Guidelines for Coverage-Based Comparisons of Non-Adequate Test
Suites

MILOS GLIGORIC, University of Illinois at Urbana-Champaign
ALEX GROCE, Oregon State University

CHAOQIANG ZHANG, Oregon State University

ROHAN SHARMA, University of Illinois at Urbana-Champaign
MOHAMMAD AMIN ALIPOUR, Oregon State University
DARKO MARINQV, University of Illinois at Urbana-Champaign

A fundamental question in software testing research is how to compare test suites, often as a means for
comparing test-generation techniques that produce those test suites. Researchers frequently compare test
suites by measuring their coverage. A coverage criterion C provides a set of test requirements and measures
how many requirements a given suite satisfies. A suite that satisfies 100% of the (feasible) requirements is
called C-adequate. Previous rigorous evaluations of coverage criteria mostly focused on such adequate test
suites: given two criteria C and C’, are C-adequate suites (on average) more effective than C’-adequate
suites? However, in many realistic cases, producing adequate suites is impractical or even impossible.

This paper presents the first extensive study that evaluates coverage criteria for the common case of
non-adequate test suites: given two criteria C' and C’, which one is better to use to compare test suites?
Namely, if suites T%, T3, . . ., Tn have coverage values ci1, c2,...,cn for C and ¢}, ch, ..., c;, for C’, is it better
to compare suites based on ci,c2,...,cn or based on ¢, c),...,c,? We evaluate a large set of plausible
criteria, including basic criteria such as statement and branch coverage, as well as stronger criteria used
in recent studies, including criteria based on program paths, equivalence classes of covered statements, and
predicate states. The criteria are evaluated on a set of Java and C programs with both manually written
and automatically generated test suites. The evaluation uses three correlation measures. Based on these
experiments, two criteria perform best: branch coverage and an intra-procedural acyclic path coverage. We
provide guidelines for testing researchers aiming to evaluate test suites using coverage criteria as well as
for other researchers evaluating coverage criteria for research use.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging
General Terms: Experimentation
Additional Key Words and Phrases: Coverage criteria, non-adequate test suites

ACM Reference Format:

Milos Gligoric, Alex Groce, Chaogiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko Mari-
nov, 2014. Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites. ACM Trans. Softw.
Eng. Methodol. V, N, Article A (January YYYY), 33 pages.

DOI:http:/dx.doi.org/10.1145/0000000.0000000

This material is based upon work partially supported by the National Science Foundation under Grant Nos.
CCF-0746856, CNS-0958199, CCF-1012759, and CCF-1054876.

Author’s addresses: M. Gligoric, R. Sharma, and Darko Marinov, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign; A. Groce, C. Zhang, and M. A. Alipour, School of Electrical Engineering
& Computer Science, Oregon State University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI:http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A2 M. Gligoric et al.

1. INTRODUCTION

Software testing helps developers to improve the quality of their code. Developers
or test engineers run test suites and inspect failures to identify faults in the code.
A fundamental task in software testing research is evaluating (and improving) test
suites. For example, evaluating suites is central to the development of automated test-
generation techniques whose goal is to generate high-quality suites.

To compare suites, researchers typically use real faults, seeded faults, and/or cov-
erage criteria. For real faults, researchers measure how many faults (previously
known or newly found) the suites find. However, collecting code with real faults
and analyzing failures takes substantial effort. Thus, experiments often use a rel-
atively small set of real faults, preventing rigorous statistical analysis of the re-
sults [Arcuri and Briand 2011].

Researchers also use mutation testing [Hamlet 1977; DeMillo et al. 1978;
Jia and Harman 2011] to seed a large number of artificial faults and measure the mu-
tation score, i.e., how many mutants a suite kills. Several studies [Andrews et al. 2005;
Andrews et al. 2006] show that the results obtained on mutants predict detection
of real faults, i.e., suites that kill more mutants are likely, on average, to find more
real faults. While mutation testing can provide a good basis for statistical analy-
sis [Arcuri and Briand 2011], it can also be prohibitively expensive to perform. Even a
small program with only a few hundred lines of code may have thousands of mutants,
and determining killed mutants may require running a test suite on each mutant.

Researchers therefore most often use coverage to compare suites. A traditional cov-
erage criterion provides a finite set of test requirements for the code under test, and
one measures how many requirements a given suite satisfies. For example, statement
and branch coverage are well-known structural criteria [Ammann and Offutt 2008]. A
suite that satisfies 100% of the (feasible) requirements for a criterion C' is called C-
adequate. Measuring test coverage is almost always much cheaper than performing
mutation testing; even if the criterion has a high runtime overhead, it only requires
running tests once per program, as opposed to once per mutant. Coverage criteria are
widely used in testing research and practice, e.g., papers on automated testing tech-
niques often report that one technique is better than another because it generates, say,
“suites with 10% more branch coverage on average.”

This paper addresses the following question: What coverage criteria should
researchers use to evaluate suites? Research comparing! coverage criteria
dates back at least 20 years [Frankl and Weiss 1993; Hutchins et al. 1994;
Frankl and Iakounenko 1998] but has largely focused on adequate test suites:
given two criteria C and C’, do C-adequate suites (on average) find more faults
than (C’-adequate suites? However, testing practice and research widely use non-
adequate test suites because determining which test requirements are feasible is
hard, generating suites for all feasible requirements is often impractical, and some
recently used criteria [Chaki et al. 2004; Ball 2004; Wang and Roychoudhury 2005;
Visser et al. 2006; Pacheco et al. 2007; Chilimbi et al. 2009; Sharma et al. 2011;
Groce 2011; Groce et al. 2012] even have an infinite (or astronomically large) set of
requirements.

To the best of our knowledge, there has been no extensive study comparing coverage
criteria over multiple non-adequate suites for the same program, except for the recent
ISSTA conference paper [Gligoric et al. 2013] by the authors. This paper focuses on
two critical questions:

1Note that we use the term “comparison” to refer to both comparisons of suites and comparisons of coverage
criteria, but the intended use should be clear from the context.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:3

(1) Are any coverage criteria able to predict mutation scores for non-adequate suites,
and thus suitable for use in evaluations?
(2) Given two criteria C' and C’, is it better to use C or C’ to compare test

suites? Namely, if suites 71,75, ..., T, have coverage values ci,co, ..., ¢, for C and

cy,chy ..., ¢, for C', is it better to compare suites based on ¢y, co, ..., ¢, or based on
/ / /

c,chy ., ch?

To illustrate the key difference in comparisons with adequate and non-adequate
suites, consider a comparison of statement coverage (SC) with branch coverage (BC).
For adequate suites, it is well known that BC subsumes SC: a suite with 100% BC
would have 100% SC and should, on average, be likely to find more faults than an-
other suite with 100% SC but less than 100% BC. For non-adequate suites, however,
the situation is less clear. For instance, suppose a suite 77 has 50% BC and 75% SC,
and a suite 7> has 60% BC and 65% SC. (Our experiments show that up to 11% of
test-suite pairs have such discordant values for BC and SC; more details are provided
in Section 4.) Should we use BC and declare T> better (60%>50%), or should we use SC
and declare T} better (75%>65%); is T} or T> more likely to kill more mutants? Substi-
tuting a variety of criteria for branch and statement coverage, this scenario describes
a common occurrence in evaluation of testing techniques.

The major contribution of this paper is an evaluation of multiple criteria, both tradi-
tional (statement and branch) and recently used (based on program paths, equivalence
classes of covered statements, and predicate states). We evaluated criteria on a large
set of Java and C programs with both manually written and automatically generated
tests. We measured the effectiveness of criteria (using three statistical correlation co-
efficients) in terms of how well they predicted the mutation scores of suites (and thus,
arguably, the real-fault detection of suites [Andrews et al. 2005; Andrews et al. 2006]).
We designed our experiments to have a direct application to the evaluation of suites
(and thus testing techniques) in testing research, and propose that our experimental
approach would easily extend to other criteria, programs, and subjects. A minor con-
tribution of this paper is the first implementation and evaluation of Ball’s predicate-
complete test coverage criterion (PCT) [Ball 2004; Ball 2005]. In Section 3, we describe
all implementation challenges we faced in both Java and C.

Our results show that a variety of criteria are able to effectively predict mutation
scores. This provides support for previous research studies that used these criteria
to compare test suites. Moreover, for future studies, we propose two guidelines for
researchers using coverage criteria to evaluate suites. First, our results show that
branch coverage performs as well as or better than all other criteria studied, in terms
of ability to predict mutation scores, and has a very low measurement overhead and
implementation complexity. However, in some settings, branch coverage provides val-
ues that do not distinguish between test suites. Second, if researchers want a stronger
criterion that can distinguish more test suites, but comes at the price of increased mea-
surement overhead and implementation complexity, our results show that an acyclic
intra-procedural variation of path coverage is about as effective as branch coverage.
Our results also demonstrate that for non-adequate suites, criteria that are stronger
(in terms of subsumption for adequate suites) do not necessarily have better ability to
predict mutation scores. Additionally, as a guideline for future studies evaluating the
effectiveness of criteria themselves, we suggest that results be based on a large set of
suites generated by as many techniques as feasible for as many subjects as feasible,
and that multiple correlations be measured to ensure that the results do not depend
on a particular choice of correlation. Our tools, source code, and experimental subjects,
along with more results, are publicly available at: http:/mir.cs.illinois.edu/coco/.

The contributions of this work include:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://mir.cs.illinois.edu/coco/

A4 M. Gligoric et al.

— The first extensive study comparing how coverage criteria predict mutation scores
for non-adequate suites.

— The first implementation of the Predicate-Complete Test (PCT) coverage criterion.
— The first evaluation of the Dynamic Basic Block (DBB) measurement as a coverage
criterion. DBB was previously proposed for fault localization [Baudry et al. 2006].
— Some guidelines for using coverage criteria to compare suites in testing research.

— A guideline for performing future studies on comparing coverage criteria.

2. COVERAGE CRITERIA

Our comparison uses several criteria: SC and BC (as they are most common
in practice), DBB (as this criterion showed promising results for fault localiza-
tion [Baudry et al. 2006] and has never been used for comparison of test suites
or testing techniques), PCT [Ball 2004; Ball 2005] (as a criterion with a strong
theoretical foundation that has not been implemented and evaluated previously),
and AIMP and IMP (as representatives of path-coverage criteria). We do not
use data-flow criteria in our comparison for two reasons: it has been shown re-
cently [Hassan and Andrews 2013] that data-flow coverage correlates well with BC,
and we were not aware of any tool for data-flow coverage that scales out-of-the-box to
the larger programs we used in our evaluation.

In this section, we define the criteria that we used in the study and illustrate them
using a simple Java data structure. (Note that our implementations support larger
programs in both Java and C.) Figure 1.a shows the relevant part of a class imple-
menting the binomial heap data structure [Visser et al. 2006; Cormen et al. 2009] that
supports fast union operation. The figure shows only the part of the BinomialHeap class
relevant for our discussion. Each BinomialHeap object has a pointer to the root of the
heap (nodes). Every node keeps a value (key) and pointers to its parent, sibling, and
child. The decreaseKey method decreases the value of a node, which may affect the
heap invariant that each parent should not have a higher value than its children, so
the value is propagated to ancestors until the appropriate position is found.

