficient algorithms.

• Flexibility. Internally, MAGIC uses several theorem provers and SAT solvers. The open design

of MAGIC facilitates the easy integration of new and improved tools from this quickly

developing area.

Consequently, we believe that MAGIC like tools have the potential to become indispensable in

the software engineering process. In the rest of this section we describe the technical contributions

of this paper.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 4

A. Labeled Transition Systems as Specification Mechanism

In the literature, several variants of state machines have been investigated; purely state-based

formalisms such as Kripke structures [3] are often used to model and specify systems. For the

MAGIC framework, however, we employ labeled transition systems (LTS), which are similar to

Kripke structures but for the fact that state transitions are labeled by actions.

From a theoretical point of view the presence of actions does not increase the expressive power

of LTS over Kripke structures. In our experience, however, it is more natural for designers and

software engineers to express the desired behavior of systems using a combination of states and

actions. For example, the fact that a lock has been acquired or released can be expressed naturally

by lock and unlock actions. In the absence of actions, the natural alternative is to introduce a new

variable indicating the status of the lock, and update it accordingly. The LTS approach certainly

is more intuitive, and allows both for a simpler theory and for an easier specification process.

Some sample LTSs used in our framework are shown in Figure 4. A formal definition will be

given in Section III.

The use of LTSs is also motivated by work in concurrency. Process algebras like CCS [8],

CSP [9] and the π-calculus [10] have been used widely to formally reason about message

passing concurrent systems. In these formalisms, actions are crucial for modeling the sending

and receiving of messages across channels. Process algebras lead very naturally to LTSs. Thus,

even though we currently only analyze sequential programs, we believe that the use of LTSs

will facilitate a smooth transition to concurrent message-passing programs in the future.

B. Procedure Abstractions

The goal of MAGIC is to verify whether the implementation of a system is safely abstracted by

its specification. To this end, MAGIC verifies individual procedures against the respective LTS.

In our implementation, it is possible to handle a group of procedures with a dag-like call graph

as a single procedure by inlining; therefore, for simplicity, we speak only of single procedures

in this paper.

In practice, it often happens that single procedures perform quite different tasks for certain

settings of their parameters. In our approach, this phenomenon is accounted for by allowing

multiple LTSs to represent a single procedure. The selection among these LTSs is achieved by

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 5

guards, i.e., formulas which describe the conditions on the procedure parameters under which a

certain LTS is applicable.

This gives rise to the notion of procedure abstraction (PA); formally a PA for a procedure

proc is a tuple 〈d, l〉 where:

• d is the declaration for proc, as it appears in a C header file.

• l is a finite list 〈g1,M1〉, . . . , 〈gn,Mn〉 where each gi is a guard formula ranging over the

parameters of proc, and each Mi is an LTS with a single initial state.

The procedure abstraction expresses that proc conforms to one LTS chosen among the Mi’s.

More precisely, proc conforms to Mi if the corresponding guard gi evaluates to true over the

actual arguments passed to proc. We require that the guard formulas gi be mutually exclusive

so that the choice of Mi is unambiguous.

C. Compositionality

The general goal of MAGIC is to prove that a user-defined PA for proc is valid. The role of

PAs in this process is twofold:

1) A target PA is used to describe the desired behavior of the procedure proc.

2) To assist the verification process, we employ valid PAs (called the assumption PAs) for

library routines used by proc.

Thus, PAs can be seen both as conclusions and as assumptions of the verification process.

Consequently, our methodology yields a scalable and compositional approach for verifying large

software systems. Figure 1 illustrates this by depicting the call graph of an implementation and

the steps involved in verifying it. In order to verify baz we need only assumption PAs for

the other library routines. For bar we additionally use the PA for baz as an assumption PA

while for foo we employ the PAs of both bar and baz as assumptions. Note that due to the

sound compositional principles on which MAGIC is based upon, no particular ordering of these

verification steps is required.

Assumption PAs are not only important for compositionality, they are in fact essential for

handling recursive library routines. Since MAGIC inlines all library routines for which assumption

PAs are unavailable, it would be unable to proceed if the assumption PA for a recursive library

routine was absent. Without loss of generality we will assume throughout this paper that the target

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 6

PA contains only one guard GSpec and one LTS MSpec . To achieve the result in full generality,

the described algorithm can be iterated for each guard of MSpec .

foo

bar

baz Verify baz’s PA

Verify foo’s PA

Verify bar’s PA

Call Graph

Target PAOther Library
Routines Assumption PA

Verification Steps

Fig. 1. Example of compositional verification.

D. Algorithms and Tool Description

The MAGIC tool follows the CEGAR paradigm [11], [12], [13], [14] that can be summarized

as follows:

• Step 1 : Model Creation. Extract an LTS MImp from proc using the assumed PAs, the

guard GSpec and a set of predicates. In MAGIC, the model is computed from the control flow

graph (CFG) of the program in combination with an abstraction method called predicate

abstraction [12], [15], [16]. To decide properties such as equivalence of predicates, we use

theorem provers. The details of this step are described in Section IV.

• Step 2 : Verification. Check if MSpec safely abstracts MImp . If this is the case, the verification

successfully terminates; otherwise, extract a counterexample and perform step 3. In MAGIC,

the verification step amounts to checking whether a weak simulation relation (cf. Section III)

holds between MSpec and MImp . We reduce weak simulation to the satisfiability of a certain

Boolean formula, thus utilizing highly efficient SAT procedures. The details of this step are

described in Section V.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 7

• Step 3: Validation. Check whether the counterexample extracted in step 2 is valid. If this

is the case, then we have found an actual bug and the verification terminates unsuccessfully.

Otherwise construct an explanation for the spuriousness of the counterexample and proceed

to Step 4.

• Step 4 : Refinement. Use the explanation from the previous step to construct an improved set

of predicates. Return to Step 1 to extract a more precise MImp using the new set of predicates

instead of the old one. The new predicate set is constructed in such a way as to guarantee

that all spurious counterexamples encountered so far will not appear in any future iteration

of this loop.

At its current stage of development, MAGIC can perform all the above steps in an automated

manner. The input to MAGIC consists of (i) a set of preprocessed ANSI-C files representing proc

and (ii) a set of specification files containing textual descriptions of MSpec , GSpec and a set of

predicates for abstraction. The textual descriptions of LTSs are given using an extended version

of the FSP notation by Magee and Kramer [17]. For example, the LTS Do A shown in Figure 4

is described textually as follows:

A1 = (a -> A2),

A2 = (return {} -> STOP).

E. Tool Overview

The schematic in Figure 2 explains the software architecture of MAGIC. Model Creation is

handled by Stage I of the program. In this stage, the input files are parsed and the control flow

graph (CFG) of the C program is constructed. Simplifications are made so that the resulting CFG

only has simple statements and side-effect free expressions. Finally, MImp is extracted from the

annotated CFG using the assumed PAs, GSpec and the predicates. As described later, this process

requires the use of theorem provers. MAGIC can interact with several public domain theorem

provers, such as Simplify [18], CVC [19], ICS [20], CVC Lite [21], and CPROVER [22].

