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Abstract—Mutation analysis is a well-known yet unfortunately
costly method for measuring test suite quality. Researchers have
proposed numerous mutation reduction strategies in order to
reduce the high cost of mutation analysis, while preserving the
representativeness of the original set of mutants.

As mutation reduction is an area of active research, it is
important to understand the limits of possible improvements. We
theoretically and empirically investigate the limits of improve-
ment in effectiveness from using mutation reduction strategies
compared to random sampling. Using real-world open source
programs as subjects, we find an absolute limit in improvement
of effectiveness over random sampling —13.078%.

Given our findings with respect to absolute limits, one may
ask: how effective are the extant mutation reduction strategies?
We evaluate the effectiveness of multiple mutation reduction
strategies in comparison to random sampling. We find that none
of the mutation reduction strategies evaluated —many forms
of operator selection, and stratified sampling (on operators or
program elements) —produced an effectiveness advantage larger
than 5% in comparison with random sampling.

Given the poor performance of mutation selection strategies —
they may have a negligible advantage at best, and often perform
worse than random sampling – we caution practicing testers
against applying mutation reduction strategies without adequate
justification.

Index Terms—Mutation Analysis, Software Testing

NOMENCLATURE

Efficiency The amount of reduction achieved
by the selection procedure. Given by
|M |/|Mselected|

Effectiveness The ratio between the unique mutants
in the selected set of mutants to that
of the unique mutants in complete set
of mutants.

Utility The improvement in effectiveness due
to a technique when compared to
mean random sample of the same ef-
ficiency.

Adequacy A test suite is adequate for a set of
mutants if it is able to kill all mutants
in that set.

Mutation strata In sampling terminology, a stratum
is a non overlapping subgroup that
shares some characteristic. For our
analysis we consider each set of
non-distinguished mutants as separate
strata.

Reduction strategy A strategy that seeks to minimize the
number of mutants by identifying rep-

resentative mutants for each strata by
predicting how mutants will perform
against different test cases.

Oracular strategy The theoretical limit for any reduction
strategy achieved by considering the
actual behavior of mutants against test
cases, used for the purpose of evaluat-
ing performance of mutation reduction
strategies.

Minimal test suite A test suite is minimal when removing
any test case results in a reduction in
mutant score.

Minimal mutant set A minimal mutant set has a bijective
correspondence with a minimal test
suite in terms of kills.

kill : T×M→M The number of mutants from M killed
by the test suite T .

cover : T×M→ T The number of tests in T that kill
mutants in M .

Mstrategy The reduced set of mutants due to
applying a mutant reduction strategy.

Tstrategy A test suite adequate for Mstrategy.
Tmin
strategy A minimized test suite correspond-

ing to mutant set Mstrategy. Further,
Tmin corresponds to M .

Distinguished Two mutants m and m′ are distin-
guished if the tests that kill them are
different (also called unique). That is,
cover(T, {m}) 6= cover(T, {m′}).

Muniq The set of distinguished mutants
from the original set of detected
mutants Mkilled such that
∀m,m′∈Mcover(T, {m}) 6=
cover(T, {m′}).

I. INTRODUCTION

Mutation analysis is the best known approach for evaluating
the quality of test suites. It involves producing a set of
mutants (programs with small differences from the original
program), which is then used to evaluate the effectiveness
of test suites at detecting the mutants [1], [2]. Studies by
Andrews et al. [3], [4] and more recently by Just et al. [5]
suggest that mutations resemble and can simulate the behavior
of real faults. However, mutation analysis of test suites has not
been widely adopted as a software engineering practice [6],
despite the need for tools able to evaluate tests [7]. A major
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impediment to wider adoption is its high computational cost;
the set of mutants for even a moderate sized program can be
very large, and their evaluation prohibitively time consuming.

Many strategies have been proposed to deal with the prob-
lematic cost of mutation analysis. These have been classi-
fied [8] into do faster, do smarter, and do fewer approaches,
which correspond respectively to techniques improving the
speed of execution of a single mutant, techniques parallelizing
the evaluation of mutants, and techniques reducing the number
of mutants evaluated.

Many do fewer strategies — mutation reduction methods
that aim to select choose a smaller, representative, subset
of mutants to evaluate — have been investigated in the
past. These can be broadly divided into two groups. First,
there are operator selection strategies, which seek to identify
the smallest subset of mutation operators that generates the
most useful mutants [9], [10]. Alternatively, there are strata
sampling [11], [12] techniques, which propose to identify
groups of mutants that have high mutual similarity to reduce
the number of mutants without sacrificing representativeness
or diversity [13], [14]. Other actively studied methods [15]
include using clustering [16], [17], static analysis [18], [19]
and other intelligent techniques [20].

These efforts raise an important question: what is the actual
effectiveness of a perfect mutation reduction strategy over the
baseline – random sampling – given any arbitrary program?

We approach the value of mutation reduction in two ways.
The first way is via an evaluation of the absolute limit, in terms
of improvement in effectiveness, that an oracular strategy (an
unrealistic strategy with access to the result of mutant kills)
can achieve. The second approach is via evaluation of the
effectiveness of actual common mutation reduction strategies
using multiple methods.

For the first part, we consider a simple theoretical frame-
work that allows us to evaluate the improvement in effective-
ness provided by the best mutation reduction possible (under
the simplifying assumptions of uniform redundancy of faults in
mutants, and sufficiency of tests to distinguish faults uniquely),
given oracular knowledge of mutation kills. This provides us
with an approximate upper bound for the mean effectiveness1

that can be obtained in this simple theoretical system, and
suggests that a similar upper bound for mean effectiveness may
exist for real world systems. Next, we empirically evaluate the
best mutation reduction possible for a large number of projects,
given post hoc (that is, oracular) detection knowledge. This
gives us mean effectiveness limits under real-world conditions.

For the second part, we evaluate the current mutation
reduction strategies to determine the advantage they proffer
with respect to random sampling. First, we use traditional
effectiveness of each strategy, as given in the first part. This
involves using a given strategy to choose a reduced set of

1 The mean effectiveness here is the average effectiveness that can be
expected when considering the set of all valid programs. There can be specific
instances where the particular features of a given program may lead to
arbitrarily better effectiveness if it produces highly skewed mutants. We also
note that the random sample we compare to is the expected sample. It is
possible (but unlikely as the sample size increases) for a particular random
sample of mutants to be either extremely good or bad in terms of the number
of redundant mutants.

mutants from the set of detected mutants in the original
population, and choosing a minimum set of test cases that can
kill all the mutants in the reduced set. The minimum set of
test cases is then evaluated against the detected mutants from
the original set of mutants to determine the effectiveness of
the selected test set. This is taken as the effectiveness of the
reduced set mutants. Indeed mutants produced differ in terms
of their utility. We know that a large number of mutants are
redundant [21], which can skew results2.

While the test suites of many open source programs are
far from adequate,3 they should satisfy a different require-
ment: namely, each test was almost always added through
considerable manual labor [22], and was at least believed
to be useful (the number of test cases correlates with the
quality of software [22]). Therefore, any test omitted creates a
potential for missed faults. An effective mutation reduction
strategy should therefore identify the smallest possible set
of non-redundant mutants to exercise the largest possible
non-redundant test suite4, and perform better than random
selection. This criterion — the cardinality of minimum test
suite (which is the same as the cardinality of the corresponding
minimum mutant set) — was recently suggested by Ammann
et al. [23] as a measure of quality of a test suite. Hence we
use the size of the minimum test suite, which is the same as
the size of the minimum mutant set as the second criterion
to judge reduction strategies.

All test cases are not created equal. Some check large and
complex conditions, while others check only for relatively
trivial conditions. Hence using a single mutant killed by that
test case to represent each test case (as we do above, using
the minimum mutant set as the criterion for evaluation) is
susceptible to skew. Our understanding of mutation semiotics5

is far from sufficient to specify the actual semantic impact of a
mutant. However, we have a reasonably good proxy. We know
that test case assertions6 play a large role in the effectiveness
of a test case [24], [25], [26]. So we use test case assertion
counts as a proxy for the effectiveness of a test case.

There could be other ways to evaluate mutation reduction
strategies; for example one could imagine a criterion that
encourages hardest to detect — yet not-equivalent — mutants,
or one based on the cost of evaluation of mutants. However,
such criteria would not be useful for the basic purpose of
mutation analysis — as an adequacy measure of the test suites
targeting all kinds of bugs, not just hard to find bugs, or the
easiest tests to evaluate.

Our results indicate that none of the reduction strategies
evaluated provide any practical advantage over pure random
sampling.

2Indeed, one of the criticisms leveled against our research was that mutants
may be of different strengths in terms of the tests they kill.

3 Mutation adequate test suites are suites with maximal mutation coverage;
usually much less than 100% due to equivalent mutants.

4We only approximate a minimum suite with greedy methods. See Algo-
rithm 1 for details.

5Here semiotics is the relation between a syntactic change and its semantic
impact.

6 For the remainder of this paper, we use assertions to mean exclusively
test case assertions.
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Does the adequacy of test suites have an impact on our
empirical results? While our empirical analysis was carried
out with strong, but less than adequate test suites, we believe
that using mutation adequate test suites will not change our
results significantly.

This paper makes the following contributions:

• We show that under simplifying assumptions of uniform
redundancy of faults in mutants, and sufficiency of test
sets to distinguish faults uniquely, no mutation reduction
strategy can have a mean effectiveness improvement of
more than 58.2% when compared to random sampling,
where the mean effectiveness is the expected effectiveness
when considering the set of all valid programs.

• We show an empirical upper limit for mean effectiveness,
through the evaluation of a large number of open source
projects, with 13.1% mean effectiveness; for 95% of
projects the maximum utility is between 12.2% and
14.3% (one sample u-test p < 0.001)7.

• We examine a larger number of mutant reduction strate-
gies than previous studies, including all the common
and influential strategies for operator selection and strata-
based sampling.

• We use multiple evaluation criteria: traditional, size of
minimum set of mutants, and effectiveness of selected
minimum test suites, using assertions to evaluate the
different reduction strategies. Our evaluation results are
applicable to both real-world non-adequate test suites, and
traditional mutation adequate test suites.

• We find that extant mutation reduction strategies seldom
perform better and are often harmful to effectiveness
when compared to simple random sampling of mutants.

This is an extension of our previous work [28], where we
showed that there is an absolute empirical and theoretical limit
(13.1% on average) to the improvement in mutation effective-
ness that is possible using any mutation reduction strategy
possible, under oracular knowledge. This paper extends that
result by evaluating the actual improvement achieved by extant
mutation reduction strategies. We examine both operator se-
lection methods and strata sampling methods, and our research
suggests that even the relatively modest advantage that theory
suggests is possible is rarely achieved in practice. Further, we
also account for the possible differences in utility of different
mutants by incorporating both test utility and assert utility.