2.1. Dynamic Basic Block Coverage (DBB)

We first describe Dynamic Basic Block (DBB) coverage, which may be un-
familiar to most readers outside the fault-localization community. Baudry et
al. [Baudry et al. 2006] proposed the notion of a dynamic basic block? to measure a
test suite’s effectiveness for fault localization. Suppose we are given a program and
execute a number of tests on the program. Consider a partition of the program state-
ments into equivalence classes, where two statements belong to the same equivalence
class if and only if they are covered by the same set of tests. Each equivalence class
is called a dynamic basic block (DBB). The Baudry et al. study [Baudry et al. 2006]
showed that the larger the number of DBBs a test suite has, the more effective the test
suite is for spectrum-based fault localization. The underlying rationale is that having
few DBBs equates to a suite having little ability to distinguish statements with re-
spect to their causal impact on fault behavior. We use the number of DBBs as a test
coverage metric instead, on the grounds that these equivalence classes show distinct
program behaviors that could be explored. To illustrate DBB, consider the instance of
BinomialHeap shown in Figure 1.d.

Assuming that there are two tests available for the decreaseKey method — (9, 8)
and (9, 2) — the total number of DBBs is two. The first DBB includes all the state-
ments before the while loop, i.e., lines between 9 and 16 (Figure 1.a); these lines are

2Not to be confused with dynamic basic blocks as used in computer architecture or compil-
ers [Patel et al. 2000].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites

A5

1void decreaseKey(int oldKey, int newKey) {

2 try {

3 Coverage .beginMethod (0);
1// public class BinomialHeap { ... 4 Node tmp = nodes.findNodeWithKey (oldKey);
2 static class Node { 5 if (tmp == null) {
3 int key; 6 Coverage .cover(1,p$10(nodes),p$20(tmp));
4 Node parent; 7 return;
5 /] s}
6} 9 Coverage . cover(2,p$10(nodes),p$20(tmp));

7 Node nodes;

8

9 void decreaseKey(int oldKey, int newKey) {
10 Node tmp = nodes.findNodeWithKey (oldKey);

1 tmp.key = newKey;
Node tmpParent = tmp.parent;

. 13 while ((tmpParent != null)
u if (:mp == null) 14 && (tmp.key < tmpParent.key)) {
12 tm;ek:;nl newKey ; 15 Coverage . cover(3,p$10(nodes) ,p$20(tmp),
4 Node tmpParent =’tmp.parent; 16 . p$21(tmpParent) , p$49 (tmp, tmpParent));
15 while ((tmpParent != null) 1 int z = tmp.key;)
16 && (tmp.key < tmpParent.key)) { 18 tmp.key = tmpParent.key;
17 int z = tmp.key; 19 tmpParent.key = z;
18 tmp.key = tmpParent.key; 20 tmp = tmpParent;
19 tmpParent.key = z; 21 tmpParent = tmpParent.parent;
20 tmp = tmpParent; 22 }
21 tmpParent = tmpParent.parent; 23 Coverage . cover(4,p$10(nodes) ,p$20(tmp),
2 } 24 p$21 (tmpParent) ,p$49 (tmp, tmpParent));
23 } 25 } catch (Exception e) {
26 Coverage .endMethod () ;
27}
28}
(a) (b)

1// tmp.key < tmpParent.key

2 boolean p$49(Node tmp, Node tmpParent) {
3 try {

4 if (Coverage.testAndSetInPredicate ())
5 return false;

6 if (tmpParent == null)

7 return false;

8 if (tmp == null)

9 return false;

10 return tmp.key < tmpParent.key;
11} catch (Exception .) {
12 return false;
13} finally {
14 Coverage . resetInPredicate ();
5}
16 }
(c) (d)

Fig. 1: BinomialHeap as running example

covered by both tests. The second DBB includes all the statements in the body of the
while loop, i.e., lines between 17 and 22; these lines are covered only by the second
test. We say that this test suite has DBB coverage of 2. In general, a program with s
statements having a test suite of ¢ tests can partition the program into up to min(s, 2¢)
DBBs. DBB is obviously not useful for suites that consist of only a single very large
test, and has a limited value to distinguish suites that have a small number of tests.

2.2. Intra-Method Path Coverages (IMP and AIMP)

We next describe two forms of path-based coverage used in our evaluation. Whole-
program path coverage was proposed over 20 years ago [Larus 1999] to mea-
sure how many different paths tests execute from the beginning to the end of
a program. Even for loop-free programs, whole program paths result in a num-
ber of test requirements exponential in the number of branches in a program, so
more recent work [Chilimbi et al. 2009; Wang and Roychoudhury 2005; Groce 2009;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A6 M. Gligoric et al.

Groce et al. 2012] used more scalable intra-method paths (IMP), where each path is
for a single method execution only (similar to Godefroid’s notion of compositional path
coverage [Godefroid 2007]). An intra-method path starts at the beginning of a method,
includes the IDs of the executed basic blocks3, does not include nested method invo-
cations, and ends when the execution returns from the method. IMP subsumes BC
(and thus SC) but faces the problem that loops introduce an unbounded number of test
requirements.

Our second variant of path coverage, acyclic intra-method paths (AIMP), retains
subsumption of BC but bounds the total number of requirements by considering only
acyclic paths in intra-method control-flow graphs [Ball and Larus 1996]. The number
of AIMP paths is therefore bounded by m - 2* where m is the number of methods in a
program and k is the maximum number of branches in a single method. The paths to
be covered have no repeated IDs, i.e., AIMP modifies IMP such that a repeated basic
block ID ends the current path and starts a new path*. Ball and Larus present an
efficient approach to compute AIMP coverage [Ball and Larus 1996].

Figure 1.b shows an instrumented version of decreaseKey that can be used to col-
lect IMP and AIMP coverages. (The p$ methods will be discussed in the next section.)
Coverage.beginMethod and Coverage . endMethod are invoked at the beginning and end
of the method, respectively, and they are used to begin and end a path. Coverage.cover
is invoked at each basic block and is used to collect the block IDs in a path. In addition,
for AIMP, the Coverage.cover method may end the current path and start a new path
if the block ID is repeated on the current path. For example, consider the instance of
BinomialHeap shown in Figure 1.d.

Invoking decreaseKey on that heap with arguments (9, 8) executes the IMP 0 —
2 — 4 and covers the same path for AIMP. (Note that 0, 2, and 4 refer to IDs of basic
blocks). Invoking decreaseKey on that heap with (9, 2) instead executes the IMP
0 — 2 — 3 — 3 — 4 but covers two paths for AIMP: 0 — 2 — 3 and 3 — 4. Note that
IMP and AIMP collect paths for every method run, e.g., each invocation of decreaseKey
calls findNodeWithKey (which may invoke other methods), so for each invocation, IMP
has one path (and AIMP at least one path) for both methods.

2.3. Predicate-Complete Test Coverage (PCT)

Predicate-complete test (PCT) coverage [Ball 2004; Ball 2005] was introduced by Ball
as a finite-state alternative to path coverage, inspired by predicate abstraction in
model checking [Ball and Rajamani 2001]. Like path coverage, PCT subsumes both
BC and SC, but unlike some versions of path coverage, PCT does not face the prob-
lem that loops introduce an unbounded number of test requirements. PCT is incom-
parable to (i.e., neither subsumes nor is subsumed by) path coverages such as IMP
and AIMP, even for loop-free programs. Several research studies [Visser et al. 2006;
Pacheco et al. 2007; Sharma et al. 2011; Groce 2011; Groce et al. 2012] compared test
suites using PCT, but with manually selected predicates for measuring PCT; we refer
to this version as PCTys.

PCT defines coverage using Boolean predicates extracted from the program source,
in particular from branch conditions, implicit run-time checks, and program asser-
tions. These predicates are evaluated at many program points, e.g., at all statements
or all starts of basic blocks, potentially far from where the predicates appear in the pro-
gram source. In fact, evaluating predicates both near and far from where they appear

3These are the standard basic blocks, not dynamic basic blocks from DBB. When we want to refer to DBBs,
we explicitly use “dynamic”.

4Our AIMP uses the notion of simple path common in graph theory, where no vertex is repeated, rather
than the definition of prime path found in some testing literature [Ammann and Offutt 2008].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A7

is what makes PCT even stronger than MC/DC or other related criteria sometimes
called “predicate coverage” [Ammann and Offutt 2008] that evaluate predicates only
near where they appear. The test requirements for PCT are to cover all (feasible) com-
binations of predicate values at all the points. In the limit, for n predicates at p points,
there are p - 2" combinations (many often infeasible and not every point has all n pred-
icates). The PCT coverage for a test suite is measured as the number of combinations
of predicate values obtained during the execution of the test suite.

We next illustrate PCT using the BinomialHeap example. The first step is to extract
a set of Boolean predicates from the code under test. Our example code has two condi-
tional statements at lines 11 and 15 (Figure 1.a), which lead to three predicates: tmp
== null, tmpParent '= null, and tmp.key < tmpParent.key. Note that we take as a
predicate each atomic condition rather than the complex expression. The implicit run-
time checks in our example guard against dereferencing null: nodes != null, tmp !'=
null, and tmpParent !'= null. Note that the same predicate may be extracted several
times, so syntactically identical duplicates are removed (Section 3). A key goal for PCT
is to extract all predicates, as otherwise PCT may not subsume BC or MC/DC.

The second step is to insert evaluation of predicates at all appropriate program
points. Our tool first generates a method for evaluating each predicate and then inserts
calls to these methods. Note that one cannot simply evaluate the predicate as it could
lead to problems, e.g., raise an exception if certain variables are null. The method for
each predicate performs the necessary checks. Figure 1.c shows the method for the
predicate tmp.key < tmpParent.key. The methods Coverage.testAndSetInPredicate
and Coverage.resetInPredicate guard against infinite recursion. The catch clause
handles exceptions in predicate evaluations.

For program points, our PCT tools for Java and C allow instrumenting all state-
ments, PCTgr, or all beginnings of basic blocks, PCTgg. Figure 1.b shows an example
instrumentation at the basic-block level. Each Coverage.cover call informs the tool
that a certain program point (identified with an integer ID) is being executed with a
specific combination of predicate values. Note that predicates cannot be evaluated at
points where their variables are not in scope, e.g., the predicates for tmpParent cannot
be evaluated before line 12. Our tools insert evaluation for all extracted predicates that
can be evaluated. Some predicates can be evaluated far from where they are extracted,
e.g.,nodes != null is evaluated on line 15 (Figure 1.b), although it is extracted based
on line 4 (Figure 1.b). Some predicates (on instance fields, rather than on method local
variables) can even be extracted in one method and evaluated in another method.

While PCTgg maintains the key subsumption properties of PCT over BC, it is only
an approximation of PCTgr because statements within a block can change predicate
values. The example shows that this is not unusual: tmp.key, tmpParent .key, and tmp
are all modified inside the block beginning at line 14 (Figure 1.b) in ways that may in-
troduce combinations of predicate values that will never be seen at basic block entries.

3. PCT IMPLEMENTATION

As stated previously, one of our contributions is the first implementation of Ball’s
PCT [Ball 2004], and therefore we are the first to encounter a number of unique chal-
lenges related to this coverage criterion. We find it important to document our expe-
riences related to these unique challenges. Specifically, we find that the design of a
programming language may impose fundamental problems for correct and efficient
implementation of PCT, by making certain information unavailable at runtime. In the
following sections, we first discuss the implementation for both Java and C, challenges
that are both unique and shared by these languages, and how we addressed these
challenges.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A8 M. Gligoric et al.