Verification is performed in Stage II. As mentioned above, weak simulation here is reduced to

a form of Boolean satisfiability. MAGIC can interface with several publicly available SAT solvers,

such as Chaff [23], FGRASP [24] and SATO [25]. We also have our own efficient SAT solver

implementation which leverages the specific nature of SAT formulas that arise in this stage to

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 8

Implementation LTS

Specification LTS

SAT Solvers

Chaff FGRASP SATO
Our

Implementation

Verification
Verification
Successful

Verification
Unsuccessful

Stage I Stage II

Validation
Counterexample

Stage III

Counterexample

Refinement
Abstraction

Stage IV

Abstraction
Guidance

LTS Descriptions
C code

NO

Abstraction
Guidance

Improved

Reason why counterexample is spurious

YESModel Creation

Theorem Provers

SPURIOUS VALID

CPROVERICSSimplify CVCLCVC

Fig. 2. Overall architecture of MAGIC.

deliver better performance than the public domain solvers. The verification process is presented

in Section V in more detail.

If the verification step fails, MAGIC generates an appropriate counterexample and checks its

validity in Stage III. If the counterexample is found to be spurious, an improved set of predicates

is computed in Stage IV and the entire process is repeated from Stage I. Stages III and IV are

completely automated and require the use of theorem provers. In this paper we focus on model

creation and verification; details about counterexample validation and abstraction refinement are

presented elsewhere [26].

The rest of this paper is organized as follows: In Section II we present related work. This

is followed in Section III by some basic definitions that are used in the rest of this article. In

Section IV we describe in detail the model construction procedure used in MAGIC to extract LTS

models from C programs. Section V describes how we check weak simulation between MSpec

and MImp using Boolean satisfiability. In Section VI we present a broad range of benchmarks

and results that we have used to evaluate MAGIC. Finally, in Section VII we give an overview

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 9

of various ongoing and future research directions that are relevant to MAGIC.

II. RELATED WORK

During the last years advances in verification methodology as well as in computing power

have promoted renewed interest in software verification. The resulting systems – most notably

Bandera [27] and Java PathFinder [28], [29], ESC Java [30], SLAM [31], BLAST [32] and

MC [33], [34] – are increasingly able to handle industrial software. Among the six mentioned

systems, the first three focus on Java, while the last three all deal with C. Java verification is quite

different from C, because object orientation, garbage collection and the logical memory model

require specific analysis methods. Among the C verification tools, MC (which stands for meta-

compilation) has a distinguished place because it amounts to a form of pattern matching on the

source code, with surprisingly good results for scanning relatively simple errors in large amounts

of code. SLAM and BLAST are closely related tools, whose technical flavor is most akin to

ours. SLAM is primarily optimized to analyze device drivers, and is going to be included in the

Windows development cycle. In contrast to SLAM which uses symbolic algorithms, BLAST is

an on-the-fly reachability analysis tool. MAGIC is the only tool which uses LTS as specification

formalism, and weak simulation as the notion of conformance. This choice reflects the area of

security currently being our primary application domain.

Except for MC and ESC Java, the above-mentioned tools are based on variations of model

checking [3], [35], and they all require abstraction methods to alleviate the state explosion

problem, most notably data abstraction [36] and the more generally predicate abstraction [16].

The abstraction method used in SLAM and BLAST is closest to ours. However, due to

compositionality, we can afford to invest more computing power into computing abstractions,

and are therefore able to improve on Cartesian abstraction [37]. Generally, we believe that the

form of compositionality provided by MAGIC is unique among existing software verification

systems.

Virtually all systems that use abstraction interface with theorem provers for various purposes.

The software architecture of MAGIC is designed as to facilitate the integration of various theorem

provers. In addition, MAGIC is the only tool which leverages the enormous success of SAT

procedures in hardware verification [38] in software verification. SAT procedures have been

successfully used for checking validity of software specifications (expressed in a relational

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 10

calculus) [39], [40], [41].

III. DEFINITIONS

In this section we present some basic definitions that will be used in the rest of this article.

A. Labeled Transition Systems

A labeled transition system (LTS) M is a 4-tuple 〈S, init ,Σ, T 〉, where (i) S is a finite non-

empty set of states, (ii) init ∈ S is the initial state, (iii) Σ is a finite set of actions (alphabet) ,

and (iv) T ⊆ S × Σ× S is the transition relation.

We assume that there is a distinguished state STOP ∈ S which has no outgoing transitions,

i.e., ∀s ∈ S,∀a ∈ Σ, (STOP , a, s) 6∈ T . We will write s
a−→ t to mean (s, a, t) ∈ T and denote

the set {t | s a−→ t} by Succ(s, a).

B. Actions

In accordance with existing practice, we use actions to denote externally visible behaviors of

systems being analyzed, e.g. acquiring a lock. Actions are atomic, and are distinguished simply

by their names. Often, the presence of an action indicates a certain behavior which is achieved

by a sub-procedure in the implementation. Since we are analyzing C, a procedural language,

we model the termination of a procedure (i.e., a return from the procedure) by a special class

of actions called return actions. Every return action r is associated with a unique return value

RetVal(r). Return values are either integers or void. We denote the set of all return actions

whose return values are integers by IntRet and the special return action whose return value is

void by VoidRet .

All actions which are not return actions are called basic actions. A distinguished basic action

τ denotes the occurrence of an unobservable internal event. In this article we only consider

procedures that terminate by returning. In particular, we do not handle constructs like setjmp

and longjmp. Furthermore, since LTSs are used to model procedures, any LTS 〈S, init ,Σ, T 〉
must obey the following condition: ∀s ∈ S, s a−→ STOP iff a is a return action.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 11

C. Conformance via Weak Simulation

In the context of LTS, simulation [8] is the natural notion of conformance between a

specification LTS and an implementation LTS. Compared to conformance notions based on

trace containment [11], simulation has the additional advantage that it is computationally less

expensive to check. Among the many technical variants of simulation [8], we choose weak

simulation as our notion of conformance because it allows for asynchrony between the LTSs,

i.e., one step of the specification LTS may correspond to multiple steps of the implementation.

This feature of weak simulation is crucial to our approach, because one step in MSpec typically

corresponds to multiple steps in MImp .

D. Weak Simulation

Let M1 = 〈S1, init1,Σ, T1〉 and M2 = 〈S2, init2,Σ, T2〉 be two LTSs with the same alphabet.

A relation R ⊆ S1 × S2 is called a weak simulation iff if obeys the following two conditions

for all s1 ∈ S1, t1 ∈ S1 and s2 ∈ S2:

1) If (s1, s2) ∈ R, a 6= τ and s1
a−→ t1 then there exists t2 ∈ S2 such that s2

a−→ t2 and

(t1, t2) ∈ R.

2) If (s1, s2) ∈ R and s1
τ−→ t1 then at least one of the following two conditions hold:

a) (t1, s2) ∈ R
b) There exists t2 ∈ S2 such that s2

τ−→ t2 and (t1, t2) ∈ R
We say that LTS M2 weakly simulates M1 (denoted by M1 4 M2) if there exists a weak

simulation relation R ⊆ S1 × S2 such that (init1, init2) ∈ R.