Our results can be interpreted as showing that, while any ad-
vantage gained over random sampling is indeed an advantage,
however small, these benefits may not be worth their costs. Our
understanding of mutant semiotics, as noted before, is very
limited, and certainly insufficient to infer whether each kind of
selection proposed is advantageous. Indeed, our results suggest
that one is often led astray in the effort to find a good heuristic,
ending up with methods that decrease the effectiveness of the
mutant set compared to a simple random sample (which on
its own is a perfectly reasonable approach [29]). We note that
even elimination of operators based on subsumption is not [30]

7We use the non-parametric Mann-Whitney u-test as it is more robust
to normality assumptions and outliers [27]. The more common t-test yields
similar results.

a foregone conclusion. The effort directed towards mutant
selection mechanisms should be carefully weighed against
the potential maximum utility, the known utility of existing
approaches, and the risk associated with making results less
useful due to biased sampling.

There could be other valid reasons for choosing a selective
mutation strategy such as reduction of execution cost of
specific mutants, avoidance of equivalent mutants, or selection
of specific bug types. Our results only concern mutation
reduction for a specific purpose: reduction of redundant
mutants.

Our research supports the need for further research into
new mutation operators. That is, we have shown that even the
best selective strategy can at best have a limited improvement
in effectiveness, while a bad selective strategy can lead to
unlimited decrease in effectiveness (for example, by choosing
mutants representing only a single fault).

We have a much more positive scenario if we implement
new operators instead, and sample from the larger population.
Here, a plausible scenario is that each new operator actually
manages to introduce new faults. In such a case, we can
improve effectiveness arbitrarily (under the assumption that
the sample size is larger than the number of unique faults).
That is, the improvement in effectiveness is unlimited. On
the other hand, say the new operators did not add any new
faults, and the mutants introducd were very similar to existing
operators. In this scenario, a random sample of mutants from
the larger population would have same number of unique faults
as that of a random sample of mutants from the original mutant
population on average. That is, in the worst case we we can
expect no or limited disadvantage. To summarize, if addition
of new operators goes well, there is possibility of unlimited
improvement in effectiveness, while in the worst case, there
is limited or no decrease in effectiveness.

This asymmetry between removing and adding operators
results from difference in the populations from which the
random comparison sample is drawn. For operator selection,
the optimally chosen set is always a subset of the original
population. Because the random sample is drawn from the
original population, it can potentially contain a mutant from
each strata in the perfect set, limiting gain in effectiveness. For
operator addition, the optimal set is a superset of the original
population, with as many new strata as there are new mutants
(and there is no bound on the number of new strata). Since the
random sample is constructed from the original population, it
cannot ever contain the added strata.

A higher payoff might be obtained by finding newer cate-
gories than by removal of extant mutation operators.

Organization. Section II describes previous research in muta-
tion reduction strategies. Section III discusses the theoretical
framework for estimating the limits of mutation reduction
strategies. Section IV discusses the sampling and operator se-
lection strategies we study in detail. The results of experiments
are detailed in Section V. A detailed discussion is provided in
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Section VI. Threats to validity are explained in Section VII.
We summarize our findings and conclusions in Section VIII.

II. RELATED WORK

Mathur credits [31] the idea of mutation analysis to a term
paper by Richard Lipton in 1970. The foundational assump-
tions and theory were first proposed by DeMillo et al. [32], and
were first implemented by Budd et al. [33] in 1980. Mutation
analysis relies on two fundamental assumptions — the com-
petent programmer hypothesis, and the coupling effect. The
competent programmer hypothesis suggests that programmers
make simple mistakes. The coupling hypothesis suggests that
test cases capable of detecting a simple fault in isolation will
be able to detect it even when the fault appears in conjunction
with other faults. Evidence of the coupling effect comes from
both theoretical analysis [34], [35], [36], as well as empirical
studies [37], [38], [39], [36]. For the competent programmer
hypothesis, the size of a mean syntactic neighborhood for
simple mistakes was quantified in our previous work [40].

According to Budd [12], mutation analysis is a stronger
criteria than other coverage measures. The subsumption of
multiple coverage measures by mutation analysis, including
all the basic coverage measures [41] was shown by Of-
futt [42]. The subsumption of dataflow criteria was shown by
Mathur [43]. Daran et al. [44] found that mutation analysis
produces faults that are similar to actual faults in terms of
the error traces produced. Andrews et al. [3], [4] found that
ease of detection of mutants was similar to that of real faults
when compared to manually generated faults (in that manually
generated faults were harder to find). Recent research by Just
et al. [5] using 357 real faults suggests that in 75% of the cases,
mutation score and test case effectiveness improved together,
which is a strong relationship compared to the same coupling
for coverage (46%).

As mutation analysis requires a large number of potentially
complete test executions, the cost of execution is often [45]
considered to be a chief barrier to widespread adoption of
the technique. Numerous approaches exist, that seek to reduce
the cost of mutation analysis. Offutt and Untch [8] categorize
these, in an orthogonal classification, as: do fewer, do smarter,
and do faster approaches. Operator selection, mutant sampling,
and mutant clustering fall under do fewer — approaches
that seek to reduce the number of mutants evaluated. The
do smarter approaches seek to reduce the time taken for
the entire mutation analysis by intelligently managing the
various phases. These include weak mutation, parallelization
of mutation analysis, and space/time trade-offs. Similarly, do
faster approaches seek to reduce the time taken for evaluation
of a single mutant, and include mutant schema generation,
code patching, and other methods.

The do fewer approaches, especially simple random sam-
pling, debuted with the initial research in mutation analy-
sis [12], [11], where it was noticed that even a 10% random
sample of mutants can on average be almost as effective
(99%) as the complete set of mutants.. Sampling was further
investigated by Mathur [46], Wong et al. [47], [48], and Offutt
et al. [9].

Determining relative merits of selective mutation strategies
such as operator selection and random sampling has been
an active field of research. Wong et al. [48] found similar
effectiveness and efficiency (80%), when comparing opera-
tor selection (two selected operators) with x% sampling of
operators. Mresa et al. [49] found that one can reduce the
cost of mutation by directly targeting the cost of mutation
operators. Excluding the operators with the highest cost still
resulted in a set of mutants with good effectiveness. They
found that operator selection works well compared to x%
selective mutation when the targeted effectiveness is low.
However, using only cost effective operators failed to generate
sufficiently diverse mutants when targeted effectiveness is
high.

Previous research by Zhang et al. [13] suggests that random
sampling of mutants provides comparable effectiveness to that
found for operator-based techniques. Counter-intuitively, on
comparing strata sampling8 with random sampling, they found
that simple random sampling had a higher effectiveness for
larger programs, while strata sampling was more effective for
smaller programs. Zhang et al. [14] evaluated the effectiveness
of sampling strategies on top of operator based selection
provided by Javalanche. Their research suggests that strata
sampling based on program elements performed best, with
just 5% of mutants sufficient for high correlation (99%) with
full mutation score, and that method level strata performed
better than other strata such as statement or class. They suggest
method level strata perform better against statement level strata
due to the small number of mutants at statement level, and
hence the difficulty in producing representativeness samples
for each statement at smaller fractions.

Skew in fault representativeness among mutants was ini-
tially noticed by Budd et al. [12] who found that particular
types of mutants are representative for particular kinds of
faults. Constrained mutation was pioneered by Mathur [46],
[50] and was further investigated by Wong et al. [51]. An
extension of this approach called n-selection was suggested by
Offutt et al. [9] where the most numerous mutation operators
were removed one at a time. Taking into account the advances
in mutation operator selection, a set of guidelines for operator
selection was identified, and evaluated by Barbosa et al.[52].
Namin et al. [53], [54] formulated the concept of sufficient
mutation operators, that reduce cost of mutation but maintain
high statistical correlation with the full mutation score. This
work showed that mutation reduction could be seen as a vari-
able reduction problem where individual mutation operators
were treated as independent variables, and principal variables
that contributed the largest effect were found through statistical
analysis. Their conclusion was that using just 28 out of 100
operators in Proteum was probably sufficient for an effective
mutation analysis.

Untch [55] was the first to suggest statement deletion
— a form of higher order mutation as an alternative to
complete mutation analysis. Untch found a high correlation
(R2 = 0.97) between the statement deletion mutation score

8The two step random sampling is in effect strata sampling on operators,
with equal priority.
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and the traditional full mutation score; deletion only generated
a smaller number of mutants than other operator selection
methods. Deng et al. [56] extended the deletion operator for
diverse language elements, and obtained an effectiveness of
92% while reducing the number of mutants by 80%.

The subsumption of individual mutants and mutation oper-
ators is an active area of research [57], [58], [59]. A mutant is
subsumed by another when any test case that kills the later is
guaranteed to kill the former. Extended to subsumption in op-
erators, it means that particular operators could be completely
avoided. Research from Kurtz et al. [60], [19] suggests that
subsumption alone can lead to 96% reduction in mutants. We
note that this result is based on an investigation of a single
program, cal.

Higher order mutants (HOM) are another approach for im-
proving the quality of mutants by combining simpler mutants
into more complex mutants. Jia et al. [61], [62], found that
the number of mutants can be reduced by 50% by making use
of subsumption of simpler mutants by higher order mutants.

Mutation clustering[15], [20], [63] is another do-fewer ap-
proach where similar mutants are identified based on various
properties, and a representative set is identified.

Our work is an extension of previous work on comparison of
mutation reduction strategies [13], [14]. We note that the study
by Zhang et al. [13] used 7 small (mean 313 LOC9, maximum
513 LOC) C programs (5 programs if excluding different
versions of the same program) that are called the Siemens test
suite [64]. The test suites for these were created by researchers
studying the impact of various techniques in fault detection,
and hence may not be representative of real world test suites.
Finally, they did not consider the impact of various mutation
stratification techniques (suggested by Zhang et al. [14]) that
can have a large impact. The later study by Zhang et al. [14],
while using real world programs and test suites, does not
actually investigate the relative merits of random sampling
and operator selection. Rather, the study starts with a selected
subset of operators (Javalanche only implements a selected
subset of operators), on top of which other strategies are
implemented. Hence their study does not actually evaluate the
comparative benefits of operator selection and pure random
sampling. Our study is the first exhaustive study for all well-
known do-fewer techniques except mutation clustering. We
consider a wider range of mutation approaches, and a larger
set of large real-world projects, than any previous comparable
study, which makes our work more generalizable and usable
by practicing testers. Finally, Zhang et al. [29] investigated
the scalability of selective mutation by considering how well
a randomly sampled set of mutants represent the original pop-
ulation. They found that the number of mutants to be sampled
for an adequate representation of mutants is dependent on the
original number of non-equivalent mutants. Further, they find
that a small number of randomly sampled mutants can be
representative of even much larger set of mutants. Note that
our work is not concerned with, and does not recommend a
specific sample size for random sampling. Indeed, for software
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engineers who wishes to ascertain the sample size needed,
Zhang et al. [29] may serve as a reasonable starting point.