3.1. Java Implementation

We implemented our tool for measuring PCT for Java as an Eclipse headless plu-
gin [Eclipse 2013] that performs source-to-source instrumentation. The tool can in-
strument the code under test for measuring PCT at each statement or each basic block.

3.1.1. Extracted Predicates. According to the original source on PCT [Ball 2004], all
atomic predicates should be extracted from conditional statements, implicit run-time
checks, and assertions. For complex conditionals or assertions, e.g., A || (B && C),
each of A, B, and C must be treated as a separate predicate (otherwise, PCT could not
subsume multiple condition coverage). However, the original source [Ball 2004] gives
no specific instructions on which run-time checks to consider. To limit the cost of instru-
mentation, our tool considers only two types of run-time checks for creating predicates:
null dereference and index out of bounds. It creates one predicate for each field access
(e.g., predicate obj != null for obj.f) and method invocation (e.g., predicate obj !=
null for obj.m()), and three predicates for each array element access (e.g., predicates
arr != null,0 <= i,and i < arr.length for arr[i]).

3.1.2. Minimizing the Set of Predicates. We maintain predicates as a set and do not in-
strument multiple occurrences of the same predicate multiple times, for efficiency rea-
sons. We are limited in our ability to detect semantically, rather than syntactically,
equivalent predicates (the problem is undecidable in general); even when semantically
duplicate predicates appear in instrumentation, they do not change the total number
of covered location-predicate values (redundant bits in a bit vector do not change bit
vector equality).

3.2. C Implementation

We implemented our tool for measuring PCT for C as a source-to-source transformation
using the CIL framework [Necula et al. 2002]. Like the Java version, the C version
allows us to choose instrumenting each basic block or each statement.

The challenges in extracting predicates in C are somewhat different than in Java. C
is arguably a simpler language than Java, e.g., lacking inheritance or exceptions and
having simpler scoping rules. Unfortunately, attempting to instrument real-world C
programs for PCT faces challenges rooted in the C language itself.

The fundamental problem is that C is an unsafe language. In Java, it is easy to
perform runtime checks to avoid invalid memory accesses: the length of an array can
be queried, and if a reference is not NULL, it is valid. In C, however, arrays do not
carry length information and pointers can be non-NULL yet point to deallocated or
remote memory—a C pointer is simply an arbitrary memory address. The only way to
safely capture values for most predicates involving pointers or arrays in C would be
to further instrument the program to track array lengths and check pointers for va-
lidity. However, the overhead of such instrumentation is unfortunately high for many
C programs, e.g., even an efficient tool such as Purify [Purify 2013] can have 2-5X
slowdown in runtime and 2—-10X overhead in memory usage, and we estimate that the
additional slowdown and overhead over our predicate instrumentation would be even
higher. Therefore, in our tool we have chosen not to extract predicates using pointers
or array referencing.

The core instrumentation is quite simple: after transforming the input code to CIL’s
canonical form, a CIL visitor first traverses the program collecting predicates (and
their scopes), and then another visitor inserts function calls to capture values at each
block or statement.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A9

3.3. Challenges

During the implementation of our tools we encountered several technical challenges
unique to measuring PCT coverage. We discuss these challenges, marking each with
the language— for Java, ¢ for C, and /€ for both—in which the challenge is identified.

3.3.1. Side Effects’®. Simply extracting all expressions that appear in conditional
statements and evaluating these exact syntactic expressions at certain program points
can lead to incorrect instrumentation because a conditional expression may contain
side effects, such as assignments, prefix/postfix operators, or invocations of methods/-
functions that modify the program state. Because of side effects, the state of the instru-
mented program at some point in the execution may not match the state of the original
program at the corresponding point in the original execution. To identify side effects,
we implemented a (simple) purity analysis [Rountev 2004; Salcianu and Rinard 2005]
using WALA [WALA 2013] for Java. The analysis checks each extracted predicate and
does not instrument elsewhere for those that are not side-effect free. In C, CIL removes
the problem of side effects by using temporary variables to make all conditionals side-
effect free. This means that in C, we often instrument a predicate for a temporary
variable only assigned once. This is not clearly worse than simply not instrumenting
the predicate: it captures some additional states, without adding any spurious states
since the temporary value is local in scope.

3.3.2. Recursive Predicate Invocation’®. Each predicate can contain an arbitrary ex-
pression, as long as the expression does not have side effects. Therefore, a predi-
cate may contain an invocation of a method that invoked the predicate, which would
lead to infinite recursion. To prevent this, the instrumentation inserts special method
calls at the beginning and end of each predicate. Recall Figure 1.c. The method
Coverage.testAndSetInPredicatechecks a Boolean flag that indicates whether a pred-
icate evaluation has started. If no evaluation has started, it sets the Boolean flag and
starts the predicate evaluation. If the flag was already set, the predicate would not be
evaluated. The method Coverage.resetInPredicate simply resets the Boolean flag to
mark the end of the evaluation.

3.3.3. Field/Element Access or Method Invocation’. A predicate can contain arbitrary
(side-effect free) expressions including field accesses, method invocations, or array-
element accesses. Since a predicate can be evaluated at any program point where the
variables used in the predicate are visible, some of these expressions could lead to null
pointer dereference or index out of bounds exceptions (in Java) or other problems (in
C). For C, our tool does not use such predicates. For Java, our tool adds checks to the
predicates, specifically a null check for each field access and method invocation and
both a null check and bound check for each array element access. If all checks are sat-
isfied, the predicate is evaluated, otherwise the evaluation of the predicate is ignored
(i.e., we return a default value). In the example in Figure 1.c, there are checks for tmp
!= null and tmpParent '= null.

3.3.4. Checked Exceptions’. A Java predicate can in general contain an invocation
of a method that declares some checked exceptions (e.g., I0Exception). Such excep-
tions have to be either propagated to a caller (by specifying the types of the excep-
tions in the throws clause) or caught. We did not want to simply ignore such predi-
cates (especially since they can be important for bugs related to exceptional control
flow [Fu and Ryder 2005]). Instead, our implementation adds code to catch the excep-
tion(s) and ignores the evaluation of the predicate if an exception is caught. Figure 1.b
shows such a catch block, although it is not strictly required for that example pred-
icate. In practice, only a small percentage of predicates requires catching exceptions,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 M. Gligoric et al.

because our purity analysis already filters out most of the methods that may throw an
exception.

3.3.5. Inner/Anonymous Classes and Class Hierarchy’. Our current implementation does
not instantiate certain predicates that could be in theory instantiated across class
boundaries but do not occur often in practice. First, inner/anonymous classes in Java
can access predicates from the outer classes. However, an additional check would be
needed to ensure that a predicate from an outer class can be instantiated in an inner
class: all local variables needed as the predicate arguments must be declared final.
Similarly, some predicates extracted from inner classes could be instantiated in the
outer classes if all the variables used in the predicate are declared in the outer classes.
Second, predicates that are extracted from a class and reference its instance fields are
in principle visible in all subclasses (that do not shadow these fields). The reason to
ignore these predicates is additional implementation challenges required to track the
relations and to keep predicates across instrumenting multiple classes.

3.3.6. Method Size Limit’. In a few cases, our instrumentation produced code that was
so large that it was rejected by Java compilers. Namely, there were many predicates
and points in the instrumented code, and some of the instrumented methods exceeded
the 64KB limit set by the Java classfile specification [VMSpec 2013]. One approach
to reduce the size would be to (randomly) select only some predicates and/or program
points for PCT where the predicates should be instantiated. However, a good way to
select predicates and/or points is not known as of now. Thus, we decided to ignore all
predicates and points that lead to methods that exceed the limit.

4. EXPERIMENTAL METHODOLOGY

To compare coverage criteria, we examine first and foremost how well the coverage
values predict test suite quality in terms of mutation scores. We additionally consider
the cost of measuring coverage. We compare 8 criteria: two traditional criteria (SC
and BC) and three sets of recently used criteria based on equivalence classes of cov-
ered statements (DBB), program paths (IMP and AIMP), and predicate states (PCTys,
PCTBB, and PCTST).

The testing literature does not have one agreed upon methodology for comparing
test coverage criteria, so we motivate and describe the methodology we use. Cover-
age values are used to evaluate suites, typically as predictors for finding real faults.
Intuitively, if a good criterion deems one suite better than another suite, then we ex-
pect the better suite to find, on average, more faults. However, performing large con-
trolled experiments with real faults is hard due to the difficulty of collecting many
suitable faulty programs, and statistical validity is difficult to attain with the typically
small number of faults in each program. For these reasons, while older studies on com-
paring coverage criteria used (a small number of) real faults [Frankl and Weiss 1993;
Hutchins et al. 1994; Frankl and Iakounenko 1998], more recent studies use (a large
number of) systematically seeded mutants [Cai and Lyu 2005; Andrews et al. 2006;
Namin and Andrews 2009].

Specifically we examine the ability of coverage values to predict (the relative ordering
or absolute values of) mutation scores. To visualize this concept, Figure 2 shows eight
plots (for eight coverage criteria) that relate coverage values and number of killed mu-
tants for BinomialHeap. Each point represents one of 300 suites (selected as explained
in Section 4.2). The X-axis shows coverage, normalized between 0.0 and 1.0, and the
Y-axis shows number of killed mutants®. It is clear in all eight plots that if a suite A

5The number of killed mutants is not normalized, but dividing by a constant never changes values for our
three correlations.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:11

Killed Mutants
N
o

0.0 02 04 06 0.8 1.00.0 02 04 06 0.8 1.0
(a) SC (b) BC

Killed Mutants

2 y
00 02 04 06 08 1000 02 04 06 08 1.000 02 04 06 08 1.0

(c) DBB (d) IMP (e) AIMP
o 35
S *#ﬁ *#
g 7 “
b o 3 ¥
B « ";& G *
< f
E=3

0
00 02 04 06 08 1.00.0 02 04 06 08 1000 02 04 06 08 1.0
(f) PCT, (9) PCT,, (h) PCT,

Fig. 2: Correlation of (normalized) coverage criteria and the number of killed mutants
for BinomialHeap

has a higher coverage than a suite B, then the suite A also likely has a higher muta-
tion score than the suite B. The purpose of our statistical evaluation is to quantify the
degree to which this relationship holds for each criterion, and thus to compare crite-
ria. We apply three different standard statistical tools: Kendall’s 7, rank correlation,
Spearman’s p rank correlation, and the R? coefficient of determination for linear re-
gression, discussed in detail in Section 4.4. Intuitively, Kendall’s 7, and Spearman’s p
measure how well coverage values predict the relative ordering of mutation scores, and
R? correlates coverage values with mutation scores using a linear regression model.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

M. Gligoric et al.

Table I: Subject programs used in the evaluation (basic statistics)