E. Algorithm for Computing Weak Simulation

The existence of a weak simulation relation between M1 and M2 can be checked efficiently by

reducing the problem to an instance of Boolean satisfiability [42]. Interestingly the SAT instances

produced by this method always belong to a restricted class of SAT formulas known as the weakly

negated HORN formulas. In contrast to general SAT (which has no known polynomial time

algorithm), satisfiability of weakly negated HORN formulas can be solved in linear time [43].

As part of MAGIC, we have implemented an online linear time HORNSAT algorithm [44]. MAGIC

can also interface with public domain general SAT solvers like Chaff [23], FGRASP [24] and

SATO [25].

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 12

IV. MODEL CONSTRUCTION

Let MSpec = 〈SSpec, initSpec,ΣSpec, TSpec〉 and the assumption PAs be {PA1, . . . ,PAk}. In this

section we show how to extract MImp from proc using the assumption PAs, the guard GSpec and

the predicates. The extraction of MImp relies on several principles:

• Every state of MImp models a state during the execution of proc; consequently every state is

composed of a control and data component.

• The control components intuitively represent values of the program counter, and are formally

obtained from the CFG of proc.

• The data components are abstract representations of the memory state of proc. These abstract

representations are obtained using predicate abstraction.

• The transitions between states in MImp are derived from the transitions in the control flow

graph, taking into account the assumption PAs and the predicate abstraction. This process

involves reasoning about C expressions, and therefore requires the use of a theorem prover.

S0: int x,y=8;

S1: if(x == 0) {

S2: do a();

S4: if (y < 10) { S6: return 0; }

else { S7: return 1; }

} else {

S3: do b();

S5: if(y > 5) { S8: return 2; }

else { S9: return 3; }

}
Fig. 3. A simple proc we use as a running example.

Without loss of generality, we can assume that there are only five kinds of statements in proc:

assignments, call-sites, if-then-else branches, goto and return. In our implementation,

we use the CIL [45] tool to transform arbitrary C programs into the above format. Note that

call-sites correspond to library routines called by proc for which assumed PAs are available. We

assume the absence of indirect function calls and pointer dereferences in the lhs’s of assignments.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 13

In reality, MAGIC handles these constructs by using aliasing information conservatively [26]. We

denote by Stmt the set of statements of proc and by Exp the set of all pure (side-effect free) C

expressions over the variables of proc.

As a running example of proc, we use the C program shown in Figure 3. It invokes two

library routines do a and do b. Let the guard and LTS list in the assumption PA for do a be

〈TRUE, Do A〉. This means that under all invocation conditions, do a is safely abstracted by the

LTS Do A. Similarly the guard and LTS list in the assumption PA for do b is 〈TRUE, Do B〉. The

LTSs Do A and Do B are described in Figure 4. Also we use GSpec = TRUE and MSpec = Spec

(shown in Figure 4).

STOP

Do_B

STOP

C3
C5

C4

C7

C6

C9

C8

C11

C10

C13

C12

STOP

Do_A

a breturn{} return{}
A1 A2 B1 B2

C1 C2
τ

τ

τ

τ

a τ

τ

τ

τ return{2}

return{0}

b

τ τ

Spec

Fig. 4. The LTSs in the assumption PAs for do a and do b. The VoidRet action is denoted by return{}.

A. Initial abstraction with control flow automata

The construction of MImp begins with the construction of the control flow automaton (CFA) of

proc. The states of a CFA correspond to control points in the program. The transitions between

states in the CFA correspond to the control flow between their associated control points in the

program. Thus, a CFA of a program is a conservative abstraction of the program’s control flow,

i.e. it allows a superset of the possible traces of the program. Formally the CFA is a 4-tuple

〈SCF , ICF , TCF ,L〉 where:

• SCF is a set of states.

• ICF ∈ SCF is an initial state.

• TCF ⊆ SCF × SCF is a set of transitions.

• L : SCF \ {FINAL} → Stmt is a labeling function.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 14

SCF contains a distinguished FINAL state. The transitions between states reflect the flow of

control between their labeling statements: L(ICF) is the initial statement of proc and (s1, s2) ∈
TCF iff one of the following conditions hold:

• L(s1) is an assignment, call-site or goto with L(s2) as its unique successor.

• L(s1) is a branch with L(s2) as its then or else successor.

• L(s1) is a return statement and s2 = FINAL.

Example 1: The CFA of our example program is shown in Figure 5. Each non-final state is

labeled by the corresponding statement label (the FINAL state is labeled by FINAL). Henceforth

we will refer to each CFA state by its label. Therefore the states of the CFA in Figure 5 are S0

...S9, final with S0 being the initial state.

y = 8

x == 0

return 0

a()

y < 10 y > 5

b()

1
{p , p }

2

1
{p }

1
{p } {p }

2

{p }
2

1
{p , p }

2

return 1 return 2 return 3{ }

{ } { }

{ }

{ }

S0

S1

S2 S3

S4 S5

S6 S8 S9S7

FINALFINAL

Fig. 5. The CFA for our example program. Each non-FINAL state is labeled the same as its corresponding statement. The

initial state is labeled S0. The states are also labeled with inferred predicates when P = {p1, p2} where p1 = (y < 10) and

p2 = (y > 5).

B. Predicate inference

Since the construction of MImp from proc involves predicate abstraction, it is parameterized

by a set of predicates P . The main challenge in predicate abstraction is to identify the set P
that is necessary for proving the given property. In our framework we require P to be a subset

of the branch predicates in proc. Therefore we sometimes refer to P or subsets of P simply

as a set of branches. The construction of MImp associates with each state s of the CFA a finite

subset of Exp derived from P , denoted by Ps. The process of constructing the Ps’s from P

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 15

is known as predicate inference and is described by the algorithm PredInfer in Figure 6. Note

that PFINAL is always ∅.
The algorithm uses a procedure for computing the weakest precondition WP [11], [46], [47]

of a predicate p relative to a given statement. Consider a C assignment statement a of the form

v = e. Let ϕ be a pure C expression (ϕ ∈ Exp). Then the weakest precondition of ϕ with respect

to a, denoted by WP [a]{ϕ} is obtained from ϕ by replacing every occurrence of v in ϕ with e.

Note that we need not consider the case where a pointer appears in the lhs of a since we have

disallowed such constructs from appearing in proc.

Input: Set of branch statements P

Output: Set of Ps’s associated with each CFA state

Initialize: ∀s ∈ SCF ,Ps := ∅

Forever do

For each s ∈ SCF do

If L(s) is an assignment statement and L(s′) is its successor

For each p′ ∈ Ps′ add WP[L(s)]{p′} to Ps

Else If L(s) is a branch statement with condition c

If L(s) ∈ P, then add c to Ps

If L(s′) is a ‘then’ or ‘else’ successor of L(s)

Ps := Ps ∪ Ps′

Else If L(s) is a call-site or a ‘goto’ statement with

successor L(s′)

Ps := Ps ∪ Ps′

Else If L(s) returns expression e and r ∈ ΣSpec ∩ IntRet

Add the expression (e == RetVal(r)) to Ps

If no Ps was modified in the For loop, then exit

Fig. 6. The algorithm PredInfer that MAGIC uses for predicate inference.