In our previous work [28] we showed that there is an
upper bound (13.1% on average) on the improvement in mean
effectiveness that is possible using even an ideal mutation re-
duction strategy using post-hoc oracular knowledge of mutant
kills. This paper extends that result by evaluating the actual
improvement achieved by extant mutation reduction strategies,
when they do not unrealistically have access to the mutant kills
achieved. We examine multiple operator selection methods
and strata sampling strategies, and our research suggests that
even the modest advantage that theory suggests is possible
is only rarely achieved. A critique of our previous research
was that it failed to account for possible utility difference
between different mutants. This present paper hence accounts
for the possible differences in utility of different mutants by
incorporating both test utility and assert utility.

III. THEORETICAL ANALYSIS

Note that this section is a summary of the theoretical
evaluation presented in our previous research [28]. Some of
the detailed comments are elided for brevity. The aim of a
mutation reduction strategy is to identify the minimum set
of mutants that incorporates all10 the faults in the original
set. This may be done by identifying and collecting mutants
into groups that represent particular faults. A single mutant
from such a group is sufficient to represent all other mutants.
Such a strategy depends on two characteristics of the mutant
population if it is to be better than random sampling. The
first of these characteristics is the amount of redundancy
in each group. A uniform redundancy of faults is the best
distribution for random sampling. For any other distribution
(where the number of mutants in each faults is dissimilar),
the effectiveness of random sampling is reduced. However,
the mutant distribution is generated by the syntax of program
being evaluated, and hence dependent on the particular pro-
gram. As we seek to find the mean improvement for a perfect
strategy for any arbitrary program, we use equal number of
mutants per fault as a conservative distribution choice.

Our second emphasized characteristic is the number of
minimum mutants necessary. Two mutants are distinguishable
from each other in terms of the faults they represent if the
tests that detect them are different. The set of distinguishable
mutants is a set of mutants such that any pair of mutants
are distinguishable. We note that, in the real world, the set of
distinguishable mutants is often larger than the set of minimum
mutants required to select a minimum test suite.11 However,

10 A general solution to this is not possible. Hence the practical aim of
mutation reduction strategies is to aim for including as many different faults
as practically possible in the orignial set, which is limited by the total number
of unique faults.

11 With respect to a mutant set, the smallest test suite that can kill all
mutants in the set is called the minimum test suite. A minimal test suite, on
the other hand, is a test suite such that removal of any test case from that test
suite will cause mutation score to decrease.

We use a greedy algorithm to approximate the minimum test suite. The
greedy algorithm has approximation bound of k·ln(n) (n number of elements,
k the true minimum). Since the algorithm is robust, with a strong approxima-
tion bound, we assume the minimal set thus computed is approximately the
minimum set.
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we note that this is due to the characteristics of the test
suite, which is not connected to the mutant population. The
difference exists only because the test suite is not diverse
enough. Hence, for theoretical purposes, we assume that any
distinguishable mutants could be uniquely identified by tests.
Further, inadequate test suites favor random sampling because
a random sample can miss any such mutant that is actually
distinguishable, but not in the minimal set (when comparing
random sampling to the perfect strategy that selects minimal
mutants).

We make the following simiplifications to make theoretical
analysis tractable: that mutants are uniformly redundant with
respect to faults, and that there exists a test case that can
detect any given fault uniquely.

Next, we analyse the limits of reduction possible using this
system using an ideal strategy with oracular knowledge of
kills.
Impact of parameter deviation:
Skew: Any skew can reduce random sampling effectiveness,
which can mean an increase in utility for the perfect strategy
compared to random sampling.
Distinguishability: If a distinguishable mutant is skipped due
to inadequate test suite, it can mean a decrease in utility for
the perfect strategy compared to random sampling.
Analysis: The utility (Ustrategy) of a strategy is defined as the
improvement in effectiveness from using that strategy when
compared to random sampling of the same efficiency12 of
mutants). That is,

Ustrategy =

∣∣∣∣∣kill(Tmin
strategy,M)

kill(Tmin
random,M)

∣∣∣∣∣− 1

This is the traditional evaluation of effectiveness [28], but
extended for non-adequate test suites. The utility is essentially
a measurement of how much advantage one gains by using this
strategy over random sampling of the same efficiency in terms
of test adequacy criteria. A perfect strategy can select the set
of minimal mutants. We denote its utility by Uperfect

13

Next, we compute the maximum Uperfect for an idealized
system, given uniform redundancy of faults, that is, equal
number of redundant mutants for each distinguished mutant.

In sampling terminology, a stratum is a non overlapping
subgroup that shares some characteristic. For our analysis we
consider each set of non-distinguished mutants as separate
strata. For a set of detected mutants, a reduction strategy
should result in a mutant set where a test suite adequate for
the reduced set should be adequate for the original set. That
is:

kill(Tperfect,M) = kill(T,M)

Where Tperfect is the set of test cases adequate for perfect
strategy. The test suite quality thus chosen is dependent on
the unique mutants in the sample. For x elements per non-
distinguished stratum, and total k × x = n mutants (where

12For our analysis, we only compare strategies holding efficiency constant.
That is, |Mstrategy | = |Mrandom|.

13We use the subscript p to stand for perfect, and r for random.

k represents the number of independent strata), we have a
sample size of k×p where p is the number of samples in each
non-distinguished stratum. For perfect representation, p = 1 is
sufficient, and ensures maximum improvement in effectiveness
over random sampling (as shown below).

So, how many strata are expected in a random sample of
size s?
Let Xi be a random variable such that:

Xi =

{
1 if strata i is present in the sample
0 otherwise.

Let X be the number of strata present in the sample. That is,
X =

∑k
i=1Xi, The expected value of X is then:

E(X) = E(

k∑
i=1

Xi) = kE(X1)

Now, the probability that the mutant 1 was selected is given
by:

P [Xi = 1] = 1−
(
k − 1

k

)s

= 1−
(
k − 1

k

)pk

Expectation of Xi:

E(X1) = 1× P (Xi = 1)

That is, the number of strata in a random sample is given by:

k × E(X1) = k − k ×
(
k − 1

k

)pk

Because we know the sampling is perfect, the number of strata
appearing in any sample is k, and the utility is computed as
the ratio of difference to the baseline – random sample.

Umax =
k −

(
k − k ×

(
k−1
k

)pk)
k − k ×

(
k−1
k

)pk =
1

( k
k−1 )

pk − 1
(1)

This converges to

lim
k→∞

1

( k
k−1 )

pk − 1
=

1

ep − 1
(2)

and the maximum value is reached at p = 1.

Umax =
1

e− 1
≈ 58.2% (3)

The Umax thus computed is the mean advantage that an ideal
strategy (with oracular knowledge) will have with a uniform
distribution of mutants. While individual samples could still
be arbitrarily advantageous, this is the expected improvement
over random samples.

In other words, given an arbitrary program for which one
has a robust set of test cases able to identify distinguishable
mutants, and given a perfect strategy with oracular knowledge
of mutant kills, one can expect it to have at least a mean
effectiveness advantage of 58.2% over random sampling of
the same number of mutants. If the mutant distribution is
skewed, then the effectiveness of a strategy with oracular
knowledge increases. On the other hand, if the test suite is
not robust enough to identify distinguishable mutants uniquely,
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IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove non-void method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI * Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS * Replace switch labels with default (thus removing them)
RC * Replace boolean conditions (extension)
DC * Replace boolean conditions with false (folded into RC in mainline)

TABLE I: PIT Mutation Operators (We use abbreviations
instead of operator names.). The starred (*) operators were
added to account for inadequacies identified in original PIT

operators.

one may expect the effectiveness of the strategy with oracular
knowledge to decrease. For real world strategies without prior
knowledge of kills, the advantage held by the perfect strategy
is hard (indeed, almost impossible) to achieve. Hence, we
expect a much smaller utility for real world strategies.

IV. METHODOLOGY

While our theoretical analysis is useful for evaluating the
maximum utility a perfect strategy can produce under simpli-
fying assumptions, it is necessary to verify the actual utility
obtained using real world mutants. This is important because
we do not know how close the real world distributions for
mutants and test suites are to our simplifying assumptions.
The first question we tackle is this: what is the maximum
advantage one can expect to gain on real world systems? To
find the maximum amount of advantage, one again considers
the advantage of a hypothetical perfect strategy on a large set
of open source programs and their test suites.

While selecting the sample programs, we had a few overrid-
ing concerns to ensure the generality and applicability of our
findings [65]. First, we sought to ensure that our results were
as applicable as possible to the practicing tester. That is, our
results had to be applicable on as wide variety of systems as
possible. Second, a statistically significant result is important
to ensure that our results are not led astray by noise. To ensure
the statistical validity of our results, we tried to reduce the
number of uncontrolled variables present.

We started with 1, 800 Java projects from GitHub [66], and
Apache project, which used the Maven [67] build system. In
the case of Github, these were obtained through their search
API14, and in the case of Apache, we manually examined each
project under the Apache umbrella to see whether it was a Java
project using Maven as the build system. From this, we filtered
out aggregate projects and projects without a test suite, leaving
796 projects. Not all of these compiled, with failure reasons
ranging from unavailable dependencies and compilation errors
due to syntax to bad configurations. This left us with 326

14Application Programming Interface
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Fig. 1: The distribution of mutants and kills from test suites.
The graph suggests a reasonably non-biased sample. We
have both large, high mutation score programs, and also

small projects with low mutation scores.

projects. However, not all of these projects could actually
pass their own test suite. Effective mutation analysis requires a
completely passing test suite, which required filtering these out
as well. We eliminated any hung tests. We also eliminated any
tests that did not detect any mutant, since they were redundant
to our analysis. As a final step, we removed all projects with
trivial test suites with tests as the cut-off. Any projects with
unstable/flaky [68] test cases (that switched from fail to pass
and back each time non deterministically) were removed as
well. The final tally was 38 projects, given in Table II, where
Project is the project name, |M | is the size of the mutant
set, Mkilled is the size of the detected mutants, Muniq is the
number of distinguished mutants within detected mutants, |T |
is the size of test set, and Tmin the size of the minimal mutant
set.