Size of Total Killed

Subject NBNC test pool mutants mutants

language: Java

JFreeChart 72,490 2,217 45,409 14,932
JodaTime 27,472 3,828 24,956 16,478
AvlTree 344 11,041 335 51
BinomialHeap 264 8,423 205 37
BinTree 100 13,825 55 16
FibHeap 264 12,842 186 38
FibonacciHeap 397 4,478 295 74
HeapArray 98 4,064 122 61
IntAVLTreeMap 213 17,072 199 38
IntRedBlackTree 296 20,419 279 210
LinkedList 245 1,307 167 5
NodeCachLList 234 1,776 159 16
SinglyLList 98 1,762 57 10
TreeMap 449 14,076 463 106
TreeSet 323 17,400 360 82
language: C
Space 6,200 1,350 1,142 753
SQLite 81,934 117,240 52,367 19,294
YAFFS2 11,760 5,000 10,674 4,186
Printtokens 479 4,130 536 442
Printtokens2 401 4,115 343 343
Replace 512 5,642 613 530
Schedule 292 2,650 140 125
Schedule2 297 2,710 300 251
SglibRbtree 1,564 5,000 443 193
Tcas 135 1,608 311 311
Totinfo 340 917 511 511

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites

601°¢ LL6 8€% 9L - Gg - 08 680°T 45 6L 88 LTT ojuno,
€092 1181 €eT gL - Sy - 09 0g ¥1 19 99 ¥9 sey,
1986 6L 03L 0se - 9g¥ - 90T SLT'G P11 8€% 8LE 30$ 921qYqI3S
1SLT S0L 06T SL - 44 - 28 GST'G €g €8 88 83T go[npaypg
$9G°T S¥S 9LT 79 - 44 - Sl 868‘T 6¢ gg 89 05T a[npaypg
8961 1701 Sye LLT - 06T - 91 €08‘¢e €6 69T 08T 454 soerdey
686G 806 38% €eT - 80T - T€T 996G ¥9 63T 291 003 GSUaY0)jULIJ
0S0°T 363 693 gL - 0L - STT 89¢°T 0S €9 99 G8T SULN0JULIJ
o¥'qgL 10526 €L3'8 038'e - 6¥1y - 19€1T 0LL‘08T 633 3981 YLV 9€3'e ZSAAVA
069GE¥'T GLG'6BS SI€LE 98LET - 68213 - IS9T 3S06¥L - 9L9°GT $0€°LT S995°€% ANIIOS
001°G% 80L°G L26‘¢ ¥88 - 3991 - 39 ¥8€‘q 78S 10T 06T‘T 99¢€‘e soedg
0 :o8engue|
139 9% €8T 0ST 76 69 9 90T e1g L9 €8 €6 GLT LEISEEM)
Lg8 6¥L 08% (44 6TT 20T 9 61T L18 gL 10T L¥T L0% depyeady,
S6 L9 Gg 6¢ 9% 3% g 0% 8L¥ 41 03 9% e¥ ISTTTASurg
6321 28 €0T 89 4 T i4 45 0SS 4 4! 843 69 ISTTTYIB)SPON
€g ¥e LOT 8L 9¢ 0% ¥ 9% 189 8 8 9¢ 143 JsrIpeyury
769 6L¥ LLT 6%T 06 9L 9 90T GLg 09 €8 06 TLT oI Nor[gPaYIUL
LLG %% 31T 00T 99 44 i4 Sy 66 184 Ly 99 00T depearTAVIUL
Ge% 503 09 0S %¢ 61 S Le 6IET LT 0e 43 69 Lerrydespy
44 68T 99T 00T 39 8¢9 ¥1 9% 899°‘q 8T Sy 99 031 deapgroeuoqry
835 ZeT 09T 86 99 L9 ¥I 09 g6L'ey 61 44 09 €11 deaqqrg
833 444 S 1¢ 3¢ 9% L 1$ 88€°G (14 49 43 18 sarurg
6T geg 0ST 60T 09 6% 6 6L 444 ge 09 09 08T deapyrerwourg
99T gST L9T 68T 70T 18 i4 0g 01T 8T 0% 01 Ly I [AY
€3L°8T €L9°9T 0L8°0T 9L¥'6 - ¢16's - 928y IP1°S 86%'c ¥9€9 LGgL 08¥'6 swryepop
90%°S¥ 66878 gLECY L0638 - 96G‘eT - 18%°L G8T‘1T 60%'C €80°GT 998°LT GEI‘ES MRy
eaep :odengue|
IS dad IS dad SIN ad SIN dINIV dINI 9Xd onyess
sojBlSs muﬂwom wmumuﬂumhm sojBlSs sojB)ls m@&oﬁﬁ.ﬂﬂ sjuays uowwﬁﬁm
ILod syjed poyjowr-enyu] gqga od oS

(So1s1yE)S 95RI9A00) UOTIEN[RAD 91} UL pasnh sweidoad 109(qng 1T 9[qe],

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 M. Gligoric et al.

4.1. Experimental Subjects

Programs: Table I summarizes the programs used in our experiments, show-
ing the name and number of NBNC (non-blank, non-comment) lines of code
(measured by CLOC [Cloc 2013]) for each program. We used a total of 26 pro-
grams, 15 Java programs and 11 C programs. All Java programs but two are
implementations of data structures that have been used in numerous previous
studies, primarily on comparing different testing techniques [Visser et al. 2006;
Galeotti et al. 2010; Sharma et al. 2010; Sharma et al. 2011; Groce 2011;
Groce et al. 2012]. JFreeChart [JFreeChart 2013] is an open-source library for both
interactive and non-interactive manipulation of charts. JodaTime [JodaTime 2013] is
an open-source library for manipulating date and time. For C, seven programs are
from the Siemens suite from the SIR repository [Hutchins et al. 1994; Do et al. 2005],
Space [Vokolos and Frankl 1998; Do et al. 2005] is a bigger program from the same
repository, SglibRbtree [Vittek et al. 2006] is the red-black tree implementation from
the Sglib library, YAFFS2 [YAFFS2 2013] is a widely used open-source flash file system
for embedded devices (the default image format for older versions of Android), and
SQLite [SQLite 2013] is a widely deployed database engine.

Tests: Table I also shows the total number of tests in the test pools from which
various test suites are selected. For Java data structures, we use test pools automati-
cally generated in previous studies [Sharma et al. 2011; Groce 2011; Groce et al. 2012]
using three test-generation techniques: random (Random), shape abstraction (Sha-
peAbs) [Visser et al. 2006], and adaptation-based programming (ABP) [Groce 2011;
Groce et al. 2012]. Table I shows the total number of tests generated by all three
techniques. For JFreeChart and JodaTime, we use the large, publicly available pool
of manually written JUnit tests. For C programs, we use the Siemens/SIR test pools
for the programs from SIR. For SglibRbtree and YAFFS2, we generated random tests
(feedback-directed [Groce et al. 2007] for YAFFS2). For SQLite we use manually written
tests available from the SQLite repository [SQLite 2013].

Mutants: Table I also tabulates for each program the number of mutants created
and the total number of mutants killed by the entire test pool (while different suites
selected from the pool kill different number of mutants). In all cases, we consider a
mutant to be killed if it either results in an assertion violation, an uncaught exception
or other abnormal program termination, or leads to a timeout. In the case of YAFFS2,
we additionally check the return value of each API call (since a test is a sequence of
API calls with known correct returns). The percentage of killed mutants is low because
we mutated all the methods in the code but automatically generated tests execute only
some core methods for the smaller subjects [Sharma et al. 2011]. Low absolute muta-
tion scores are suitable for our purpose of examining non-adequate suites, the typical
case for suites for large programs. Non-adequate suites will seldom attain extremely
high mutation scores [Just et al. 2012]. Additionally, we did not investigate which mu-
tants are equivalent, as this does not affect our analysis (because compensating for
equivalent mutants is equivalent to dividing mutation score by a constant, which does
not affect 7, p, or R2).

For Java programs, we used Javalanche [Schuler and Zeller 2009] to create mutants.
Because the number of mutants may be lower than one would expect, it should be noted
that Javalanche uses selective mutation [Offutt et al. 1993] to reduce the cost of mu-
tation testing. Selective mutation applies only a subset of mutation operators that are
empirically shown to approximate the results that would be achieved if all operators
were used. In particular, Javalanche uses only the following operators: replace nu-
merical constants, negate jump condition, replace arithmetic operator, replace method

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:15

calls, and remove method calls. Still, Javalanche created over 45K and 24K mutants
for JFreeChart and JodaTime, respectively.

For C programs, we created mutants using the tool implemented by Andrews et
al. [Andrews et al. 2005], which produces mutants based on a set of operators selected
through an empirical study on selective mutation [Namin et al. 2008]. Specifically, the
tool uses the following operators: replace constants; delete statements; negate deci-
sions in conditional statements; and replace a relational, arithmetic, logical, bit-wise,
increment/decrement, or arithmetic-assignment operator by another operator from the
same class. For all programs but Space we use all the mutants.

For Space, the exact numbers reported in this section are based on a random sample
of 10% of the mutants. We initially sampled 10% of the mutants because running these
mutants takes considerable time, and we relied on recent studies [Zhang et al. 2010;
Zhang et al. 2013] that showed that results obtained on a random sample of mutants
can provide a good approximation of the results obtained on the entire set of mu-
tants. More recently we used multiple machines to repeat the experiment for all the
mutants for Space and got almost identical results as for the sampled 10% (e.g., for
all three correlation coefficients we use, the difference between the values on 100%
of mutants and 10% of the mutants are below 0.007, and there was no statistically
significant difference between the coefficients). This additionally confirms the recent
studies [Zhang et al. 2010; Zhang et al. 2013] that sampling mutants can often be done
to speed up the experiments without affecting the overall conclusion.

Statement and Branch Coverage Information: The SC and BC columns in Ta-
ble II provide information for statement and branch coverage, respectively; “static”
shows the number of branches in the code, and “exe” shows the number of branches
executed by at least one test.

DBB Information: Table II also provides DBB-specific information, i.e., the total
number of DBBs obtained by using a single test suite consisting of the entire test pool
summarized in Table I. Note that the total number of DBBs differs when we select
different test suites from the test pool. For SQLite, DBBs are not meaningful as “suites”
consist of a single lengthy execution sequence with no breakdown into separate tests.

IMP and AIMP Information: Table II also provides the total number of paths
executed by the entire test pool.

PCT Information: Table II finally provides PCT-specific information, i.e., the total
number of predicates used in the instrumentation, the number of program points at
which these predicates are inserted, and the number of executed states (i.e., encoun-
tered states during the execution) by the entire test pool. MS (“Manually Selected”)
denotes a set of predicates and points that were first manually selected for four data
structures by Visser et al. [Visser et al. 2006] and then similarly selected for the re-
maining structures by Sharma et al. [Sharma et al. 2011]. These programs, with man-
ually selected predicates for PCT coverage, are publicly available [Coverage 2013]. BB
(“Basic Blocks”) and ST (“Statements”) denote the results of automatic instrumenta-
tion by our PCT coverage tools. Recall that our tools select (almost) all predicates from
the code and insert each predicate at (almost) all program points where the variables
from the predicate are in scope.

4.2. Test Suites

We used two approaches for selecting test suites, to see if results are robust in the face
of different suite compositions. The bounds in our approaches (e.g., 100 test suites)
were chosen before experimentation, to limit computation time while providing suffi-
ciently many samples for statistical analysis, or were chosen to match previous papers.