The weakest precondition is clearly an element of Exp as well. Note that PredInfer may not

terminate in the presence of loops in the CFA. However, this does not mean that our approach

is incapable of handling C programs containing loops. In practice, we force termination of

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 16

PredInfer by limiting the maximum size of any Ps. Using the resulting Ps’s, we can compute the

states and transitions of the abstract model as described later. Irrespective of whether PredInfer

was terminated forcefully or not, MImp is guaranteed to be a safe abstraction of proc. We have

found this approach to be very effective in practice. A similar algorithm was proposed by Dams

and Namjoshi [48].

Example 2: Consider the CFA described in Example 1. Suppose P contains the two branches

S4 and S5. Then PredInfer begins with PS4 = {(y < 10)} and PS5 = {(y > 5)}. From this

it obtains PS2 = {(y < 10)} and PS3 = {(y > 5)}. This leads to PS1 = {(y < 10), (y > 5)}.
Then PS0 = {WP [y = 8]{y < 10},WP [y = 8]{y > 5}} = {(8 < 10), (8 > 5)}. Since

we ignore predicates that are trivially TRUE or FALSE, PS0 = ∅. Since the return actions in

Spec have return values {0, 2}, PS6 = {(0 == 0), (0 == 2)}, which is again ∅. Similarly,

PS7 = PS8 = PS9 = PFINAL = ∅. Figure 5 shows the CFA with each state s labeled by Ps.

C. Predicate valuation and concretization

So far we have described a method for computing the initial abstraction (the CFA) and a set of

predicates associated with each location in the program. The states of the abstract system MImp

correspond to the various possible valuations of the predicates in each location. Formally, for a

CFA node s suppose Ps = {p1, . . . , pk}. Then a valuation V of Ps is a function from Ps to the

set {TRUE, FALSE}. Alternately, one can view the valuation V as a Boolean vector 〈v1, . . . , vk〉
of size k where each vi is the result of applying the function V to the predicate pi.

Let Vs be the set of all predicate valuations of Ps. Note that the size of Vs is exponential in

the size of Ps. The predicate concretization function Γs : Vs → Exp is defined as follows. Given

a valuation V = {v1, . . . , vk} ∈ Vs, Γs(V) =
∧k
i=1 p

vi
i where pTRUE

i = pi and pFALSE
i = ¬pi.

As a special case, if Ps = ∅, then Vs = {⊥} and Γs(⊥) = TRUE.

Example 3: Consider the CFA described in Example 1 and the inferred predicates as explained

in Example 2. Recall that PS1 = {(y < 10), (y > 5)}. Suppose V1 = {0, 1} and V2 = {1, 0}.
Then ΓS1(V1) = (¬(y < 10)) ∧ (y > 5) and ΓS1(V2) = (y < 10) ∧ (¬(y > 5)).

D. States of MImp

Each state s ∈ SCF gives rise to a set of states of MImp , denoted by ISs. In addition, MImp

has an unique initial state INIT. The definition of ISs consists of the following sub-cases:

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 17

• ISFINAL = {STOP}.
• If L(s) is an assignment, branch, goto or return statement, then IS s = {s} × Vs.
• Suppose L(s) is a call-site for library routine lib and 〈g1, P1〉, . . . , 〈gn, Pn〉 is the guard and

LTS list in the assumption PA for lib. For 1 ≤ i ≤ n, let Pi = (Si, s{0,i}, Acti, Ti). Then:

ISs = (∪ni=1({s} × Vs × Si)) ∪ ({s} × Vs)

In the rest of this article we shall refer to MImp states of the form (s, V) as normal states. Also

we shall call MImp states of the form (s, V, c) inlined states since these states can be thought of

as arising due to inlining of assumed PAs at call-sites.

E. Definition of MImp

Formally, MImp is an LTS 〈SImp , init Imp ,ΣSpec, TImp〉 where:

• SImp = ∪s∈SCF
ISs ∪ {INIT} is the set of states.

• init Imp = INIT is the initial state.

• TImp ⊆ SImp × ΣSpec × SImp is the transition relation.

Note that the set of actions of MImp is the same as that of MSpec . In the worst case, the size

of SImp is exponential in the size of P . Therefore, the worst case space and time complexities

of constructing MImp are exponential as well.

F. Computing TImp .

Computing the transitions between the states in MImp requires a theorem prover. We add a

transition between two abstract states unless we can prove that there is no transition between

their corresponding concrete states. We observe that this problem can be reduced to the problem

of deciding whether ¬(ψ1 ∧ ψ2) is valid, where ψ1 and ψ2 are first order formulas over the

integers. In general this problem is known to be undecidable. However for our purposes it is

sufficient that the theorem prover be sound and always terminate. Several publicly available

theorem provers (such as Simplify [18]) have this characteristic.

Given arbitrary formulas ψ1 and ψ2, we say that the formulas are admissible if the theorem

prover returns FALSE or UNKNOWN on ¬(ψ1 ∧ ψ2). We denote this by A(ψ1, ψ2). Otherwise

the formulas are inadmissible, which is denoted by ¬A(ψ1, ψ2). The definition of TImp consists

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 18

of several sub-cases. First, we add a transition INIT
τ−→ (ICF , V) iff A(ΓICF

(V),GSpec). Next

we add ((s1, V1), τ, (s2, V2)) to TImp iff (s1, s2) ∈ TCF and one of the following conditions hold:

1. L(s1) is an assignment statement and A(Γs1(V1),WP [L(s1)]{Γs2(V2)}).
2.1. L(s1) is a branch statement with a branch condition c, L(s2) is its then successor,

A(Γs1(V1),Γs2(V2)) and A(Γs1(V1), c).

2.2. L(s1) is a branch statement with a branch condition c, L(s2) is its else successor,

A(Γs1(V1),Γs2(V2)) and A(Γs1(V1),¬c).
3. L(s1) is a goto statement and A(Γs1(V1),Γs2(V2)).

1) Handling return statements: We add ((s, V), a, STOP) to TImp iff L(s) is a re-

turn statement, a is a return action, and either (i) L(s) returns expression e, a ∈ IntRet

and A(Γs(V), (e == RetVal(a))), or (ii) L(s) returns void and a = VoidRet . If L(s)

returns expression e but condition (i) above is not applicable for any a ∈ IntRet , we add

((s, V),VoidRet , STOP) to TImp . This ensures that from every ‘‘return’’ state there is at

least one return action to STOP, and if an applicable return action cannot be determined, VoidRet

is used as the default.

2) Handling call-sites: Suppose L(s1) is a call-site for library routine lib and

〈g1, P1〉, . . . , 〈gn, Pn〉 is the guard and LTS list in the assumption PA for lib. Also, let

(s1, s2) ∈ TCF , V1 ∈ Vs1 and V2 ∈ Vs2 . Then for 1 ≤ i ≤ n, we do the following:

1. Let g′i be the guard obtained from gi by replacing every parameter of lib by the corresponding

argument passed to it at L(s1). If A(g′i,Γs1(V1)), then let Pi = (Si, s{0,i}, Acti, Ti) and proceed

to step 2, otherwise move on to the next i.

2. Add a transition ((s1, V1), τ, (s1, V1, s{0,i})) to TImp .

3. For each transition (s, a, t) ∈ Ti where t 6= STOP, add a transition ((s1, V1, s), a, (s1, V1, t))

to TImp .