Our mutation framework was PIT [69], which was extended
to provide operators that it was lacking [70] (now accepted
into mainline). The PIT operators are given in Table I. The
details of each operator may be obtained from PIT documen-
tation [71]. To mitigate random noise, we averaged results of
each criterion over ten runs. Figure 1 provides the distribution
of mutation scores and test suites.

For our experiment, we first evaluated an oracular perfect
strategy against random sampling. Next, we compared the per-
formance of various stratified sampling strategies and operator
selection strategies against random sampling.

A. Oracular Strategy
Our task is to find the Uperfect for each project. For a perfect

strategy we only need complete representativeness,

kill(Tp,M) = kill(T,M)

and non-redundancy in selected mutants.

∀m∈Mpkill(Tp,Mp \ {m}) ⊂ kill(Tp,Mp)

The minimum mutant set [23] is representative and non-
redundant. Hence it satisfies our requirements.

While finding the minimum test suite is NP-Complete15

one can approximate it using the greedy algorithm due to

15This is the Set Covering Problem [23] which is NP-Complete [72].
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TABLE II: The projects, size of mutant set and test suites

Project |M | Mkilled Muniq |T | |Tmin|
annotation-cli 992 589 110 109 38.97
asterisk-java 15,530 3,206 451 214 196.32
beanutils 12,017 6,823 1,570 1,143 556.67
beanutils2 2,071 1,281 465 670 181.00
betwixt 7,213 4,271 1,198 305 206.35
clazz 5,242 1,583 151 140 64.00
cli 2,705 2,330 788 365 186.24
cli2 3,759 3,145 1,066 494 303.86
collections 24,681 8,561 2,091 2,241 938.32
commons-codec 9,983 8,252 1,393 605 444.69
commons-lang3 32,323 26,741 4,479 2,456 1,998.11
commons-math1-l10n 6,067 2,980 219 119 109.02
commons-math1 122,484 90,681 17,424 5,881 4,009.98
config-magic 1,188 721 204 112 74.55
configuration 18,198 13,766 4,522 1,772 1,058.36
csv 1,831 1,459 411 173 117.97
dbutils 2,030 961 207 224 141.53
events 1,171 702 59 180 33.87
faunus 9,801 4,809 553 173 146.11
fongo 1,461 1,209 175 113 70.73
hank 26,622 7,109 546 171 162.88
java-api-wrapper 1,715 1,304 308 125 107.04
java-classmate 2,566 2,316 551 215 196.57
jdbi 7,754 4,362 903 277 175.57
jfreechart 99,657 32,456 4,686 2,167 1,696.86
joda-money 2,512 1,272 236 173 128.48
jodatime 32,293 23,796 6,920 3,973 2,333.49
jopt-simple 1,818 1,718 589 538 158.37
mercurial-plugin 2,069 401 102 138 61.77
mirror 1,908 1,440 532 301 201.21
mp3agic 7,344 4,003 730 206 146.79
ognl 21,852 12,308 2,990 114 85.43
pipes 3,216 2,176 338 138 120.00
primitives 11,553 4,125 1,365 803 486.71
sandbox-primitives 11,553 4,125 1,365 803 488.56
validator 5,967 4,070 759 383 264.35
webbit 3,780 1,981 325 147 116.93
xstream 18,030 9,163 1,960 1,010 488.25

Chvatal [73], given in Algorithm 1. In the worst case, if
the number of mutants is n, and the smallest test suite that
can cover it is k, this algorithm will achieve a k · ln(n)
approximation. As we see in Figure 2, the algorithm is robust
in practice, and finds results close to the actual minimum. So
long as NP 6= P 16 this is the best approximation one can have
for the actual minimum [75]. To ensure that our algorithm
returned the correct results, we verified that the minimum
frequency of kills of the set of mutants by the minimal
test suite was 1 (A larger minimum frequency indicates a
redundancy in that many tests – a rare but well-known problem
with the greedy algorithm).

We also average the estimated minimal17, test suite size over

16 Ammann et al. [23] provides another algorithm that we call reverse
greedy algorithm. It has two deficiencies. Say k is the actual minimum. the
approximation ratio of the greedy algorithm is at most k · ln(n). However,
that of reverse greedy would be much larger [74] (if an approximation ratio
exists). The reverse greedy also requires a much larger number of steps to
complete than the greedy when the size of minimal set is very small compared
to the full set.

17 We use the minimal approximation to minimum from here on. Hence,
we do not distinguish between minimal and minimum further.
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Fig. 2: Variation of minimal test suite size ordered by mean
minimal test suite size. The figure suggests that there is very
little variation, and the variation decreases with the increase

in the number of test cases.

100 runs (see Figure 2, which provides the variability of the
runs ordered by the size of minimal test suite). The variability
is indeed very little, and decreases as the size of test suite
increases.

We next randomly sampled |Mmin
perfect| mutants from

M . The minimal test suite Tmin
random was calculated, and

was applied to M to find the mutants that are killed:
kill(Tmin

random,M). This result is used to compute the utility of
perfect strategy with respect to that particular random sample.
We repeated the experiments 100 times for each project. The
results were averaged to compute Uperfect for each project.

B. Sampling Strategies

We used several sampling criteria suggested in the litera-
ture. For each sampling criterion we sampled mutants on a
decreasing power scale, sampling fractions 1

2 , 1
4 , 1

8 , 1
16 , 1

32 ,
and 1

64 of the total mutants.
1) Stratified random sampling over mutation operators:

First suggested by Wong et al. [48], this strategy samples
the same proportion of mutants from each operator. While
Wong seems to treat this as equivalent to x% selection, this
sampling is subtly different from pure random sampling in that
it provides a stratified sampling based on mutation operators.

2) Stratified random sampling over program elements:
Following the suggestion of Zhang et al. [14], we extended x%
selection to sample from within different program elements.
We sampled in increasing order of scope, — line, method and
class (project scope is just x% selection). We used the formula
from Zhang et al. [14] for sampling fractional values.

sample(x) = bx+ random(0..1)c

C. Operator Selection

For selective methods, we evaluated the mutation operators
suggested by Wong et al. [48], Offutt et al. [76], [56],
and Namin et al. [54]. Since Javalanche [77] uses operator
selection mechanisms, we included operators suggested by
Javalanche separately. Note that all of these techniques except
for Javalanche have targeted C programs. Thus, some operators
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may make sense in C but not in Java. For example, deletion
of the return statement is tolerated by C compilers, but not
in Java. Moreover, there were a few operators that could only
be partially implemented in PIT (see below).

1) Constrained Mutation: Wong et al. [48] selected ROR18

and ABS19 from Mothra for selective mutation. The ABS
operator was chosen because it forces users to consider all
parts of the input domain, and ROR because it forces users
to consider values of predicates. ROR mutates relational
operators, while ABS replaces variables and expressions by
their positive or negative absolute value, or zero. CB and NC
from PIT are a good mapping for ROR. Similarly, IN is able
to partially cover the ABS functionality.

2) E-Selective: Proposed by Offutt et al. [76]. Mothra sup-
ports three main classes of operators: Replacement (operand)
mutators, Expression (operator) mutators, and Statement mu-
tators. The operator selections used in this paper are groupings
of these operators: ES, ER, RE, RS, E.

The best strategy identified by Offutt et al [76]. was
the E-Selective strategy, which chooses only those mutators
that modify operators. For Mothra, these were ABS, UOI20,
LCR21, AOR22, and ROR. UOI operates by incrementing or
decrementing arithmetic expressions by 1, LCR changes the
relational operators, and AOR mutates arithmetic operators.

To accomplish the same with PIT, we divided the PIT
operators similarly. Operand mutators are IC, EMV, and IN.
Operator mutators are M, CB, NC, RC, and DC. Statement
mutators are given by RV, I, VMC, NMC, CC, RI, ES, RS.
We report the results of all combinations: ES, ER, RS, E, R,
and S.

3) Javalanche: Javalanche [77], [10] adapts for Java byte-
code the E-Selective operator set suggested by Offutt et al. [76]
for Fortran and implemented in C by Andrews et al. [3]. The
original operators adapted by Andrews were 1) replacing an
integer constant by its predecessor, successor, or by a small
constant, 2) replacing arithmetic or boolean operators by an
operator of the same class, 3) negating boolean conditions in
control flow, and 4) statement deletion.

This translated [77] to 1) replace numerical constant op-
erators. 2) replace arithmetic operator, and 3) negate jump
condition. The last operator, 4) the omit method call, was
added later [10].23 These map directly to PIT operators IC,
M, NC, and VMC.

4) Variable Reduction: This method was proposed by
Namin et al. [54], who framed the question as a statistical
problem of finding the minimum set of operators that can
best predict the final mutation score. That is, given that M
is the final mutation score, and m1,m2,. . . ,mn are mutation

18Relational operator replacement
19Absolute value insertion
20Unary operator insertion
21Logical connector replacement
22Arithmetic operator replacement
23 We have already given a translation of the original operators suggested

by Offutt as they apply to PIT. Here, we are evaluating how the translation
implemented by Javalanche works. Javalanche has since this publication,
added more operators to the default set. However it is not clear if they belong
to a selected set under some criteria or if Javalanche is simply attempting to
increase its repertoire of mutations.

scores given by n mutation operators, Namin wanted to find
the smallest set of mutations that can predict M from the set of
m1..n. This boils down to finding the linear regression model.

Emulating the variable reduction methodology for our ex-
periment, we took advantage of the limited set of operators
to run a complete subset model comparison to obtain the best
model given by

µMs = 0 + 0.55nmc+ 0.2rc+ 0.1dc+ 0.2rv

+0.1cc+ 0.7emv + 0.02m+ 0.02ri

with R2 = 0.96. This suggests that the variables we are
interested in are NMC, RC, DC, RV, CC, EMV, M, and RI.

5) N-selection: Offutt et al. [9] suggested removal of the
n most numerous operators. In our experiment, the order of
operators was NMC, RV, IC, DC, NC, RC, VMC, CC, EMV,
M, CB, I, RI, RS, ES, and IN. We discarded one at each step
and evaluated the effectiveness at each n.