Coverage-varied Selection: For each program, to ensure that the selected test
suites are of varying coverage and size, we created suites by first uniformly selecting

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 M. Gligoric et al.

a coverage level between 1% and 100% and then randomly selecting tests from the
test pool until they reached the selected level of PCTzg coverage. We picked PCTgp as
one strong criterion but could have used any other criterion. We follow these steps for
both Java data structures and large subjects. The difference is that we select different
number of test suites. For the Java data structures we selected 100 suites from the
pool for each of the three test-generation techniques (Random, ShapeAbs, and ABP),
giving a total of 300 test suites. For JFreeChart and JodaTime we used 100 test suites
from the entire pool of available tests. Similarly, for all C programs except SQLite we
used 300 suites, again from the pool of available tests. For SQLite each “test” in the
pool is essentially a large suite of tests that must run together, so we treated each of
the 592 “tests” as a suite.

Size-varied Selection: We also followed another suite selection approach,
used in previous studies of coverage criteria [Namin and Andrews 2009;
Hassan and Andrews 2013]. For each program, we created 100 random suites for
each size (number of tests) between 1 and 50, which gives 5,000 suites per program.
Also, this approach creates many suites that are near adequate in at least one criterion
and does not include suites based on different test generation techniques, which most
closely reflect the intended purposes of our evaluation. SQLite was handled as for the
Coverage-varied Selection.

4.3. Metrics

We collected several metrics for the selected test suites.

Coverage Criteria: For each suite, we measured several coverage values (for both
Java and C): SC, BC, DBB, IMP, AIMP, PCTys (except for JFreeChart, JodaTime, and
all C programs), PCTgg, PCTgr, and mutation score.

Runtime Overhead: We separately ran each coverage measurement so that we
could measure the runtime overhead. We performed all Java experiments on a ma-
chine with a 4-core Intel Core i7 2.70GHz processor and 4GB RAM, running Linux
version 3.2.0 and Java OpendDK 64-Bit Server VM, version 1.7.0_.04. We performed all
C experiments on a machine with a 4-core Intel Xeon E5400 2.83GHz processor and
4GB RAM, running Linux version 2.6.32.

4.4. Correlation Analysis

To evaluate the relationship between coverages and mutation scores, we computed
three correlation measures.

Kendall’s 7,: One core question of this paper is whether (and which) coverage
criteria can be used to effectively predict the rank order of suites’ mutation scores.
This is the primary use of coverage in recent studies; authors have tended to focus
on claiming that some testing technique is “better”, and relatively small differences
in coverage values have been used to justify a claim of “better” [Visser et al. 2006;
Groce et al. 2012]. The most robust and usefully interpreted statistical measure for
this question is Kendall’s T rank correlation coefficient [Kendall 1938; CIliff 1996].

Consider the coverage and mutation score data as a set of pairs (C, M), where C is
the coverage value for a suite and M is the mutation score for that suite. Two pairs
(C1, M) and (Cs, Ms) are called concordant if the ordering of C; and C> matches the
ordering of M; and M, i.e., C; < Cy and M; < M, or C; > Cy and M; > M>. The pairs
are called discordant if C; < Cs and My > Ms or C; > Cs and M; < M». Kendall’s 7 is
the ratio of the difference between the number of concordant and discordant pairs and
the total number of pairs. Kendall’s original does not handle ties well, and thus was
not suitable for our study, where several criteria can have many ties among suites for
some subjects; extended discussion is in Section 5.7.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:17

To illustrate concordant and discordant pairs, consider three test suites 71,715,735
that have respective coverage values 0.3, 0.4, 0.5 and mutation scores 0.7,0.6, 0.8. There
are 2 concordant pairs — (71, 73), (12, 73) — where higher/lower coverage values have
higher/lower mutation scores, and one discordant pair — (77, T»).

Kendall’s 7,, used in our study, is a standard adaptation that adjusts for
ties [Costner 1965]. Using a non-parametric rank correlation allows us to avoid the dif-
ficult question of whether the relationship between any criterion and mutation score is
linear; 7, does not make any assumption about the underlying functional relationships.
A final attractive feature of 7, is that in the absence of ties, the value can be intuitively
interpreted: 0.5 + | 5| is the probability of correctly predicting the ordering of mutation
scores using the ordering of coverage values [Costner 1965]. Despite these desirable
features of 7, our study is among the first to use 7, in comparison of multiple coverage
criteria. (A few studies [Wong et al. 1994; Namin and Andrews 2009; Wong et al. 1995]
only mention 7 or use it for other purposes.) Values for 7, range from -1.0 (which would
indicate that the coverage values are always opposite of the mutation score) to 1.0
(which would indicate a perfect predictive power for a criterion); a 7, of 0.0 indicates
there is no relationship between the rank ordering by the criterion and rank ordering
by mutation score.

Spearman’s p: A statistic similar to 7 or 7, is Spearman’s p [Spearman 1904]; it
is also a rank correlation coefficient. The primary arguments for p are tradition and
ease of calculation. Also, Spearman’s p handles ties by averaging the ranks. In many
cases, p and 7/7, are very similar in value. Intuitively, we use p to measure the degree
to which the coverage values and mutation scores are monotonic. When p is positive,
it implies that coverage value tends to increase when mutation score increases, and
when p is negative, it implies that coverage value tends to decrease when mutation
score decreases. A p correlation coefficient of 1.0 indicates a perfect increasing mono-
tone fit, and a coefficient of -1.0 indicates a perfect decreasing monotone fit. (Only a
few previous studies of coverage criteria [Wong et al. 1994; Namin et al. 2008] briefly
mention Spearman’s p.)

R2: We also formed linear regression models for each criterion and obtained the R?
coefficient of determination for the fits of those models to our data. It is well known
that mutation scores do not depend linearly on coverage values [Cai and Lyu 2005;
Andrews et al. 2006; Namin and Andrews 2009; Hassan and Andrews 2013], but R?
still gives an indication of correlation. Intuitively, it attempts to answer the question:
if one suite has X% higher coverage value than another suite, does it have a ¢ - X%
higher mutation score? More precisely, it shows how well a linear model fits the actual
data points, with 1.0 indicating a perfect fit and 0.0 indicating there is no relation-
ship between the coverage and mutation score. Figure 2 shows lines that best fit the
observed data.

5. EXPERIMENTAL RESULTS
5.1. Kendall’s 7, Rank Correlation

Tables IIT and IV show Kendall’s 7, correlation values for all subjects and all criteria
we examined, for Coverage-varied Selection and Size-varied Selection, respectively.
Each row highlights the best (darker/green) and worst (lighter/red) values. Note that
we ignore the second column when highlighting. Values for PCTys are missing where
manual selection of predicates was not used, and values for SQLite are repeated for
both approaches. The first key observation is that most criteria had 7, values over
0.5, often over 0.7, for most subjects. Using any of the criteria studied would correctly
predict mutation score rankings for a large fraction of all test suites. Based on the stan-
dard Guilford scale [Guilford 1956], we would say that the mean values often showed

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

7, values

M. Gligoric et al.

Table III: 7, values for Coverage-varied Selection

Subject Size sc BC DBB IMP AIMP PCTyg PCTgg PCTgp

language: Java

JFreeChart 0.958 0.962 0.966 0.961 0.845 0.964 - 0.951 0.936
JodaTime 0.937 0.966 0.972 0.958 0.965 0.964 - 0.959 0.961
AviTree 0.012 0.773 0.774 0.665 0.783 0.785 0.756 0.789 0.816
BinomialHeap -0.152 0.617 0.775 0.069 0.487 0.585 0.527 0.637 0.631
BinTree 0.389 0.132 0.220 0.340 0.341 0.351 0.491 0.417 0.510
FibHeap 0.058 0.759 0.807 0.692 0.278 0.395 0.509 0.634 0.515
FibonacciHeap 0.202 0.494 0.512 0.259 0.539 0.527 0.497 0.480 0.478
HeapArray -0.017 0.803 0.801 -0.377 0.761 0.726 0.638 0.771 0.703
IntAVLTreeMap 0.239 0.777 0.770 0.612 0.788 0.815 0.786 0.728 0.762
IntRedBlackTree 0.111 0.710 0.741 -0.020 0.712 0.751 0.697 0.748 0.737
LinkedList -0.048 0.756 0.746 0.603 0.713 0.716 0.746 0.705 0.701
NodeCachLList -0.142 0.737 0.724 0.020 0.527 0.670 0.693 0.531 0.495
SinglyLList 0.243 0.577 0.586 0.174 0.451 0.495 0.492 0.571 0.634
TreeMap 0.242 0.747 0.772 0.578 0.690 0.748 0.721 0.743 0.755
TreeSet 0.063 0.755 0.784 0.346 0.696 0.770 0.737 0.752 0.772
language: C
Space 0.876 0.926 0.929 0.881 0.913 0.929 - 0.917 0.911
SQLite 0.585 0.908 0.904 - 0.837 0.909 - 0.906 0.904
YAFFS2 0.347 0.688 0.702 0.347 0.501 0.690 - 0.667 0.680
Printtokens 0.552 0.894 0.781 0.548 0.901 0.916 - 0.794 0.855
Printtokens2 0.561 0.851 0.845 0.564 0.826 0.831 - 0.839 0.844
Replace 0.541 0.717 0.699 0.533 0.691 0.697 - 0.677 0.681
Schedule 0.437 0.773 0.776 0.408 0.747 0.766 - 0.716 0.711
Schedule2 0.339 0.766 0.767 0.338 0.683 0.749 - 0.691 0.751
SglibRbtree 0.693 0.763 0.793 0.691 0.680 0.698 - 0.765 0.762
Tcas 0.639 0.732 0.773 0.710 0.739 0.739 - 0.766 0.749
Totinfo 0.380 0.673 0.758 0.389 0.743 0.748 - 0.671 0.711
Standard deviation ignored 0.166 0.147 0.318 0.172 0.158 0.116 0.134 0.133
Geometric mean ignored 0.707 0.735 - 0.660 0.709 0.627 0.711 0.717
Arithmetic mean ignored 0.741 0.757 0.452 0.686 0.728 0.638 0.724 0.729
The best results ignored 5 13 0 1 5 0 0 3
The worst results ignored 1 0 21 4 0 0 0 0
1.0 T T T T T T T T
: i - T - T -
0.9F T - I | I | I T T T — T
0.8 * * : _ I I " T T I I
0.7 - i
0.6+ . I 7 I .
4 —
0.5f - : I - -4 1
I I
0.4 o . b L
1 + | | | |
0.3f | . _ - - | 1 E
+ |
0.2 | | " N L
01 I - i
0.0 i ,
—0.1} i
-0.2} [Coverage-varied selection H
—0.3F A Size-varied selection
N * Geometric mean
—0.4r ® Arithmetic mean 1
-0.5—

SC BC DBB IMP AIMPPCT,PCT;;PCTg, SC BC DBB IMP AIMP PCT, PCT,; PCTy,
Coverage criteria