4. If L(s1) is a call-site with an assignment, i.e. of the form x = lib(...), then:

• For each transition (s,VoidRet , STOP) ∈ Ti such that A(Γs1(V1),Γs2(V2)), add

((s1, V1, s), τ, (s2, V2)) to TImp .

• For each transition (s, a, STOP) ∈ Ti such that a ∈ IntRet and A(Γs1(V1),WP [x =

RetVal(a)]{Γs2(V2)}), add ((s1, V1, s), τ, (s2, V2)) to TImp .

5. If L(s1) is a call-site without an assignment, i.e. of the form lib(...), then for each

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 19

transition (s, a, STOP) ∈ Ti such that A(Γs1(V1),Γs2(V2)), add ((s1, V1, s), τ, (s2, V2)) to

TImp .

Example 4: Recall the CFA from Example 1 and the predicates corresponding to CFA nodes

discussed in Example 2. The models obtained with the set of predicates P = ∅ and P = {(y <
10), (y > 5)} are shown in Figure 7(a) and 7(b) respectively. Note that 7(a) is not weakly

simulated by Spec, while 7(b) is weakly simulated by Spec.

S0,< >

STOP

S1,< T,T >

S2,< T > S3,< T >

S0,< >

S2,< T >,A1 S3,< T >,B1

S2,< T >,A2 S3,< T >,B2

S4,< T > S5,< T >

S6,< > S8,< >

STOP

INIT

b

return{0} return{2}

τ

τ

τ

τ

τ τ

τ

τ

a

τ τ

INIT

b

τ

τ

τ

τ

τ τ

τ

τ

a

S1,< >

S2,< > S3,< >

S3,< >,B1

S2,< >,A2 S3,< >,B2

S4,< > S5,< >

return{0} return{1} return{2} return{3}

τ τ τ τ

S2,< >,A1

S7,< > S9,< >S6,< > S8,< >

(a) (b)

Fig. 7. (a) example MImp with P = ∅; (b) example MImp with P = {(y < 10), (y > 5)}.

V. CHECKING WEAK SIMULATION

In this section, we describe how to check weak simulation between two LTSs. In particular

we show how this can be achieved by reducing the problem to one of satisfiability of a weakly-

negated HORN formula. We begin with a few preliminary definitions.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 20

A. Definitions

A literal is either a boolean variable (in which case it is said to be positive) or its negation

(in which case it is said to be negative). A clause is a disjunction of literals, i.e., a formula of

the form (l1∨ . . .∨ lm) where li is a literal for 1 ≤ i ≤ m. A formula is said to be in conjunctive

normal form (CNF) iff it is a conjunction of clauses, i.e., of the form (c1 ∧ . . . ∧ cn) where ci

is a clause for 1 ≤ i ≤ n.

A valuation is a function from boolean variables to {TRUE, FALSE}. A valuation V automati-

cally induces a function V from literals to {TRUE, FALSE} as follows: (i) V(l) = V(b) if l is of

the form b and (ii) V(l) = ¬V(b) if l is of the form ¬b. A valuation V automatically induces a

function V from clauses to {TRUE, FALSE} as follows. Let c = (l1 ∨ . . .∨ lm) be a clause. Then

V(c) = ∨mi=1V(li). In the same spirit, a valuation V automatically induces a function V from

CNF formula to {TRUE, FALSE} as follows. Let φ = (c1 ∧ . . . ∧ cn) be a CNF formula. Then

V(φ) = ∧ni=1V(ci). A CNF formula φ is said to be satisfiable iff there exists a valuation V such

that V(φ) = TRUE.

A CNF formula (c1 ∧ . . . ∧ cn) is said to be a weakly negated HORN (N-HORN) formula

iff each ci contains at most one negative literal for 1 ≤ i ≤ n. The problem of checking the

satisfiability of an arbitrary N-HORN formula is known as N-HORNSAT. There exists a well-

known algorithm [44] for solving the N-HORNSAT problem that requires linear time and space

in the size of the input formula. We are now ready to present the N-HORNSAT based weak

simulation checking algorithm used by MAGIC.

B. Reducing weak simulation to N-HORNSAT

Let M1 = 〈S1, init1,Σ, T1〉 and M2 = 〈S2, init2,Σ, T2〉 be two LTSs with the same alphabet.

Our goal is to create a weakly negated HORN formula φ(M1,M2) such that φ(M1,M2) is

satisfiable iff M1 4 M2. For each s1 ∈ S1 and s2 ∈ S2 we introduce a boolean variable that

we denote BV (s1, s2). Intuitively, BV (s1, s2) stands for the proposition that there exists a weak

simulation relation R such that (s1, s2) ∈ R. We then generate a set of clauses that constrain

the various boolean variables according to the definition of a weak simulation relation.

In particular suppose BV (s1, s2) is TRUE. Then there exists a weak simulation relation R

such that (s1, s2) ∈ R. Now suppose s1
a−→ t1 where a 6= τ . Then from the definition of a weak

simulation relation, there must exist some state t2 such that s2
a−→ t2 and further (t1, t2) ∈ R. In

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 21

other words, if Succ(s2, a) = {t12, . . . , tn2}, then it must be the case that {(t1, t12), . . . , (t1, t
n
2)} ∩

R 6= ∅. But this argument can be expressed formally by the following clause: BV (s1, s2) ⇒
∨ni=1BV (t1, t

i
2).

If a = τ , then we have to allow for the additional possibility that (t1, s2) ∈ R. Hence,

the corresponding clause is: BV (s1, s2) ⇒ ∨ni=1BV (t1, t
i
2) ∨ BV (t1, s2). In essence, our target

formula φ(M1,M2) is composed of such clauses, one for each appropriate choice of s1, s2, a

and t1. The following algorithm describes precisely how these clauses are generated.

For each s1 ∈ S1

For each s2 ∈ S2

For each a ∈ Σ

For each t1 ∈ Succ(s1, a)

If (a 6= τ) then output BV (s1, s2)⇒ ∨t2∈Succ(s2,a)BV (t1, t2)

Else Output BV (s1, s2)⇒ ∨t2∈Succ(s2,a)BV (t1, t2) ∨ BV (t1, s2)

As a special case, when Succ(s2, a) = ∅, the generated clause is simply ¬BV (s1, s2). Finally

we have to express the constraint that there exists a weak simulation relation R such that

(init1, init2) ∈ R. But this can be done precisely by the singleton clause BV (init 1, init2).

In summary, our target formula φ(M1,M2) consists of the clauses generated by the algorithm

given above, along with the singleton clause BV (init 1, init2). Note that φ(M1,M2) is a N-HORN

formula.