6) Statement deletion emulation: Statement deletion based
operator selection is based on the work by Deng et al. [56]. The
operations on single statements were modeled using VMC,
NMC, CC, EMV, and RI for simple statements, and using
RC for control structures. RC replaces boolean conditions
with false, resulting in removal of the conditional block. The
operator for return values was modeled using RV, which is
similar. The operators for while, for, and if statements were
modeled using DC, which replaced the boolean condition with
true, which removed the effect of the conditional. The switch
statement deletion was modeled using RS, which replaced
the first 100 labels with a default label, resulting in the
switch element being deleted. Due to the constraints of the
architecture of PIT only the first 100 labels were replaced.
Deleting try/catch was not necessary at the bytecode level.

Note that we are not attempting to evaluate statement
deletion mutation (SDL) directly. Rather, we have chosen a set
of operators that would be involved in deletion of statements.
This means that in order to translate the results from our
experiment back to the original statement deletion operator,
we rely on some assumptions. We rely on a coupling effect: if
a test is able to kill a mutant in this set, then it should kill it
even when it is in combination with other mutants of this set
(resulting in the deletion of the statement in question). That is,
since statement deletion is a higher order mutant, according
to the coupling hypothesis, it should fail more often than
its component mutants, and should result in a lesser number
of tests selected than the component faults taken separately,
and hence a lower test utility. If all tests detected all deleted
statements, only a single test would be present in the minimum
test suite.

Finally, reported results of statement deletion are based on
component mutants involved in the emulation of true statement
deletion. While this has no impact on the utility measures and
strategy effectiveness, the mutation share differs between true
statement deletion, and emulated statement deletion, and only
the emulated mutation share is reported24.

24If n mutants in a statement were needed to emulate the statement deletion,
the mutation share is reported based on n rather than based on the single
statement deletion mutation that was emulated.
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D. Evaluation of Reduction Strategies

For the purpose of comparing different mutation reduction
strategies, we use three different measures. The traditional
strategy effectiveness which compares the effectiveness of
selected mutants in representing the full set of mutants, the test
utility (also called minimum mutant set utility) which compares
the size of minimum test suite (or the size of minimum set of
mutants — which is the same), and the assert utility which
incorporates the effectiveness of the selected test cases by
using the number of asserts in each. Note that there is a
difference between minimal test suite and minimum test suite.
A minimal test suite is test suite such that removal of any
test case from that test suite will cause the mutation score
to decrease. However, there can be other test suites that have
a smaller number of test cases. A minimum test suite is the
smallest minimal test suite.

To evaluate a mutation reduction strategy, we use the
strategy to select a subset of mutants. We then collect all test
cases that killed any of the selected mutants. Next, we compute
the minimum, non-redundant test suite that detects all of these
mutants. The observation is repeated multiple times to account
for any noise.

Test utility (Ut) approximates the extra tests a selection
strategy requires, compared to a random sampling, to kill the
same number of mutants. The result is reported as a percentage
of the non-redundant tests above the random sample (the
baseline). That is, the test utility is given by:

Ut =
|min(Tstrategy)|
|min(Trandom)|

− 1

Positive values show that the strategy requires more tests
than the random selection (it is better than random selection),
and a negative test utility indicates that the strategy needs
fewer test cases (it is worse than random selection). Values
close to zero mean that the strategy tested performed similar
to random selection. Note that the comparison here is between
the size of tests and does not imply any subset relationship
between test suites.

Since the assertions in a test were found to have a significant
correlation with fault detection and mutation kill rate [26],
[24], we also compute the number of assertions in the test
cases required by a strategy. If a test case does not have any
assertions, we assume its number of assertions to be one (to
account for uncaught exceptions and other kinds of failure).

The assert utility (Ua) is computed as the difference be-
tween the number of assertions in the selected non-redundant
test cases and the number of assertions in the random sample.
As before, it is reported as a percentage of the asserts of the
non-redundant tests of the random sample:

Ua =
|asserts(min(Tstrategy))|
|asserts(min(Trandom))|

− 1

The baseline effectiveness (Er) is computed by getting the
number of mutants selected by the strategy under test, and
selecting the same number of mutants randomly. We then
collect the minimum test suite (using Algorithm 1) that kill
these mutants, and apply the same test cases against the
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Fig. 3: The figure plots utility (y-axis) against the average
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magnitude of detected mutants (log10). The figure suggests
that there is no correlation between utility and average

minimal test suite size.

original (complete) set of mutants. The result is then divided
by the original number of detected mutants:

Er =
|kill(Tmin

random,M)|
|kill(T,M)|

The traditional mutation reduction criterion strategy effec-
tiveness25(Es), is computed by collecting the minimum set
of test cases that detect any of the mutants selected by the
strategy under test, and applying these to the complete set
of mutants. The score obtained is divided by the original
number of detected mutants, and the effectiveness above that
of baseline is reported:

Es =
|kill(Tmin

strategy,M)|
|kill(T,M)|

− Er

The utility of the strategy is computed as:

Us =
Es − Er

Er
=

∣∣∣∣∣kill(Tmin
strategy,M)

kill(Tmin
random,M)

∣∣∣∣∣− 1

All values are reported as percentage (multiplied by 100).
It has to be noted that having a good test utility does not

preclude a reduction strategy from having a poor strategy
effectiveness or vice versa. It is possible for a strategy to select
mutants such that there are a number of independent tests
killing each mutant; however, if the tests kill no other mutants
than the strategy selected ones, the strategy will have very
poor strategy effectiveness. A similar argument applies for the
inverse — a strategy selects a small number of very strong
tests, which are able to kill most other mutants. However, we
would expect a strong test that kills a much larger number of
mutants than its peers to be distinguished by a larger number
of assert statements. By computing the assert utility, we guard
against such a possibility. We require only a strong positive
utility in any one of the criteria to judge a strategy to be
useful. However, a negative or inconsequential result for all
three criteria is a strong statement on the non-utility of the
strategy in question.

25also called operator mutation score by Mresa et al. [49]
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TABLE III: The maximum utility achievable by a perfect
strategy for each project

Project |kill(T,M)| |kill(Tm
r ,M)| Uperf

annotation-cli 589 529.51 0.11
asterisk-java 3,206 2,754.69 0.16
beanutils 6,823 6,071.53 0.12
beanutils2 1,281 1,141.73 0.12
betwixt 4,271 3,809.19 0.12
clazz 1,583 1,402.39 0.13
cli 2,330 2,069.84 0.13
cli2 3,145 2,760.66 0.14
collections 8,561 7,392.63 0.16
commons-codec 8,252 7,455.50 0.11
commons-lang3 26,741 22,742.46 0.18
commons-math1-l10n 2,980 2,527.66 0.18
commons-math1 90,681 81,898.25 0.11
config-magic 721 640.91 0.13
configuration 13,766 12,359.89 0.11
csv 1,459 1,282.93 0.14
dbutils 961 854.83 0.12
events 702 662.97 0.06
faunus 4,809 4,078.22 0.18
fongo 1,209 1,052.99 0.15
hank 7,109 6,200.08 0.15
java-api-wrapper 1,304 1,148.52 0.14
java-classmate 2,316 1,969.76 0.18
jdbi 4,362 3,914.73 0.11
jfreechart 32,456 28,171.19 0.15
joda-money 1,272 1,257.55 0.01
jodatime 23,796 20,491.96 0.16
jopt-simple 1,718 1,546.21 0.11
mercurial-plugin 401 342.91 0.17
mirror 1,440 1,252.50 0.15
mp3agic 4,003 3,620.41 0.11
ognl 12,308 11,426.09 0.08
pipes 2,176 1,884.73 0.16
primitives 4,125 3,565.83 0.16
sandbox-primitives 4,125 3,563.85 0.16
validator 4,070 3,616.71 0.13
webbit 1,981 1,793.96 0.10
xstream 9,163 8,307.12 0.10

TABLE IV: The maximum utility achievable by a perfect
strategy for each project using distinguishable mutants M̂

Project |kill(T, M̂)| |kill(Tm
r , M̂)| Uperf

annotation-cli 110 93.68 0.18
asterisk-java 451 372.25 0.21
beanutils 1,570 1,341.04 0.17
beanutils2 465 392.30 0.19
betwixt 1,198 1,055.30 0.14
clazz 151 129.24 0.17
cli 788 688.05 0.15
cli2 1,066 903.30 0.18
collections 2,091 1,750.05 0.19
commons-codec 1,393 1,192.29 0.17
commons-lang3 4,479 3,663.98 0.22
commons-math1-l10n 219 177.86 0.23
commons-math1 17,424 15,139.90 0.15
config-magic 204 171.60 0.19
configuration 4,522 3,934.21 0.15
csv 411 349.30 0.18
dbutils 207 170.60 0.21
events 59 49.15 0.20
faunus 553 467.03 0.18
fongo 175 145.13 0.21
hank 546 465.52 0.17
java-api-wrapper 308 259.87 0.19
java-classmate 551 450.46 0.22
jdbi 903 783.99 0.15
jfreechart 4,686 3,910.15 0.20
joda-money 236 230.76 0.02
jodatime 6,920 5,801.10 0.19
jopt-simple 589 514.36 0.15
mercurial-plugin 102 80.95 0.26
mirror 532 444.17 0.20
mp3agic 730 639.01 0.14
ognl 2,990 2,835.77 0.05
pipes 338 288.41 0.17
primitives 1,365 1,155.09 0.18
sandbox-primitives 1,365 1,155.01 0.18
validator 759 647.36 0.17
webbit 325 280.89 0.16
xstream 1,960 1,691.84 0.16

The utility Uperf is computed as Uperf = 1− kill(T,M)
kill(Tm

r ,M) where kill(T,M) is the number of detected mutants in M , and
kill(Tm

r ,M) is the number of mutants detected by a minimal test corresponding to a random sample of mutants of the same
size as the minimal set of mutants.

V. RESULTS

This section presents the results of our experiments. Each
experiment was repeated multiple times to avoid random noise
in the results.

A. Comparison of Oracular Strategy to Random Sample

1) All Mutants: Our results for the comparison of oracular
strategy with random sample are given in Table III, where
Project is the project name, |kill(T,M)| the number of
mutants detected in M by the test suite T , kill(Tm

r ,M) the
number of mutants detected in M by the test suite Tmin

random,
and Uperf is the utility of the perfect strategy. The largest
utility achieved by the perfect strategy was 18%, while the
lowest utility was 1.15%. The mean utility of the perfect
strategy was 13.1%. One sample u-test shows that 95% of
projects have maximum utility between 12.2% and 14.3% with

TABLE V: The correlation of utility for all mutants, killed
mutants, mutation score, and minimal test suite size, based

on both full set of mutants, and also considering only
distinguished mutants

R2
all R2

distinguished

M -0.02 -0.03
Mkill -0.03 -0.02

Mkill/M -0.02 -0.01
Tmin -0.02 -0.02

p < 0.001. Figure 5 shows distribution of utility for each
project. The projects are sorted by their average minimal test
suite size.