Fig. 3: Visualization of tables III and IV

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:19

Table IV: 7, values for Size-varied Selection

Subject Size sc BC DBB IMP AIMP PCTyg PCTgg PCTgr

language: Java

JFreeChart 0.703 0.777 0.818 0.813 0.768 0.792 - 0.818 0.776
JodaTime 0.748 0.808 0.835 0.842 0.836 0.840 - 0.826 0.815
AviTree 0.560 0.301 0.301 0.301 0.556 0.492 0.494 0.520 0.530
BinomialHeap 0.428 0.624 0.629 0.629 0.367 0.521 0.409 0.467 0.450
BinTree 0.594 0.271 0.510 0.271 0.587 0.696 0.564 0.658 0.656
FibHeap 0.495 0.566 0.637 0.584 0.475 0.641 0.676 0.622 0.617
FibonacciHeap 0.479 0.409 0.419 0.411 0.492 0.487 0.440 0.389 0.395
HeapArray 0.507 0.728 0.723 0.728 0.519 0.742 0.646 0.592 0.583
IntAVLTreeMap 0.584 0.684 0.682 0.706 0.633 0.677 0.665 0.621 0.617
IntRedBlackTree 0.489 0.671 0.726 0.717 0.757 0.803 0.755 0.778 0.758
LinkedList 0.130 0.353 0.849 0.353 0.132 0.154 0.849 0.157 0.155
NodeCachLList 0.358 0.404 0.355 0.403 0.343 0.393 0.404 0.377 0.380
SinglyLList 0.466 0.494 0.494 0.494 0.419 0.824 0.385 0.667 0.699
TreeMap 0.492 0.680 0.700 0.696 0.759 0.777 0.746 0.741 0.738
TreeSet 0.511 0.703 0.739 0.733 0.736 0.774 0.732 0.764 0.754
language: C

Space 0.793 0.853 0.858 0.836 0.815 0.881 - 0.769 0.759
SQLite 0.585 0.908 0.904 - 0.837 0.909 - 0.906 0.904
YAFFS2 0.583 0.614 0.640 0.591 0.466 0.655 - 0.640 0.632
Printtokens 0.642 0.815 0.627 0.670 0.730 0.829 - 0.617 0.688
Printtokens2 0.533 0.717 0.695 0.587 0.548 0.605 - 0.655 0.679
Replace 0.541 0.483 0.504 0.520 0.566 0.539 - 0.485 0.493
Schedule 0.551 0.776 0.720 0.630 0.546 0.653 - 0.731 0.745
Schedule2 0.562 0.474 0.493 0.512 0.588 0.532 - 0.529 0.548
SglibRbtree 0.567 0.646 0.627 0.602 0.581 0.583 - 0.628 0.647
Tcas 0.677 0.589 0.720 0.689 0.703 0.703 - 0.747 0.729
Totinfo 0.448 0.576 0.554 0.455 0.492 0.517 - 0.478 0.478
Standard deviation ignored 0.173 0.156 0.161 0.170 0.172 0.157 0.166 0.163
Geometric mean ignored 0.585 0.624 0.567 0.555 0.624 0.577 0.593 0.595
Arithmetic mean ignored 0.612 0.645 0.591 0.587 0.655 0.597 0.622 0.624
The best results ignored 4 3 3 4 10 3 2 1

The worst results ignored 9 1 3 11 0 1 2 2

high (> 0.7) or nearly high (> 0.6) correlation, and almost all correlations were at least
moderate (> 0.4). All values below 0.4, for criteria other than DBB, IMP and PCTys,
came from just 4 simple Java data-structure classes. Given DBB’s occasionally nega-
tive correlations, it is not clear that DBB is a useful criterion for suite evaluation for
any purpose but fault localization, although even DBB often correlated very well.

The second key observation is that the absolute values and relative effectiveness
of criteria vary with subject and test-suite selection approach, in a few cases by
a wide range. However, considering all subjects and both approaches, it is clear
that BC performs very well, and AIMP seems to perform best of the non-branch
criteria (although PCTgg and PCTgr have slightly higher means for Coverage-varied
Selection). For large subjects, coverage and mutation score ties were rare enough
(more details in Section 5.7) that the values in the tables can be reasonably inter-
preted as indicating these criteria predict mutation score rank successfully 80% or
more of the time. We additionally note that our results support, to a considerable
extent, previous studies that used newer path and predicate criteria to evaluate
test suites/techniques [Chaki et al. 2004; Ball 2004; Wang and Roychoudhury 2005;
Visser et al. 2006; Pacheco et al. 2007; Chilimbi et al. 2009; Sharma et al. 2011;
Groce 2011; Groce et al. 2012]: while PCT criteria were not our best, the PCTyg
with manually selected predicates performed well, and PCT performed better than
IMP, which was used in fewer studies. Our results also indicate the benefit of using
multiple criteria to evaluate suites, as is common practice in studies: while the worst
correlation for some subjects is below 0.5, the best is over 0.5 in all but two subjects.
Agreement between multiple criteria should increase confidence in a ranking.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 M. Gligoric et al.

Ll

1 4

1.0 ————r
0.97’ * |
0.8} =

0.7
06
0.5}
0.4}
0.3}
02f
0.1}
0.0}
—o0.1}

—-0.2F [Coverage-varied selection H
-0.3} A Size-varied selection
* Geometric mean
—0.4r ® Arithmetic mean 1
—0.5L— L t L L L L L L L L T T T I I
SC BC DBB IMP AIMP PCT,PCT,;; PCTy, SC BC DBB IMP AIMP PCT,PCT,; PCTg,

Coverage criteria

- -

-1 - -
I 1
< 1-
t -
- - - O} -+
- -

p values

Fig. 4: p values for Size-varied and Coverage-varied Selection

To summarize the collected statistics (tables III and IV), we created a plot (Fig-
ure 3) that shows the distribution of 7, (across all subjects) for all coverage criteria.
In addition to the values commonly shown on a boxplot (e.g., median, outliers, up-
per and lower hinge, etc.), we show the geometric mean as (red) star and the arith-
metic mean as (green) circle. In the following sections, we summarize the distributions
(for Spearman’s p and R?) using plots; the exact values are available on the project’s
page [CoCo 2014].

5.2. Spearman’s p Rank Correlation

Figure 4 shows Spearman’s p correlation distribution and summary statistics across all
subjects and all criteria. The first key observation is that most criteria had positive p
values for most subjects. Negative values occurred only with DBB for Coverage-varied
Selection. The second key observation is similar to that for Kendall’s 7: it is clear that
BC performs very well, and AIMP seems to perform best of the non-branch criteria
(though PCTgg has slightly higher means for Coverage-varied Selection).

5.3. Linear Regression

Figure 5 shows R? values across our subjects and all criteria. For the primary research
question of this paper (the validity of using criteria to predict ranking of mutation
scores), R? is less relevant than 7, and p, and the validity of relative R? values may be
compromised by non-linear relationships. However, the overall picture of the correla-
tion between criteria and mutation scores changes from 7, and p to R? only in that R?
suggests that AIMP is often better than BC coverage for quantitative prediction. This
confirms the claim that AIMP is the most useful non-BC criterion. We also note that
in some cases R? for a coverage criterion is too low to suggest it as a valid predictor of
mutation score, but Kendall’s 7, and Spearman’s p show that the criterion nonetheless
manages to have a high probability to correctly predict rank order of mutation scores.

Test Suite Size: We also examined the importance of suite size as a criterion, be-
cause previous work has considered the possibility that coverage criteria are primar-
ily valuable because they force the production of large suites. This is not a major
concern for us, because we minimize size as a confounding factor by using a wide

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites

1.0

A:21

N T T i T Ll ; T o T - ES
T T - .
0.9 : 1 T |
0.8 B
| 7.
0.7 1
o I
$os | | 0 | .
C 0.5f - I - 7‘ I ! .
> _ | N 4 N . |
% 0.4} ! | ! + _ | | |
I ! =
0.3 n ! : - | Bl Coverage-varied selection [{
0.2 ! L 3 Size-varied selection 1
! * Geometric mean
0.1 I i ® Arithmetic mean 1
00 L == L L L L L L L L T T
SC BC DBB IMP AIMP PCT, PCT,, PCT; SC BC DBB IMP AIMP PCT,PCT,, PCTy,
Coverage criteria
Fig. 5: R? values (mutants~coverage) for Size-varied and Coverage-varied Selection
Yo T 1T T 1 T - I T T T
0.9 | 1 T] | - B
|
0.7 B
] I | -
E 0.6 | " | | 1 7{ J'_ 7
© 0.5 — L | | ! | L .
> ! ! . — 1 L J_
o, 0.4f 1 | = L |
x - + —~
0.3 ! I Coverage-varied selection [{
0.2 L A Size-varied selection
* Geometric mean
0.1 1 . . Arlthmetlc mean I
0.0 L L L L L L L L L L
SC BC DBB IMP AIMP PCT,PCT,; PCT;, SC BC DBB IMP AIMP PCT\,S PCTBB PCTST

Coverage criteria

Fig. 6: R? values (mutants~coverage+size) for Size-varied and Coverage-varied Selec-
tion

range of sizes with numerous suites of each size, and computing 7, and p over all
pairs (including many tied in size). We also note that a trend towards comparing
only suites that require the same computational effort further reduces the importance
of size [Harder et al. 2003; Groce et al. 2012; Groce et al. 2012]. For our subjects, us-
ing size alone to predict mutation score is an extremely ineffective predictor, with
values of 7,, p, and R? much worse than for other criteria (often < 0.25); we were
surprised to even see small negative values for 7, for some subjects (Figure 3). Fur-
ther, as we show in figure 6 and 7, using size as an additional variable in regres-
sions [Namin and Andrews 2009] did not change our general results: adding either
size or log(size) to coverage values improved R? for PCT criteria the most, but BC and
AIMP still had higher correlations overall.

5.4. Combining Criteria

After observing the high effectiveness of BC, we attempted to exploit it by using BC as
a base criterion and breaking ties with stronger criteria. Specifically, we lexicograph-
ically compared pairs, e.g., (BC, AIM P), for each suite such that BC is the primary
criterion to compare suites, and iff two suites have the same BC, then the second crite-
rion (AIMP in the example) is used to predict the mutation score ranking. However, the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 M. Gligoric et al.

I T i ! T T+ + I 1 7T - -
0.9 | | — 1 | - 4
0.8F 1 #_ 4
" 0.7fF -
Y o6l + % o]
= - I
g o5F : e SR ! —
+ — I +
w0 T I l -]
0.3f 1 - I Coverage-varied selection [
0.2} 1 3 Size-varied selection H
01k ! - * Geometric mean 1
1 1 ® Arithmetic mean
00 L L L L L L L L L L

L T T
SC BC DBB IMP AIMP PCT,PCT;; PCTg, SC BC DBB IMP AIMP PCT,, PCT,; PCTyp
Coverage criteria

Fig. 7: R? values (mutants~coverage+log(size)) for Size-varied and Coverage-varied
Selection

Table V: Overhead measured as ratio of execution time the entire test pool on instru-
mented to original code