The above method of checking weak simulation via N-HORNSAT is well-known [42]. Further,

N-HORNSAT can be solved in linear time and space [43]. This yields extremely efficient

algorithms for checking weak simulation between two LTSs. In addition, recall that the CEGAR

loop used by MAGIC makes it necessary to construct a counterexample if the weak simulation

check fails. As part of MAGIC we have implemented an extended version of the N-HORNSAT

algorithm presented by Ausiello and Italiano [44] to achieve precisely this goal. In other words,

not only does our algorithm check for satisfiability of N-HORN formulas, but it also constructs

a counterexample for the weak simulation relation if the formula is found to be unsatisfiable. To

the best of our knowledge, ours is the first attempt to construct counterexamples in the context

of weak simulation using SAT procedures.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 22

C. Counterexamples from N-HORNSAT

In general, counterexamples to weak simulation can be viewed as winning strategies of

simulation games between the implementation and the specification. In this section we will

give a brief overview of the process by which we construct a counterexample. A thorough

formal treatment of this procedure, along with detailed algorithms for counterexample validation

and abstraction refinement, have been presented elsewhere [26]. We begin with a few simple

definitions.

Let R̂ be the set {R ⊆ S1 × S2 | R is a weak simulation relation }. In other words R̂ is

the set of all weak simulation relations between M1 and M2. Suppose we order the elements

of R̂ by the subset ordering, i.e., for any two elements R1 ∈ R̂ and R2 ∈ R̂, R1 ≤ R2 iff

R1 ⊆ R2. Then it is well-known that there exists a unique maximal element of R̂ called the

maximal weak simulation relation. Let us denote this maximal element by 4m. From this it

follows that M1 4 M2 iff init1 4m init2. In other words, one can check if M1 4 M2 in two

steps: (i) compute 4m; (ii) check if (init1, init2) ∈4m.

A standard algorithm to compute 4m works as follows: (i) start with S1 × S2 as the initial

guess for 4m; (ii) repeatedly eliminate elements from the current guess till a fixed point is

reached. In each iteration, elements are eliminated on the basis of elements already eliminated

in previous iterations and following the definition of a weak simulation relation.

For example, suppose that state t1 has an outgoing transition t1
a−→ w1 (where a 6= τ), but

state t2 has no outgoing transitions labeled with a. Then the pair (t1, t2) cannot belong to 4m
and hence must be eliminated. Now suppose, in addition, that the only outgoing transition from

states s1 and s2 are s1
a−→ t1 and s2

a−→ t2 respectively. Then, since the pair (t1, t2) has been

eliminated already, as per the definition of a weak simulation relation, (s1, s2) 6∈4m. Hence the

pair (s1, s2) must also be eliminated from the guess.

The correctness of the above algorithm is well-known. Clearly, it can be extended to not only

compute 4m, but also to record the order in which elements were eliminated from the guess. We

have shown [26] that this order, which we call the elimination order, can be used to construct a

counterexample in case the weak simulation check fails. An elimination order explains why the

initial state of the implementation cannot be simulated by the initial state of the specification. In

other words, it explains why the specification fails to simulate the implementation. However, as

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 23

described earlier, we check weak simulation by solving for the satisfiability of an N-HORNSAT

formula, and not by computing 4m explicitly. We must therefore devise a way to construct an

elimination order, when necessary, from our N-HORNSAT solver. In the rest of this section we

describe the process by which we achieve this goal.

Recall that in order to check weak simulation between two LTSs M1 and M2, we first construct

an N-HORNSAT formula φ(M1,M2) such that φ(M1,M2) is satisfiable iff M1 4M2. We then

solve for the satisfiability of φ(M1,M2). In the rest of this section we shall denote φ(M1,M2) as

simply φ. The satisfiability check occurs in two phases. In the first phase, a directed hypergraph,

HGφ is constructed on the basis of the clauses in φ. The nodes of HGφ correspond to the

Boolean variables in φ. We shall denote the node corresponding to Boolean variable b as simply

nb. Additionally there are two special nodes called nTRUE and nFALSE. The edges of HGφ are

constructed as follows:

• For each clause of the form ¬b in φ, we add an edge from node nFALSE to node nb.

• For each clause of the form (b1 ∨ . . .∨ bk) in φ, we add a hyper-edge from the hyper-node

{nb1 , . . . , nbk} to node nTRUE.

• Finally, for each clause of the form (¬b0 ∨ b1 ∨ . . . ∨ bk) in φ, we add a hyper-edge from

the hyper-node {nb1 , . . . , nbk} to node nb0 .

In the second phase of our N-HORNSAT satisfiability algorithm, we compute the set of nodes

of HGφ that are reachable from nFALSE. Let us denote this set of nodes by RFALSE. It can be

shown [49] that φ is satisfiable iff nTRUE 6∈ RFALSE. Also RFALSE can be computed using

linear time and space in the size of HGφ (and hence φ). This set RFALSE has an additional

significance. Recall that the boolean variables in φ are of the form BV (s1, s2). It can be shown

that the following holds:

∀s1 ∈ S1,∀s2 ∈ S2, nBV (s1,s2) ∈ RFALSE ⇔ (s1, s2) 6∈4m

In other words, the elements in RFALSE are exactly those nodes that correspond to boolean

variables BV (s1, s2) such that (s1, s2) would have been eliminated from 4m. Additionally, the

following can also be shown to be true: suppose that, while computing RFALSE, elements gets

included in it in the following order: 〈nBV (p1), . . . , nBV (pk)〉 where each pi ∈ S1 × S2; then

〈p1, . . . , pk〉 is a valid elimination order. Our N-HORNSAT based elimination order computation

therefore works as follows: when computing RFALSE we record the order in which nodes get

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 24

added to RFALSE. We output the corresponding order of state pairs. Once an elimination order

has been obtained, the counterexample construction can proceed as usual.

VI. EXPERIMENTAL EVALUATION

Our experiments were guided by three general goals: First, we wanted to assure the correctness

of the tool by experimenting with examples where the correct outcome was already known.

Second, we wanted to evaluate the relative performances of various publicly available software

(theorem provers, SAT solvers) that were integrated into our system. Third, we wished to

validate the usefulness of our tool in handling large real life examples. All our experiments

were performed on a 1.4 GHz AMD Athlon machine with 1 GB of RAM running RedHat

Linux 7.1.

A. Regression Tests.

The first two goals were achieved by a suite of 10 regression tests of small size. All these tests

were derived from actual Linux kernel code. Figure 8 describes the source of each test briefly.

LOC indicates the number of post-processed lines of C. The name of the procedure analyzed is

given in italics in the description. A modified procedure means that the source code was changed

so that it would no longer be safely abstracted by the specification LTS. The library to which

the procedure belongs is given in brackets after the procedure name.

B. Regression Test Results.

Figure 10 summarizes the performance results for various theorem provers obtained via the

regression suite. The y-axis (drawn in log scale) shows the time needed to construct MImp

in milliseconds which is a clear indicator of the performance of the theorem prover. Similarly,

Figure 9 summarizes the performance results for various SAT solvers obtained via the regression

suite. The y-axis indicates the time in milliseconds needed to check weak simulation since this

is the step where the SAT solver is used.