Does the situation improve with larger test suite size or
project size? Not really. The Figure 3 plots utility Up against
the average minimal test suite size (log). The figure shows that
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Fig. 4: The figure plots utility (y-axis) against the number of
detected mutants. Bubble size represents the magnitude of

average minimal test suite size (log10). The figure suggests
that there is no correlation between utility and number of

detected mutants.

there is little correlation between the two, and test suite size is
not a factor in improving utility. Similarly, the Figure 4 plots
utility Up against the number of detected mutants. Indeed,
none of the factors including minimal test suite size, total
mutants, killed mutants, and mutation score show even mod-
erate correlation with utility Up. The correlation factors are
given in Table V. The low correlation suggests that population
characteristics such as mutation score, or size of minimal test
suite does not have an impact on our results.

An analysis of variance (ANOVA) to determine significant
variables affecting Uperfect does suggest that variability due
to project is significant (p < 0.001) and interacts with
kill(Trandom,M) strongly.

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.689 with Uperfect,
and the combined terms have a correlation with Uperfect of
0.9995.

2) Distinguishable Mutants: Results are given in Table IV,
where Project is the project name, |kill(T, M̂)| the number of
mutants detected in Muniq by the test suite T , kill(Tm

r , M̂)
the number of mutants detected in Muniq by the test suite
Tmin
random, and Uperf is the utility of the perfect strategy. The

largest utility achieved by the perfect strategy was 26.2%,
while the lowest utility was 2.28%.

The mean utility of the perfect strategy was 17.5%. One
sample u-test showed that 95% of projects have a maximum
utility between 16.8% and 18.8% (p < 0.001).

Figure 6 shows utility distribution for each project, again
sorted by average minimal test suite size. This situation does
not change with either test suite or project size.

Utility Up has low correlation with total mutants, detected
mutants, mutation score, and minimal test suite size. Correla-
tion factors are given in Table V.

Analysis of variance (ANOVA) on Uperfect found that the
variability due to project is again significant at p < 0.001 and
strongly interacts with kill(Trandom,M).

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.742 with the
Uperfect, and the combined terms have a correlation with
Uperfect of 0.9994.

B. Comparison of Selection Strategies

1) Operator Selection: Considering the operator selection
results (Table VI, standard deviation in Table XI. the strat-
egy with the maximum advantage in utility was Constrained
(0.18% compared to random sampling). The strategy with the
maximum advantage in test utility was S-Selective (3.02%
compared to random sampling). Similarly, the strategy with
the maximum advantage in assert utility was again S-Selective
(1.44% compared to random sampling).

Considering the N-selection results (Table VII, standard
deviation in Table XII. In terms of utility, the best strategy
was RS (4.75% compared to random sampling). The strategy
with the maximum advantage in test utility was removal of
NMC (2.37% compared to random sampling). Similarly, the
strategy with the maximum advantage in assert utility was
NMC (2.02% compared to random sampling).

2) Stratified sampling over operators: Considering strati-
fied sampling over operators (Table VIII, standard deviation
in Table XIII. In terms of utility, the best strategy was
1/64 (0.69% compared to random sampling). The strategy
with the maximum advantage in test utility was 1/32 (0.78%
compared to random sampling). Similarly, the strategy with
the maximum advantage in assert utility was 1/64 (2.06%
compared to random sampling).

3) Stratified sampling over program elements: Considering
stratified sampling over program elements (Table IX, standard
deviation in Table XIV. in terms of utility, the best strategy
was 1/64 sampling of class (2.81% compared to random
sampling). The strategy with the maximum advantage in test
utility was 1/16 sampling of method (6.68% compared to
random sampling). Similarly, the strategy with the maximum
advantage in assert utility was 1/32 sampling of class (7.82%
compared to random sampling).

VI. DISCUSSION

One of the biggest questions for a practicing software tester
is whether the test suite is good enough. While there exist
numerous techniques to evaluate test suites, mutation analysis
is often considered to be the golden standard. Unfortunately,
mutation analysis is hobbled by the amount of computation
required for a full run. A reduction in the computational
requirements of mutation analysis, while maintaining its ef-
fectiveness, is actively sought after.

In this context, it is crucial to understand the limits of such
reduction strategies, especially the comparative performance of
each strategy against simple random sampling which serves
as a baseline. This can help us evaluate benefits of further
research.

A. Comparison With Oracular Strategy

Theoretical analysis of a simple idealized system finds a
mean effectiveness improvement of 58.2% over random sam-
pling for a perfect mutation reduction strategy with oracular
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Fig. 6: Using distinguished mutants.

Distribution of maximum utility using distinguished mutants across projects. The projects are ordered by the cardinality of
mean minimal test suite. The red line indicates the mean of all observations.

The mean operator selection results for all projects.
Strategy Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
Constrained 0.18 -12.94 -9.24 14.13 0.05 98.32
E-Selective -1.05 -7.76 -7.60 36.42 -1.04 99.64
S-Selective 0.08 3.02 1.44 49.35 0.08 99.86
R-Selective -1.39 -9.89 -9.03 14.22 -1.35 98.74
ES-Selective 0.01 0.63 0.38 85.78 0.01 99.99
RS-Selective -0.57 -6.10 -5.77 50.65 -0.56 99.82
RE-Selective 0.00 1.87 1.37 63.58 0.00 99.94
Javalance -0.10 -5.49 -3.88 59.73 -0.10 99.91
VarReduction 0.03 1.73 1.29 71.09 0.03 99.97
SDL -0.01 1.58 0.30 63.02 -0.01 99.94

TABLE VI: The operator selection strategy

Removed Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
rm.nmc 0.04 2.37 2.02 73.00 0.04 99.96
rm.rv 0.04 -1.46 -2.21 63.09 0.04 99.92
rm.ic 0.02 -1.38 -2.29 53.45 0.02 99.87
rm.dc 0.08 -2.77 -3.43 44.45 0.08 99.81
rm.nc 0.05 0.22 -2.00 32.02 0.05 99.64
rm.rc -0.28 -1.99 -7.14 20.92 -0.27 99.31
rm.vmc -0.68 -5.06 -11.62 17.32 -0.67 99.14
rm.cc -1.03 -18.25 -18.17 11.70 -1.19 97.55
rm.emv -5.94 -29.54 -28.13 7.03 -6.02 94.48
rm.m -7.59 -29.93 -26.79 4.56 -6.39 92.66
rm.cb -12.89 -36.36 -36.96 2.89 -9.72 88.49
rm.i -21.00 -40.58 -40.81 1.73 -15.18 82.11
rm.ri -33.38 -39.81 -31.14 0.59 -13.29 47.87
rm.rs 4.75 -12.11 -25.68 0.15 0.86 33.69
rm.es -11.08 -14.25 -16.28 0.04 -1.81 10.37

TABLE VII: The N-selective strategy. Each row removes the named mutation operator from the preceding row

Fraction Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 0.01 0.23 0.26 50.00 0.01 99.87
1/4 0.04 -0.33 -0.24 25.00 0.03 99.50
1/8 0.11 0.60 0.83 12.51 0.10 98.63
1/16 0.23 -0.35 -0.59 6.25 0.20 96.57
1/32 -0.02 0.78 1.89 3.13 -0.05 92.83
1/64 0.69 0.74 2.06 1.56 0.42 86.08

TABLE VIII: The operator-based x% sample strategy

knowledge of mutation kills, assuming a uniform redundancy
of mutants, and robust test cases able to disignuish unique
faults.

Empirical analysis of a large number of open source projects
reveals that the practical limit is much lower than this theo-
retical advantage: it is on average only 13.1% for mutants

produced by PIT. Discounting the effects of skew (by using
only distinguished mutants) the potential improvement is still
just 17.5% on average.

The theoretical limit in analysis shows the best that can
be done by a perfect mutation strategy, given the worst
distribution of mutants one may encounter. On the other
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Fraction Elt Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 line 0.05 2.24 1.74 49.98 0.05 99.87
1/4 line 0.12 3.11 2.21 24.96 0.12 99.49
1/8 line 0.35 3.92 3.16 12.47 0.34 98.62
1/16 line 0.67 3.03 2.14 6.24 0.59 96.57
1/32 line 0.54 1.50 0.64 3.15 0.40 92.81
1/64 line 0.39 0.05 1.20 1.57 0.32 86.04
1/2 method 0.04 2.16 1.73 50.00 0.04 99.87
1/4 method 0.11 3.25 2.34 25.00 0.11 99.51
1/8 method 0.39 4.48 3.62 12.51 0.38 98.68
1/16 method 0.98 6.68 7.15 6.24 0.91 96.69
1/32 method 1.94 5.30 5.92 3.13 1.66 92.69
1/64 method 1.91 6.37 6.24 1.57 1.12 86.35
1/2 class 0.01 0.90 0.80 49.99 0.01 99.88
1/4 class 0.05 0.84 0.31 25.01 0.05 99.53
1/8 class 0.21 2.45 1.91 12.50 0.20 98.68
1/16 class 0.59 3.29 3.39 6.24 0.55 96.85
1/32 class 1.79 5.17 7.82 3.12 1.42 92.77
1/64 class 2.81 4.12 5.00 1.55 2.08 86.09

TABLE IX: The element-based x% sample strategy

Format: The test and assert utility shows how good the mutation strategy is in selecting non-redundant test cases as
percentage difference. The mutation share is the fraction of mutants selected by the strategy compared to the full set. The
strategy effectiveness shows the total mutants caught by a test suite selected by the strategy mutants, and is provided as

comparison to baseline effectiveness in percentage.

hand, the empirical analysis finds the average utility of a
perfect strategy without regard to the distribution of mutants in
different programs. How different is the distribution of faults
in mutants in real world compared to our simple model? and
how far is our assumption of test cases that distinguishes faults
uniquely? The TVD column in Table X captures the total
variation distance26 between a uniform distribution of faults
and the actual distribution. The Mean column is computed
in the following manner: We computed the total number of
mutants detected by each test in a given project, and divided
that by the total number of mutants. We then computed the
mean and variance of this set of values for each project. That
is, a low value for Mean and Var provides an indication of
whether that test case was able to detect a mutant uniquely.
Note that violation of these two assumptions have opposite
effects on the mean effectiveness. So what do these values
mean? Indeed, the real world distribution of faults in mutants
seem to be far from the simplified model we considered in the
theoretical analysis. The value of the theoretical model is in
showing that there exist a limit, even for such simple systems,
and the possible improvement in reduction is not unlimited as
is often supposed. Further, as we have seen in the empirical
analysis, the effect of sharing in the mutant kills between test
cases is larger than the effect due skew in redundant mutants
leading to a much lower upper bound in mean effectiveness.