Overhead/Slowdown
Subject SC BC IMP/AIMP PCTys PCTgg PCTgr
language: Java
JFreeChart 4.21 3.71 3.84 - 4.30 4.79
JodaTime 55.38 63.50 92.31 - 67.50 61.88
AvlTree 3.73 2.07 39.87 4.14 22.59 21.92
BinomialHeap 2.48 2.14 13.01 4.96 11.58 12.27
BinTree 2.13 1.63 4.91 2.22 3.65 3.74
FibHeap 2.38 1.86 7.65 3.13 5.63 7.54
FibonacciHeap 2.05 1.31 5.95 3.00 4.17 5.48
HeapArray 1.79 2.00 6.41 2.34 6.62 6.70
IntAVLTreeMap 2.29 1.59 15.75 2.48 7.56 7.70
IntRedBlackTree 2.13 1.41 10.88 2.65 5.10 6.19
LinkedList 1.63 0.94 4.28 1.64 3.15 3.57
NodeCachLList 1.56 1.09 6.01 1.74 5.07 5.68
SinglyLList 1.97 1.86 5.85 3.22 4.80 5.14
TreeMap 2.25 1.62 15.33 3.45 11.41 10.19
TreeSet 2.02 1.66 14.11 4.59 10.98 9.24
language: C
Space 0.87 0.87 1.33 - 0.86 1.02
SQLite 1.40 1.40 31.83 - 15.87 58.43
YAFFS2 1.96 1.96 108.25 - 9.82 28.58
Printtokens 1.88 1.88 1.85 - 1.75 1.81
Printtokens2 2.29 2.29 2.85 - 2.35 2.86
Replace 2.30 2.30 2.68 - 2.17 2.59
Schedule 1.33 1.33 1.63 - 1.42 1.57
Schedule2 1.82 1.82 2.62 - 1.85 1.99
SglibRbtree 0.99 0.99 4.71 - 1.98 2.69
Tecas 1.99 1.99 2.01 - 2.27 2.65
Totinfo 1.66 1.66 2.13 - 1.77 1.90
Geometric mean 2.20 1.90 6.96 2.88 4.75 5.66

correlations were almost uniformly worse than for either criterion alone. It is possible
that some other weighting of multiple criteria would perform better than any of the
studied approaches; however, the complexity of devising such a scheme and measuring
multiple criteria does not make this an immediately attractive approach, given that
studied criteria are already effective.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:23

Table VI: Statistics about percentage of tests that kill a mutant and execute a branch

Tests killing mutants [%] Tests executing branch [%]
Subject Min Max Mean SD Min Max Mean SD

language: Java

JFreeChart 0.05 26.79 0.34 1.00 0.05 29.72 0.44 141
JodaTime 0.03 75.10 0.61 2.65 0.03 82.42 1.35 5.29
AviTree 0.01 100.00 4194 38.69 4539 100.00 77.05 17.12
BinomialHeap 0.07 98.72 41.86 28.09 2.48 98.72 67.52 24.19
BinTree 1.40 99.23 33.31 32.53 9.77 99.23 74.16 19.13
FibHeap 0.02 100.00 38.45 42.80 2.16 100.00 64.05 39.45
FibonacciHeap 0.02 99.98 32.91 37.54 4.89 99.98 69.60 27.84
HeapArray 1.33 100.00 49.87 37.24 1.48 100.00 59.33 33.26
IntAVLTreeMap 0.04 100.00 61.74 31.46 5.73 100.00 58.89 30.25
IntRedBlackTree 0.00 99.51 17.97 29.87 4.717 99.51 51.75 27.80
LinkedList 69.01 100.00 91.80 13.15 63.43 92.35 76.63 10.49
NodeCachLList 22.52 100.00 69.31 25.38 3.21 94.37 63.14 25.26
SinglyLList 7.15 94.32 4190 29.95 24.80 94.32 4770 22.85
TreeMap 0.04 99.29 20.11 26.44 2.29 99.29 40.67 26.34
TreeSet 0.03 99.42 26.96 29.95 3.33 99.42 4957 27.15
language: C
Space 0.07 100.00 17.22 2741 0.07 100.00 24.67 33.16
SQLite 0.17 100.00 26.85 38.77 0.21 100.00 26.73 37.33
YAFFS2 0.02 100.00 32.83 42.23 0.02 100.00 77.61 33.90
Printtokens 0.17 100.00 38.86 34.60 0.29 99.27 57.95 39.36
Printtokens2 0.73 99.27 39.17 36.89 0.73 98.54 52.55 36.29
Replace 0.02 89.32 24.09 24.57 0.40 99.60 39.02 31.53
Schedule 0.04 100.00 45.61 29.06 0.45 98.87 64.28 30.86
Schedule2 0.04 85.28 60.40 28.82 0.33 98.86 69.92 36.61
SglibRbtree 0.70 100.00 81.24 32.05 0.02 100.00 62.60 37.91
Teas 0.06 100.00 19.35 32.37 1.87 98.13 2454 20.49
Totinfo 9.16 100.00 44.04 30.50 8.29 99.89 6126 29.63

5.5. Cost of Measurement

While our key questions are about the predictive power of coverage criteria, we are
also interested in the cost of measuring coverage. Table V shows the average over-
head of measuring various criteria using our prototype tools. Our implementation of
IMP/AIMP is simple; Ball and Larus [Ball and Larus 1996] provide a much faster pre-
cise approach, and the hash-based imprecise approach of Hassan and Andrews would
also apply [Hassan and Andrews 2013]. Our results generally show feasibility for ex-
perimental evaluation of test suites, even with a very simple implementation. The key
point is that our worst slowdown was slightly over 108X, and computing mutation
score can take over 1000X. In some cases, the instrumented code is faster and takes
even less time than the original code due to lightweight instrumentation and usual
noise in experiments. Note that the table does not include numbers for DBB, as the
values for this criterion are computed from statement coverage.

5.6. Quality of Mutants

Our results depend on the quality of the mutants, i.e., the difficulty of killing them. If
all the mutants are easy to kill, a simple coverage criterion may perform unrealisti-
cally well. We therefore compare the percentage of tests that kill specific mutants to
execution rates for branches. Table VI shows the results; we can see that some mu-
tants, especially for large programs, can be killed by only a small fraction of tests, e.g.,
only 0.05% of all tests kill the least killed mutant for JFreeChart. It is clear that on
average mutants are “harder” than branches for most subjects, with a lower minimum
and mean kill/execute rate as well as a higher standard deviation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24

M. Gligoric et al.

Table VII: Percentage of tied pairs of test suites created using Coverage-varied Selec-

tion
Subject SC BC DBB IMP AIMP PCTyg PCTgg PCTgr Mutants
language: Java
JFreeChart 0.00 0.06 0.08 0.02 0.06 - 0.00 0.00 0.02
JodaTime 0.02 0.04 0.10 0.04 0.06 - 0.06 0.00 0.04
AvlTree 7.96 9.53 18.12 5.79 6.18 1.74 1.11 1.34 4.93
BinomialHeap 10.80 10.36 10.66 0.84 3.25 0.48 0.86 0.67 7.84
BinTree 18.19 10.18 24.03 1.38 3.05 0.96 0.67 0.74 21.00
FibHeap 11.25 11.69 15.09 1.75 2.89 5.04 2.96 1.82 11.26
FibonacciHeap 9.08 9.16 12.78 1.96 4.19 1.35 1.59 0.91 5.32
HeapArray 24.14 14.79 17.85 1.18 5.28 3.27 0.93 1.00 5.03
IntAVLTreeMap 4.50 5.28 5.24 2.33 5.16 0.74 0.88 0.74 6.84
IntRedBlackTree 2.34 4.63 4.09 0.93 1.61 0.43 0.33 0.34 0.96
LinkedList 25.46 24.18 29.64 15.79 14.72 24.18 15.95 14.91 44.83
NodeCachLList 17.93 16.83 20.48 4.56 9.14 12.15 5.67 7.09 21.09
SinglyLList 16.71 16.85 17.65 3.26 7.23 3.71 5.31 4.87 16.46
TreeMap 2.21 4.71 4.24 0.79 1.57 0.43 0.26 0.21 1.75
TreeSet 1.99 3.96 4.97 0.87 1.83 0.60 0.45 0.32 1.89
language: C
Space 0.09 0.19 13.52 0.31 0.34 - 0.07 0.03 0.27
SQLite 4.10 2.53 4.10 3.38 3.39 - 2.31 2.51 2.19
YAFFS2 0.25 0.32 83.58 0.21 0.54 - 0.05 0.02 0.23
Printtokens 1.41 4.03 45.47 2.01 2.14 - 1.23 0.36 0.45
Printtokens2 1.38 1.34 34.71 1.79 1.35 - 0.29 0.16 0.57
Replace 1.03 1.05 22.67 1.43 0.99 - 0.18 0.18 1.53
Schedule 11.20 6.04 47.48 2.89 3.69 - 0.52 0.22 1.23
Schedule2 4.88 6.31 64.39 3.05 3.88 - 1.03 0.27 1.12
SglibRbtree 0.50 1.14 26.63 1.15 2.73 - 0.06 0.02 2.71
Tcas 10.63 2.53 18.10 591 591 - 0.86 0.81 1.51
Totinfo 4.97 4.90 52.52 10.42 3.73 - 1.12 0.62 3.09
Arithmetic mean 7.42 6.64 23.01 2.85 3.65 4.24 1.72 1.54 6.31

Table VIII: Percentage of tied pairs

of test suites created using Size-varied Selection

Subject sC BC DBB IMP AIMP PCTyg PCTgg PCTgr Mutants
language: Java
JFreeChart 0.04 0.05 0.12 0.09 0.08 - 0.08 0.07 0.04
JodaTime 0.04 0.07 0.12 0.12 0.11 - 0.06 0.06 0.03
AvlTree 91.39 91.42 91.42 3.04 26.30 6.08 20.02 38.77 10.20
BinomialHeap 38.67 38.61 38.96 0.59 19.66 2.30 5.63 3.79 36.71
BinTree 92.60 67.52 92.61 0.43 10.59 2.68 4.25 2.18 15.89
FibHeap 21.60 16.63 25.18 0.51 13.69 1.90 6.49 6.24 9.19
FibonacciHeap 39.37 40.83 41.74 0.51 25.18 9.17 6.92 5.76 2.97
HeapArray 43.99 44.26 44.06 0.45 13.22 14.44 2.82 2.22 20.87
IntAVLTreeMap 34.41 34.51 36.31 6.42 21.23 1.57 3.23 2.51 34.68
IntRedBlackTree 18.31 20.58 21.82 1.03 2.56 0.76 0.54 0.50 0.81
LinkedList 86.00 97.58 86.01 0.54 26.21 97.58 28.82 217.36 98.25
NodeCachLList 45.96 47.72 45.98 0.60 24.77 26.66 21.02 19.01 85.07
SinglyLList 86.30 86.30 86.31 0.94 51.34 17.76 21.96 20.98 55.79
TreeMap 9.31 12.49 12.98 0.71 1.95 0.75 0.26 0.22 2.33
TreeSet 14.65 18.06 18.56 0.89 2.80 1.19 0.97 0.77 3.50
language: C
Space 0.12 0.32 0.56 0.21 0.49 - 0.05 0.01 0.37
SQLite 4.10 2.53 4.10 3.38 3.39 - 2.31 2.51 2.19
YAFFS2 0.98 0.81 1.13 0.01 0.52 - 0.08 0.04 0.23
Printtokens 10.16 9.94 4.77 0.55 3.56 - 2.80 0.80 2.13
Printtokens2 9.94 9.04 3.24 0.53 4.51 - 1.47 0.85 4.68
Replace 4.35 3.15 2.06 0.48 1.77 - 0.41 0.24 2.70
Schedule 30.96 16.56 4.39 1.30 8.48 - 1.98 0.82 5.45
Schedule2 43.20 7.80 7.36 3.06 5.73 - 0.89 0.60 4.61
SglibRbtree 1.19 2.90 2.16 0.49 6.95 - 0.28 0.10 9.66
Tcas 24.81 9.19 19.16 3.91 3.91 - 0.28 0.17 0.94
Totinfo 42.99 37.72 7.32 0.93 5.26 - 1.56 0.62 63.61
Arithmetic mean 30.59 27.56 26.86 1.22 10.93 14.06 5.20 5.28 18.19