C. Verifying OpenSSL.

To achieve the third goal we opted to work with OpenSSL [50], an open source implementation

of the publicly available SSL [51] specification. This protocol is used by a client (typically a

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 25

Regression LOC Description

lock-y 27 pthread mutex lock (pthread)

unlock-y 24 pthread mutex unlock (pthread)

socket-y 60 socket (socket)

sock alloc-y 24 sock alloc (socket)

sys send-y 4 sys send (socket)

sock sendmsg-y 11 sock sendmsg (socket)

lock-n 27 modified pthread mutex lock

unlock-n 24 modified pthread mutex unlock

sock alloc-n 24 modified sock alloc

sock sendmsg-n 11 modified sock sendmsg

Fig. 8. Descriptions of regression tests.

lock-y

unlock-y

socket-y

sock_alloc-y

sys_send-y

sock_sendmsg-y

lock-n

unlock-n

sock_alloc-n

sock_sendmsg-n

Regression Test

0

5

10

15

20

T
im

e
to

 c
he

ck
 S

im
ul

at
io

n
(m

s)

Horn

Chaff

FGRASP

SATO

Fig. 9. Time to check weak simulation.

web browser) and a server to establish a secure socket connection over a malicious network

using public and symmetric key cryptography.

A critical component of the protocol is the handshake. First we verified that the openssl-

0.9.6c implementation of the server side of the handshake conforms to its specification. This

implementation is encapsulated in a single procedure of about 347 lines of C. We constructed

the target LTS MSpec manually by reading the SSL specification [51]. The LTS had 28 states and

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 26

lock-y

unlock-y

socket-y

sock_alloc-y

sys_send-y

sock_sendmsg-y

lock-n

unlock-n

sock_alloc-n

sock_sendmsg-n

Regression Test

1

10

100

1000

10000

T
im

e
to

 c
on

st
ru

ct
 I

m
pl

em
en

ta
ti

on
 L

T
S

(m
s)

Simplify

ICS

CVC

CPROVER

Fig. 10. Time to construct MImp .

67 transitions. A total of 19 predicates and PAs for 14 library routines were externally supplied.

We carried out two experiments. The first was done with the correct target LTS. The second

was done with a modified the target LTS (of same size) so that a correct implementation would

no longer be weakly simulated by it. Next we repeated identical experiments with the client

side implementation. It was encapsulated within a single procedure of 345 lines. The target LTS

had 28 states and 60 transitions. A total of 18 predicates and PAs for 12 library routines were

externally supplied.

D. OpenSSL Results.

In the case of the OpenSSL server experiments, the fact that the correct specification LTS

safely abstracts the OpenSSL implementation was then proved by our tool in 255 seconds using

about 130 MB of memory. The tool also successfully verified that the modified specification

LTS does not safely abstract the implementation in 247 seconds using 115 MB of memory. For

the client experiments the corresponding figures were 226 seconds, 107MB and 227 seconds,

111MB. Owing to compositionality we did not have to verify the validity of the assumption PAs

used for these experiments.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 27

E. Comparison of Theorem Provers and SAT Tools.

A closer look at the two bar graphs reveal several consistent trends. First, for the purposes

of our tool, the theorem provers can be arranged in decreasing order of efficiency as follows:

Simplify, ICS, CVC, CVC Lite and CPROVER. The first four theorem provers have comparable

efficiency and seem clearly superior to CPROVER. Second, the SAT solvers can also be arranged

in decreasing order of efficiency as follows: Horn, Chaff, FGRASP and SATO. Of the external

solvers we used Chaff seems to be easily the best, almost matching our own HORNSAT based

implementation. FGRASP and SATO are less easily distinguishable.

The difference in performance between general SAT solvers and the HORNSAT solver

we implemented becomes prominent for the larger OpenSSL example. The time required for

checking weak simulation for the first OpenSSL server experiment and the first OpenSSL client

experiment were 42 seconds and 32 seconds respectively when using our HORNSAT solver. In

comparison the same figures for Chaff were 386 seconds and 265 seconds respectively.

VII. ONGOING AND FUTURE WORK

We are currently extending and enhancing the MAGIC framework presented in this paper in

several important directions. As mentioned previously, the process of extracting a finite model

from a C program using predicate abstraction can be exponential in the number of predicates used.

Thus, in order to make model construction effective and scalable, one must attempt to keep the

set of predicates as small as possible. MAGIC uses a sophisticated predicate minimization [52]

scheme based on solving pseudo-Boolean constraints to achieve this goal with encouraging

results.

Another important feature not discussed in the current paper is MAGIC’s capability of

verifying concurrent C programs where the various components communicate among themselves

by blocking message passing. In the context of concurrent programs, the state-space grows

exponentially with the number of components. As part of MAGIC, we have implemented an

automated, compositional, two-level abstraction refinement [53] technique to alleviate the state-

space explosion problem and improve scalability. Experimental results indicate that our approach

enables us to verify non-trivial concurrent programs using MAGIC.

Finally, we are investigating temporal logic based specification mechanisms which complement

the ones presented in this paper. In particular, we are looking into linear [54] and branching-time

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 28

temporal logics that allow for specifications involving both state propositions and actions. We

believe that such state/event based logics will serve as more natural specification mediums for

software than corresponding logics based purely on either states or events.

There are many interesting research directions for further work. First, we will look into

more expressive abstraction techniques for more precise modeling of the heap and dynamically

allocated data structures. Second, we envision an extension of the MAGIC infrastructure to other

imperative languages such as Java and C++. Third, it is important that MAGIC be capable of

handling concurrent programs that communicate via shared memory as opposed to message

passing. A vast majority of multi-threaded C programs fall under this category and we aim at

analyzing such programs.

Another important aspect is the analysis of parameterized systems that can consist of an

arbitrary number of concurrent components. Currently MAGIC can only handle concurrent

programs with an apriori fixed degree of concurrency. Several classes of software systems – most

notably libraries implementing shared data structures like trees and priority queues – are however

designed to support simultaneous access by an arbitrary number of threads and/or processes. It is

important to verify that such systems are implemented in a thread-safe manner. In other words,

we need to verify that such libraries satisfy certain safety criteria (e.g. absence of data races and

stack overflow) irrespective of the number of clients accessing them simultaneously.

ACKNOWLEDGMENT

Several people have contributed, and continue to contribute, critically to the progress of the

MAGIC project. In particular, we would like to express our gratitude to Joel Ouaknine, Nishant

Sinha, Natasha Sharygina, Ofer Strichman and Karen Yorav for making MAGIC happen.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Computer Programming, vol. 8, no. 3, pp.

231–274, June 1987. [Online]. Available: http://citeseer.nj.nec.com/harel87statecharts.html

[2] “Unified Modeling Language,” http://www.uml.org.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 2000.

[4] E. Clarke, S. Jha, and W. Marrero, “Verifying security protocols with Brutus,” ACM Transactions in Software Engineering

Methodology (TOSEM), vol. 9, no. 4, 2000.

[5] G. Lowe, S. A. Schneider, B. Roscoe, M. H. Goldsmith, P. Y. A. Ryan, and A. Roscoe, Modelling and Analysis of Security

Protocols. Addison-Wesley Pub Co, December 2000.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 29

[6] “Business Process Execution Language for Web Services,” http://www.oasis-open.org/cover/bpel4ws.html.

[7] “MAGIC,” http://www.cs.cmu.edu/∼chaki/magic.

[8] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.

[9] C. A. R. Hoare, “Communicating sequential processes,” Communications of the ACM (CACM), vol. 21, no. 8, pp. 666–677,

August 1978.

[10] R. Milner, Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.