Finally, we found that effects of skew were small (the dif-
ference between mean effectiveness improvement of the set of
distinguished mutants and the mean effectiveness improvement
of all mutants is only 4.39%).

The empirical upper bounds on gain in utility are quite
low, and call into question the effort invested into devising,
evaluating, and improving mutation reduction strategies. Of
course, random sampling is subject to the vagaries of chance:
one can obtain arbitrarily good or bad samples. However, our
results suggest that the variance of individual samples is rather

26 The total variation distance is the largest difference in probabilities
that can be assigned to an event when it is considered under the different
probability distributions under consideration [78].

low, and the situation improves quite a bit with larger projects
— e.g. the variance of commons-math is just 0.397%. The
chance for a really bad sample is very low in the case of
any project large enough to require mutant reduction, and
drops quickly as the number of test cases increases. It is
possible the adequacy of test suites has an impact, but our
analysis of projects with adequate test suites suggests that there
is very little difference due to adequacy (Uperfect =14%).
In general, using accepted standard practices for statistical
sampling to produce reasonably-sized random mutant samples
should be effective in practice for avoiding unusually bad
results. Random sampling is also easy to implement and incurs
negligible overhead.

B. Comparison with Selection Strategies

An important concern for a software tester during develop-
ment is whether a newly added test contributes towards the
effectiveness of a test suite. Not all tests are useful — some
are redundant — recall that we use minimum test suites for our
test utility and assert utility measures, averaged over multiple
runs. Even if tests are not equal, a new test will improve a
test suite if it increases the average size of a minimum test
suite. Hence, the average size of a minimum test suite is a
reasonable measure for the utility of a set of mutants.

The second question is whether the test suite selected by a
subset of mutants is similarly effective to the test suite selected
by the full set of mutants. This is the question answered by
the traditional criteria of strategy effectiveness.

It is possible for our criteria to return contrary results to
the traditional criteria. For a pathological example, consider
a set of test cases with a single strong test case, and a large
number of weak test cases. This can result in a high strategy
effectiveness if the strong test is included, and a low test
utility due to the very low number of non-redundant test cases.
Similarly, if the strong test case is excluded, it can result in
a high test utility, while having a low strategy effectiveness
if the mutants discarded by the strategy are same ones that
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TABLE X: Comparison of actual distribution to the
hypothetical distribution of mutants

Project TV D Mean V ar
annotation-cli 0.610 132.519 619.194
asterisk-java 0.824 54.634 2,233.218
beanutils 0.528 114.084 11,379.741
beanutils2 0.797 22.927 989.231
betwixt 0.370 375.375 85,282.405
clazz 0.761 45.633 1,831.671
cli 0.649 103.560 4,305.466
cli2 0.578 77.097 6,895.613
collections 0.828 23.263 608.567
commons-codec 0.694 66.869 8,155.081
commons-lang3 0.658 38.425 2,385.877
commons-math1-l10n 0.882 167.735 45,788.994
commons-math1 0.874 46.839 9,733.084
config-magic 0.556 77.784 1,279.737
configuration 0.596 311.203 190,370.838
csv 0.417 66.973 3,135.170
dbutils 0.832 15.247 277.450
events 0.785 34.732 1,638.498
faunus 0.777 162.535 17,236.249
fongo 0.665 87.982 1,152.285
hank 0.851 102.035 10,957.940
java-api-wrapper 0.700 59.073 4,382.035
java-classmate 0.540 56.341 6,825.645
jdbi 0.512 369.899 70,890.693
jfreechart 0.890 122.665 39,898.268
joda-money 0.949 15.907 2,745.724
jodatime 0.787 139.046 17,765.564
jopt-simple 0.576 74.075 6,906.461
mercurial-plugin 0.911 10.688 60.632
mirror 0.696 35.847 1,182.496
mp3agic 0.545 142.746 58,857.711
ognl 0.516 523.544 161,933.423
pipes 0.770 45.934 1,372.295
primitives 0.676 21.181 347.946
sandbox-primitives 0.674 21.253 348.259
validator 0.555 107.037 13,150.119
webbit 0.694 143.712 27,401.945
xstream 0.621 362.312 166,391.685

The TV D is the total variation distance of the actual
distribution of mutant kills from a Uniform distribution. The
Mean and V ar are respectively the mean and variance of

the mean number of mutants killed per test case.

are killed by the strong test. However, we consider a mutation
strategy useful if it has some utility for at least one of these
criteria. Consider the results from our empirical evaluation:

1) Operator Selection: For Operator selection, (Table VI),
Constrained performs best in utility, while S-Selective per-
forms best in test utility and assert utility. For N-selection,
(Table VII) the best test utility and assert utility was removal
of operators until NMC. The best strategy effectiveness for
all projects was the removal of operators until RS. Note that
the advantage gained for most strategies compared to random
sampling is very small, and are often negative.

2) Stratified sampling over operators: For stratified sam-
pling over operators (Table VIII), the best test utility appears
to be at 1/32 and for assert utility, and strategy effectiveness,
the best is 1/64. Note that the advantage gained in each case
is very small.

3) Stratified sampling over program elements: For stratified
sampling over program elements (Table IX), there appears to
be a small but consistent advantage for most sample fractions.
The best test utility was achieved by 1/16 method-based
sampling. Similarly, the best assert utility was achieved by
1/32 class based sampling, and the best strategy effectiveness
was for 1/64 class based sampling.

The interesting thing to note here is that there is no con-
sistent winning strategy. That is, there is no strategy that pro-
vides an advantage over all others. Second, operator selection
strategies provide little benefit (or even decrease performance)
over random selection for even strategy effectiveness (the
traditional criteria).

The results indicate that operator selection strategies in
general tend to be either disadvantageous (sometimes by a
large difference), or where advantageous, this is by a very
small margin compared to the baseline.

The strata-based random selection strategies fare a little
better. While they are mostly advantageous, the advantage is
always rather small — below 5%. Strata-based selection is
founded upon a simple assumption; mutants within strata are
more similar to each other than to those outside, and strata-
based selection works well for approximating full mutation
scores [79], [14] when this assumption is met. Our results
indicate that while there is a small advantage, this advantage
is almost always less than 1% compared to the baseline
for strategy effectiveness. One factor that one may wish to
consider is that strata based techniques can reduce the variance
of computed results compared to random sampling, and hence
may be of use. However, strata-based sampling is effective
only as long as all the elements of a given strata can provide
samples for a given fraction. A 1

64 fraction sample for a
statement generating 10 mutants is effectively zero, and hence
statement-based strata may no longer be useful for 1

64 samples.
Hence simple strata based sampling may be advantageous
to consider when the considered strata are large enough to
provide representative samples. However, in this respect, one
may consider using one of the sub-random sampling systems
such as Poisson disc sampling [80] which avoids the regularity
of systematic sampling, but also reduces variability of results.

We caution that cost-reduction is not the only reason for
using selective mutation. Operator selection techniques [81]
have been used to reduce the incidence of equivalent mutants,
and some of the higher order mutation operators such as
statement deletion [56], [82] have markedly fewer equivalent
mutants than other operators. Further, one of the stated aims
of Javalanche [83] is to avoid equivalent mutants as much
as possible. However, one has to be very careful about the
impact in effectiveness if one uses operator selection for these
purposes.

Our results are applicable not only to selective mutation,
but also to mutation implementors looking to add new mu-
tation operators. Imagine a mutation system implementor has
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achieved perfect set of mutation operators: their current set of
mutants does not have any redundant mutants (this is highly
unlikely given our understanding of mutant semiotics, and the
complexity of real programs). When we consider the addition
of a new set of random mutants that do not improve the mutant
set, in that they are all redundant with respect to the original set
(probably unlikely in practice, given that we are introducing
new mutants), the maximum disadvantage thus caused is
bounded by our limit (18.8% upper limit for 95% of projects).
However, at least a few of the new mutants are in reality likely
to improve the representativeness of a mutation set compared
to possible faults. Since there is no upper bound on the number
of new distinguishable mutants that could be introduced, there
is no upper bound for the maximum advantage gained by
adding new mutation operators. A bounded disadvantage and
unbounded advantage is clearly a desirable situation. Adding
new operators is especially attractive in the light of recent
results showing classes of real faults that are not effectively
captured by any of the mutation operators in common use [5].

VII. THREATS TO VALIDITY

Our theoretical study may be subject to the following threats
to validity. We showed that there exist a limit to the mean
effectiveness under two simplifying assumptions: uniform
redundancy of faults in mutants, and sufficient test cases to
uniquely identify faults. However, it is possible that the real
world distribution of faults may be much more complex, and
our conclusions from this simple model may not be applicable
to the real world faults and test cases.

Our empirical study may be subject to the following threats
to validity.
Construct validity: We use the minimum set of mutants as
the measure of diversity of mutants. It is possible that the
minimum set of mutants is not representative of the actual
diversity of mutants. However, we note that the minimum set
of mutants is the best method suggested in the literature to
measure actual diversity of mutants. We have further used the
number of asserts as a secondary measure to further protect
against unforeseen biases.
Internal validity: Our measurement of the minimal set of
mutants is only an approximation. While the algorithm used
guarantees an H(|M |) approximation, it is not clear how much
actual variation this could have caused in our measurement.
We note that we take an average of 100 runs for each
observation to protect against such errors.

As our focus was on the practical advantages of different
mutation reduction strategies for a practicing tester, we relied
on a popular mutation tool used in industry — PIT. How-
ever, PIT does have some drawbacks such as an incomplete
repertoire of mutation operators and an imperfect mapping to
source level mutants. While we have ensured a fair repertoire
of mutation operators in PIT, and have tried to map the source
level mutants to bytecode level mutants, some imperfections
may still exist. However, given that we have captured the
original reasoning behind the strategies, and also that previous
research on same area has used Javalanche, which operates
under similar constraints, we believe that the influence on our
results is minimal.

External validity: Our results depend on the representative-
ness of our samples which were obtained from the Github
repository. We have used Java Maven projects for ease of
automation of experiment and measurement. While we do not
foresee any confounding biases in our selection procedure, the
possibility exists. Hence, the generalizability of our findings
depends on the representativeness of these projects.

Finally, software bugs are a part of life. While we have
tried to ensure that our tools, and analysis are free of errors,
the same can not be guaranteed. Hence, replication of these
results by a different group using different tools is of utmost
importance.

VIII. CONCLUSION

This paper shows that blind random sampling of mutants is
surprisingly close in effectiveness to the best achievable bound
for mutation reduction strategies that unrealistically use perfect
knowledge of mutation analysis results. There is surprisingly
little room for improvement over random sampling to be
gained by smarter reduction strategies. Previous researchers
showed that there is very little advantage to current operator
selection strategies compared to random sampling [13], [14].
However, these experiments lacked direct comparison with
random sampling of the same number of mutants. It was also
demonstrated that the current strategies fare poorly [23] when
compared to the actual minimum mutant set, again without
a comparison to random sampling. Our primary contribution
in this paper is to combine an analysis of the absolute
limits to the improvement over random sampling that any
reduction strategy can have (irrespective of the intelligence
of the strategy) with a thorough, direct, empirical comparison
of the effectiveness of most current strategies’ effectiveness
compared to random sampling.

The theoretical analysis suggests a mean effectiveness ad-
vantage of 58.2% over random sampling for a perfect mutation
reduction strategy with (unrealistic) oracular knowledge of
kills for an arbitrary program, under the assumption of uniform
redundancy in mutants, and test sets robust enough to distin-
guish unique faults. Empirically, we find that actual projects
yield a much lower advantage 13.1% even for a perfect reduc-
tion strategy with oracular knowledge. Eliminating the effects
of skew in redundant mutant populations by considering only
distinguished mutants, we find that the advantage of a perfect
mutation reduction strategy is still only 17.5% over random
sampling. The low impact of skew on results (4.39%) suggests
that our simplifying assumptions for theoretical analysis are
reasonable. No actual reduction strategies examined come
close to the empirical limit, with the best performing no
better than 5%, and most others performing worse (sometimes
much worse) than random sampling. The disparity between
the theoretical prediction and the empirical results is due to
the inadequacies of real world test suites, which have a much
smaller minimum mutant set than the distinguishable mutant
set. While work on mutation reduction strategies routinely
claims a high reduction factor, and one might expect a similar
magnitude of utility over random sampling, this to materialize
either in theory or practice, for a large set of real world open
source programs and suites.
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A researcher or an implementor of mutation testing tools
should carefully consider the value of devising or imple-
menting a mutation reduction strategy, given this theoretical
and empirical performance for both hypothetical and real
methods. Because variability due to projects is significant, a
testing practitioner would also do well to consider whether
the mutation reduction strategy being used is suited for the
particular system they need to test (such consideration could
be based on historical data for the project, or on projects that
are in some established sense similar). Random sampling of
mutants is not extremely far from an empirical upper bound on
an ideal mutation reduction strategy, and has the considerable
advantage of having little room for an unanticipated bias due
to adapting a selection method that turns out to be ill-advised
for a particular program.

The most important takeaway from our research may be
that it is perhaps most effective to improve mutation analysis
via further research into newer mutation operators (or new
categories of mutation operators such as domain specific
operators for concurrency or resource allocation). We show
that there is limited or no reduction in utility due to addition
of newer operators even in the worst case, while there is no
upper bound for the possible improvement.

Our advice to mutation tool implementors is twofold: try to
provide as many sources of variation as possible, and avoid
questionable reduction strategies that reduce overall variation.
You can always reduce the number of mutants to execute using
simple random sampling of the mutants produced.

We give similar advice to the practicing tester: pure random
sampling is the best method for mutation reduction for a
generic project. Avoid strategies such as operator selection,
or clustering unless there are other requirements such as
avoidance of equivalent mutants, reduction of mutation cost, or
selection of specific bug types. (Note that even subsumption
of specific operators is not a forgone conclusion [30]). Use
strata-based sampling only when you can be sure that all
strata elements can produce representative samples for a given
sampling fraction.

Indeed, the most important insight to be derived from our
research can be succinctly described by what we call Hamlet’s
principle, formulated in the context of random testing [84]: in
the absence of a rational basis for systematic methods, random
methods are best at avoiding bias.
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APPENDIX

Computing Approximate Minimum Testsuite

The computation of the minimum test suite is an instance
of the problem of set cover. It is one of the well known NP-
Complete problems, and hence the minimum test suite can only
be approximated.

There are two main algorithms for computing the approxi-
mate minimum test suite. The greedy algorithm and the reverse
greedy algorithm.

Greedy Algorithm: In the greedy algorithm given in Algo-
rithm 1, the approximate minimum set is built step by step by
finding the next best test cases to incorporate into the minimum
set.

Algorithm 1 Finding the approximate minimum test suite
function GREEDYMINTEST(Tests,Mutants)

T ← Tests
M ← kill(T,Mutants)
Tmin ← ∅
while T 6= ∅ ∨M 6= ∅ do

t← random(max
t
|kill({t},M)|)

T ← T \ {t}
M ← kill(T,Mutants)
Tmin ← Tmin ∪ {t}

end while
return Tmin

end function

This algorithm achieves an approximation bound of k(1 +
ln(nk )) sets where n = |U | (the total number of elements) and
k is the size of the minimal set. Further, it has been shown [85]
that if there exists a better approximation, such that it can
approximate set cover in C ln(n), where C ≤ 1, then P =
NP .

Reverse Greedy Algorithm: In the reverse greedy algorithm
(Algorithm 2), for each iteration, we remove the least effective
test that is not required for maintaining the mutation score.

Algorithm 2 Finding the approximate minimum test suite
function REVERSEGREEDYMINTEST(Mutants, Tests)

T ← Tests
M ← kill(T,Mutants)
Tr ← {t : kill(T \ {t},M) = kill(T,M)}
while Tr 6= ∅ do

t← min
t∈Tr

|kill({t},M)|
T ← T \ {t}
Tr ← {t : t ∈ Tr ∧ kill(T \{t},M) = kill(T,M)}

end while
return T

end function

We demonstrate that this algorithm will have a worse
guarantee [74] than that of the greedy algorithm. Say we have a
universal set of mutants U = {1 . . . 2n}. For every i = 1, .., n,
define a set with n+ 1 elements by Si = {i, n+ 1, . . . , 2n},
and a set A = {n+1, . . . , 2n}. Say we want to cover U with
the sets C = {S1, . . . , Sn, A}. Now, the least effective set is

A because it covers only n elements when compared to Si

which covers n+ 1 elements. Hence it is discarded first, and
the algorithm will return a cover with {S1, . . . , Sn}, with size
n. However, the minimum cover is just {S1, A}, with size 2.
That is, the guarantee of approximation can not be better than
that of greedy but could be worse.
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The operator selection results for all projects (standard deviation).
Strategy Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
Constrained 4.32 7.92 12.17 2.72 3.56 3.65
E-Selective 2.26 9.48 9.76 6.64 2.24 0.66
S-Selective 0.18 6.44 6.55 8.25 0.18 0.19
R-Selective 3.95 14.13 20.78 4.29 3.81 1.48
ES-Selective 0.02 3.54 4.30 4.29 0.02 0.02
RS-Selective 2.07 8.70 10.20 8.25 2.06 0.35
RE-Selective 0.12 3.46 3.37 6.64 0.12 0.09
Javalance 0.31 7.12 5.52 4.50 0.31 0.16
VarReduction 0.05 4.75 4.17 5.90 0.05 0.05
SDL 0.23 3.85 2.44 7.49 0.23 0.09

TABLE XI: The operator selection strategy - standard deviation

Removed Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
rm.nmc 0.06 4.60 5.23 6.86 0.06 0.06
rm.rv 0.13 9.34 8.74 7.51 0.13 0.14
rm.ic 0.31 10.33 8.67 5.39 0.30 0.20
rm.dc 0.30 9.65 8.39 5.90 0.30 0.28
rm.nc 0.53 10.81 8.29 5.59 0.52 0.48
rm.rc 1.44 12.43 10.32 5.17 1.41 0.85
rm.vmc 2.70 10.50 12.41 4.80 2.65 0.97
rm.cc 5.72 12.41 16.37 5.03 4.82 5.77
rm.emv 8.41 11.49 17.63 5.17 6.72 12.50
rm.m 9.05 12.33 23.15 2.55 7.15 12.56
rm.cb 17.85 13.14 25.74 1.79 12.14 15.18
rm.i 22.03 22.86 28.05 1.31 13.87 19.51
rm.ri 28.24 19.77 35.09 1.09 16.01 38.52
rm.rs 41.41 16.20 36.77 0.21 12.63 33.22
rm.es 54.96 15.33 57.23 0.12 10.48 21.52

TABLE XII: The N-selective strategy. Each row removes the named operator from the preceding row - standard deviation

Fraction Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 0.05 1.42 1.64 0.03 0.05 0.21
1/4 0.12 1.90 2.10 0.03 0.12 0.62
1/8 0.58 3.04 4.41 0.03 0.55 1.59
1/16 1.39 2.97 4.49 0.03 1.18 3.60
1/32 1.54 4.84 6.32 0.04 1.25 7.11
1/64 3.89 4.89 12.43 0.03 2.55 12.20

TABLE XIII: The operator-based x% sample strategy - standard deviation

Fraction Elt Utility Test Utility Assert Utility Mutation Share Strategy Effectiveness Baseline Effectiveness
1/2 line 0.09 1.63 2.16 0.16 0.09 0.18
1/4 line 0.16 1.77 2.52 0.15 0.16 0.63
1/8 line 0.70 2.81 2.98 0.16 0.67 1.48
1/16 line 2.01 3.45 4.72 0.19 1.63 4.00
1/32 line 2.16 5.85 7.88 0.15 1.53 7.03
1/64 line 2.15 5.59 7.93 0.10 1.70 12.31
1/2 method 0.12 2.01 2.09 0.10 0.12 0.20
1/4 method 0.18 2.48 2.35 0.08 0.17 0.62
1/8 method 0.69 3.32 3.92 0.09 0.66 1.38
1/16 method 1.37 5.79 6.63 0.09 1.20 3.48
1/32 method 2.22 4.55 7.72 0.07 1.67 7.33
1/64 method 6.20 10.23 11.25 0.08 2.55 12.97
1/2 class 0.07 1.18 1.86 0.04 0.07 0.18
1/4 class 0.14 1.78 2.35 0.05 0.14 0.61
1/8 class 0.36 2.36 3.09 0.05 0.35 1.39
1/16 class 0.77 4.55 5.02 0.04 0.70 3.20
1/32 class 4.22 3.81 7.11 0.06 2.71 7.45
1/64 class 4.03 5.95 10.69 0.05 2.18 12.18

TABLE XIV: The element-based x% sample strategy - standard deviation