[11] T. Ball and S. K. Rajamani, “Automatically validating temporal safety properties of interfaces,” Lecture Notes in

Computer Science, vol. 2057, 2001. [Online]. Available: http://citeseer.nj.nec.com/ball01automatically.html

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstraction refinement,” in

Computer Aided Verification, 2000, pp. 154–169, extended version to appear in J. ACM. [Online]. Available:

http://citeseer.nj.nec.com/clarke00counterexampleguided.html

[13] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, H. Zheng, and W. Visser, “Tool-supported program

abstraction for finite-state verification,” in International Conference on Software engineering. IEEE Computer Society,

2001, pp. 177–187.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,” in Symposium on Principles of Programming

Languages, 2002, pp. 58–70. [Online]. Available: http://citeseer.nj.nec.com/524901.html

[15] S. Das, D. L. Dill, and S. Park, “Experience with predicate abstraction,” in Computer Aided Verification, 1999, pp.

160–171. [Online]. Available: http://citeseer.nj.nec.com/das99experience.html

[16] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in Computer Aided Verification, O. Grumberg,

Ed., vol. 1254. Springer Verlag, 1997, pp. 72–83. [Online]. Available: http://citeseer.nj.nec.com/graf97construction.html

[17] J. Magee and J. Kramer, Concurrency: State Models & Java Programs. Wiley, 2000.

[18] G. Nelson, “Techniques for program verification,” Ph.D. dissertation, Stanford University, 1980.

[19] A. Stump, C. Barrett, and D. Dill, “CVC: A cooperating validity checker,” in Conference on Computer-Aided Verification,

2002.

[20] J.-C. Filliatre, S. Owre, H. Ruess, and N. Shankar, “ICS: Integrated canonizer and solver,” in Computer-Aided Verification,

2001.

[21] “CVC Lite,” http://chicory.stanford.edu/CVCL.

[22] D. Kroening, “Application specific higher order logic theorem proving,” in Proc. of the Verification Workshop - VERIFY’02,

S. Autexier and H. Mantel, Eds., July 2002, pp. 5–15.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an efficient SAT solver,” in Design

Automation Conference, June 2001.

[24] J. P. Marques-Silva and K. A. Sakallah, “GRASP – a new search algorithm for satisfiability,” in IEEE/ACM International

Conference on Computer-Aided Design, November 1996.

[25] H. Zhang, “SATO: An efficient propositional prover,” in Conference on Automated Deduction, 1997.

[26] S. Chaki, E. Clarke, S. Jha, and H. Veith, “Strategy Guided Abstraction Refinement,” Carnegie Mellon University, Tech.

Rep. CMU-CS-03-188, 2003.

[27] “Bandera,” http://www.cis.ksu.edu/santos/bandera.

[28] “Java PathFinder,” http://ase.arc.nasa.gov/visser/jpf.

[29] K. Havelund and T. Pressburger, “Model checking JAVA programs using JAVA pathfinder,” International

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 30

Journal on Software Tools for Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000. [Online]. Available:

http://citeseer.nj.nec.com/article/havelund99model.html

[30] “ESC-Java,” http://www.research.compaq.com/SRC/esc.

[31] “SLAM,” http://research.microsoft.com/slam.

[32] “BLAST,” http://www-cad.eecs.berkeley.edu/∼rupak/blast.

[33] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system rules using system-specific, programmer-written

compiler extensions,” in Symposium on Operating Systems Design and Implementation, 2000. [Online]. Available:

http://citeseer.nj.nec.com/article/engler00checking.html

[34] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language for building system-specific, static

analyses,” in SIGPLAN Conference on Programming Language Design and Implementation, 2002. [Online]. Available:

http://citeseer.nj.nec.com/529542.html

[35] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state concurrent systems using temporal

logic specifications,” ACM Transactions on Programming Languages and System (TOPLAS), vol. 8, no. 2, pp. 244–263,

April 1986.

[36] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,” ACM Transactions on Programming

Languages and System (TOPLAS), vol. 16, no. 5, pp. 1512–1542, September 1994.

[37] T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and Cartesian abstraction for model checking C programs,” Lecture

Notes in Computer Science, vol. 2031, pp. 268–283, 2001. [Online]. Available: http://citeseer.nj.nec.com/ball01boolean.html

[38] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without BDDs,” Lecture Notes in Computer

Science, vol. 1579, pp. 193–207, 1999. [Online]. Available: http://citeseer.nj.nec.com/article/biere99symbolic.html

[39] D. Jackson, “Automating relational logic,” in ACM SIGSOFT Conference on Foundations of Software Engineering (FSE),

San Diego, CA, November 2000.

[40] D. Jackson and K. Sullivan, “COM revisited: Tool-assisted modelling and analysis of complex software structures,” in

ACM SIGSOFT Conference on Foundations of Software Engineering, San Diego, CA, November 2000.

[41] S. Khurshid and D. Jackson, “Exploring the design of an intentional naming scheme with an automatic constraint analyzer,”

in 15th IEEE International Conference on Automated Software Engineering (ASE), Grenoble, France, September 2000.

[42] S. K. Shukla, “Uniform approaches to the verification of finite state systems,” Ph.D. dissertation, SUNY, Albany, 1997.

[43] W. F. Dowling and J. H. Gallier, “Linear time algorithms for testing the satisfiability of propositional Horn formula,”

Journal of Logic Programming, vol. 3, pp. 267–284, 1984.

[44] G. Ausiello and G. F. Italiano, “On-line algorithms for polynomially solvable satisfiability problems,” Journal of Logic

Programming, vol. 10, no. 1,2,3 & 4, pp. 69–90, January 1991.

[45] “CIL,” http://manju.cs.berkeley.edu/cil.

[46] E. W. Dijkstra, “A simple axiomatic basis for programming language constructs,” 1973, lecture notes from

the International Summer School on Structured Programming and Programmed Structures. [Online]. Available:

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD372.PDF

[47] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the ACM, vol. 12, no. 10, pp.

576–580, 1969.

[48] D. Dams and K. S. Namjoshi, “Shape analysis through predicate abstraction and model checking,” in VMCAI, 2003.

[49] S. K. Shukla, H. B. H. III, and D. J. Rosenkrantz, “HORNSAT, model checking, verification and games,” State University

of New York, Albany, Tech. Rep. TR-95-8, 1995.

January 20, 2004 DRAFT

TRANSACTIONS OF SOFTWARE ENGINEERING, VOL. 1, NO. 8, SEPTEMBER 2004 31

[50] “OpenSSL,” http://www.openssl.org.

[51] “SSL 3.0 Specification,” http://wp.netscape.com/eng/ssl3.

[52] S. Chaki, E. Clarke, A. Groce, and O. Strichman, “Predicate abstraction with minimum predicates,” in Proceedings of

CHARME, 2003.

[53] S. Chaki, J. Ouaknine, K. Yorav, and E. Clarke, “Automated compositional abstraction refinement for concurrent C

programs: A two-level approach,” in Electronic Notes in Theoretical Computer Science, B. Cook, S. Stoller, and W. Visser,

Eds., vol. 89. Elsevier, 2003.

[54] S. Chaki, E. Clarke, J. Ouaknine, N. Sinha, and N. Sharygina, “State/Event-based Software Model Checking,” submitted.

January 20, 2004 DRAFT