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:25

Table IX: Percentage of discordant/concordant pairs of test suites created using
Coverage-varied Selection (averaged over all subject programs)

Discordant Pairs

sC BC DBB IMP AIMP PCTyg PCTgg PCTgy Mutants
language: Java

SC 1.97 20.59 9.44 5.97 8.55 7.08 7.70 9.94
BC 85.61 21.46 9.19 5.26 7.61 5.86 7.40 8.91
DBB 64.10 63.24 28.31 24.79 28.46 25.63 25.25 23.12
IMP 79.30 80.21 58.14 6.13 8.18 8.41 9.29 14.27

@ AIMP 82.06 83.47 60.95 88.19 5.28 5.83 6.29 11.85

-E PCTyg 78.76 80.61 56.29 85.82 87.15 6.76 7.30 14.10

[PCTgg 82.29 84.22 61.52 87.23 88.42 88.07 3.61 11.79

] PCTgr 81.76 82.73 62.00 86.49 88.08 87.65 93.27 11.86

_‘é Mutants 73.94 75.39 58.58 74.36 75.73 72.75 77.30 77.32

-

E language: C

(S SC 9.32 5.31 13.23 10.98 - 11.45 10.46 9.17
BC 84.92 6.87 7.62 4.45 - 3.91 3.72 14.06
DBB 55.58 54.53 6.62 6.44 - 7.37 7.29 7.56
IMP 80.94 87.41 54.91 4.93 - 9.02 8.76 15.92
AIMP 83.52 90.87 55.15 90.75 - 6.36 5.98 14.45
PCTyg - - - - - - - -
PCTgg 84.53 93.09 54.93 87.70 90.68 - 3.14 15.52
PCTgr 85.72 93.45 55.08 88.14 91.26 - 96.03 15.19
Mutants 86.23 82.06 54.31 80.10 81.89 - 82.59 83.15

5.7. Ties for Criteria

A final concern about using criteria to compare test suites in research is the prob-
lem of ties — cases when test suites achieve the same coverage. For small subjects
and large test pools, researchers often report that branch and statement coverage are
highly similar (if not exactly the same) for test techniques that actually have different
effectiveness for larger subjects. We investigated the likelihood of criteria with smaller
number of requirements having larger number of ties. Tables VII and VIII show that
there are indeed often more than 10% of tied suite pairs for simple subjects with some
criteria, but with the exception of LinkedList, very seldom more than 5% with the
other, stronger criteria.

6. DISCUSSION

The most surprising result in our study is that BC performs so well. A second some-
what surprising result is that, of non-BC criteria, AIMP performs best and performs
much better than the more frequently used IMP, despite the fact that IMP subsumes
AIMP. We believe that these two results are related. The ranking of criteria (to predict
mutation scores) does not follow the subsumption hierarchy, although one might expect
stronger criteria to predict mutation scores better than weaker criteria do. In fact, in
many cases, exactly the opposite is true. Our belief is that there is a fundamental
tension between strength and predictive power. Consider a criterion C that is weaker
than another criterion C’; C’ is most likely a better predictor than C for C-adequate
suites (e.g., if we have many suites with 100% BC, then we cannot predict varying mu-
tation scores among those suites using BC itself, but we could still use AIMP), but C’
is less likely a better predictor than C for C-non-adequate suites (e.g., IMP is a worse
predictor than AIMP, but BC is a better predictor than SC).

Viewed differently, we can consider the question: how much information does the
coverage value for one criterion provide about the coverage value for another criterion?
We realize that a subsumed criterion often (but not always) provides more information
about the criterion that subsumes it than the reverse. For example, if a suite has an
absolute BC value of k (with each test contributing at least one unique branch), we
know that the suite has absolute AIMP, IMP, and PCT values of at least k. However,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 M. Gligoric et al.

Table X: Percentage of discordant/concordant pairs of test suites created using Size-
varied Selection (averaged over all subject programs)

Discordant Pairs

sC BC DBB IMP AIMP PCTyg PCTgp PCTgy Mutants
language: Java

SC 0.94 0.99 7.92 3.65 4.95 4.64 4.59 6.01
BC 55.17 0.66 7.27 2.78 4.55 3.70 4.09 5.22
DBB 56.03 55.01 7.05 2.86 4.03 3.84 4.00 5.02
IMP 50.16 51.23 49.76 9.81 12.52 13.55 14.06 12.17

» AIMP 52.42 53.81 52.09 73.47 7.69 5.94 6.11 7.70

.E PCTyg 44.94 46.70 4441 72.27 64.81 9.95 10.31 11.14

& PCTgg 53.35 54.73 52.91 77.26 74.23 70.45 2.57 10.07

] PCTgr 53.51 54.42 52.83 76.30 73.86 69.37 87.16 10.12

,.g Mutants 45.90 47.75 45.70 62.06 60.50 57.15 61.94 61.23

-

g language: C

8 SC 10.64 9.14 15.52 13.47 - 13.16 12.30 10.07
BC 68.98 13.60 13.33 7.36 - 3.90 4.72 15.95
DBB 73.24 73.66 13.18 13.38 - 16.67 16.22 13.79
IMP 68.12 76.63 80.85 10.11 - 15.72 16.07 17.30
AIMP 68.24 80.80 78.15 85.22 - 10.09 10.35 16.05
PCTyg - - - - - - - -
PCTgg 70.54 86.57 77.39 82.01 85.03 - 4.28 18.09
PCTgr 71.73 86.00 78.31 82.14 85.21 - 94.28 18.12
Mutants 69.99 69.55 73.27 72.86 71.95 - 72.33 72.69

Table XI: Percentage of discordant pairs (¢,m) and (¢/,m’) such that |c — ¢/| > N and
|m — m/| > N for Coverage-varied Selection

N [%] maz(|lc — c'|*
5 10 15 20 25 30 35 40 45 50 [m —m/|)

sSC 24.99 9.93 4.28 2.86 091 075 0.06 0.00 000 0.00 1,946.14

BC 36.28 16.89 8.20 534 225 141 056 034 0.17 0.09 5,617.69

‘g DBB 66.78 39.69 24.04 1435 9.03 273 055 0.13 0.00 0.00 2,339.91
g IMpP 8.50 2.85 1.57 150 043 024 001 000 0.00 0.00 1,422.40
‘T AIMP 41.68 19.96 10.90 6.65 267 129 033 016 007 0.03 4,703.60
© PCTyg 47.87 16.74 6.19 437 1.05 070 0.00 0.00 0.00 0.00 1,770.60
PCTgp 3444 1420 7.09 465 1.68 087 031 0.18 0.09 0.04 5,039.00
PCTgp 35.18 1520 7.53 437 145 079 046 0.29 0.15 0.08 5,820.53

Table XII: Percentage of discordant pairs (¢, m) and (¢, m’) such that |c — ¢/| > N and
|m —m/| > N for Size-varied Selection

N [%] max(|c — ¢ |
5 10 15 20 25 30 35 40 45 50 [m —m/|)

sSC 457 059 028 016 0.02 001 000 0.00 0.00 0.00 3,972.51

BC 510 111 046 021 0.04 001 000 0.00 0.00 0.00 6,060.72

_g DBB 1593 3.61 189 055 018 0.02 001 0.00 0.00 0.00 2,138.50
3 IMP 464 067 017 011 0.02 000 000 0.00 0.00 0.00 1,527.22
T AIMP 893 208 096 038 011 003 000 0.00 0.00 0.00 5,732.49
© PCTys 1757 265 054 031 0.06 004 000 0.00 0.00 0.00 2,557.20
PCTgpg 7.53 117 039 018 004 001 0.00 0.00 000 0.00 6,304.83
PCTgp 656 093 031 013 0.02 001 000 0.00 0.00 0.00 7,022.32

if we know that a suite has absolute AIMP, IMP, or PCT coverage of k, with each test
contributing at least one path or PCT state, the absolute BC may be arbitrarily lower
than k. In a sense, the weaker criteria in these cases provide “more” information about
a suite, so we can expect them to better predict mutation scores. For example, a suite
may obtain very high AIMP coverage without executing most code in the program,
if the suite takes a huge number of paths through a single loop with many internal
branches; similarly, absolute PCT coverage cannot distinguish between a suite that
covers many (irrelevant) states of a small portion of a program and a suite that covers

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:27

fewer states but executes most of the program. Given the nearly uniform distribution
of mutants across a program, suites that do not execute most of the code are likely to
have poor mutation scores. In contrast, a high BC value indicates that many easy-to-
kill mutants are almost certainly killed. BC thus “warns” if a suite misses many “easy”
faults; IMP/AIMP and PCT may not “warn”.

The predictive power of BC weakens, however, as suites approach adequacy, when
more ties are seen in BC, but mutation scores continue to diverge. The best predic-
tive coverage may be the criterion that minimizes potentially meaningless informa-
tion without converging too rapidly on 100% coverage. Among our evaluated criteria,
AIMP seems to balance information content and avoidance of ties best: it always has
a percentage of tied values for suites that is between the very high percentage of ties
for BC and the very low percentages for PCT and IMP criteria. IMP had the lowest
percentage of ties of all criteria but also proved nearly the least useful for predicting
mutation score (Tables VII and VIII).

The usefulness of AIMP is encouraging. Hassan and Andrews have suggested
that one reason def-use and other dataflow coverages have been little used in prac-
tice, despite encouraging results in some studies, is the difficulty of implementing
the required static analyses [Hassan and Andrews 2013]. AIMP is usually trivial to
add to instrumentation for collecting BC, if a fairly high overhead is acceptable (as
done in this paper), and can be much more efficient if needed [Ball and Larus 1996;
Ohmann and Liblit 2013]. Moreover, loop-free paths within a single function are intu-
itively easy to interpret, and Godefroid’s compositional approach to dynamic symbolic
execution essentially maximizes AIMP [Godefroid 2007]. In future studies evaluating
test suites, our results suggest that IMP should be replaced with AIMP.

We believe PCT coverage may be less effective than AIMP because it uses too
many predicates. PCT is inspired by abstraction in software model checking, which
does not use all in-scope predicates at all points (which leads to a state-space explo-
sion) but instead only uses those relevant to a specification [Henzinger et al. 2002;
Chaki et al. 2003]. Investigating whether the superior performance of AIMP truly indi-
cates that path-sensitivity is more important than logical-state-space coverage would
require a similar selectivity. Unfortunately, the approaches used in model checking are
impractical for testing large programs.

Unlike other coverage criteria, based on our experiments, DBB poorly predicts mu-
tation score. However, note that this holds primarily for data structures for which the
number of tests is large as the tests were automatically generated. More precisely,
many tests may increase the number of DBBs, but the number of killed mutants may
remain constant because most of the mutants for data structures are not hard to kill
(Table VI). As seen in Table III, this may not be the case with larger programs. Al-
though DBB may not be a good coverage criterion for predicting mutation score, it is
effective for fault localization, according to a previous study [Baudry et al. 2006].

We note that, while BC and AIMP perform the best among the criteria we evaluated,
the differences between the effective criteria are often not statistically significant. It
is not possible, from our data, to draw a general conclusion that BC and AIMP always
perform better for predicting the mutation score. The poor behavior of DBB, however,
is statistically significant when compared to most other criteria, with p-value < 0.05,
and in some cases IMP also has a significantly poorer performance. Given the small
and non-random set of projects, however, this significance should be viewed as heuris-
tic at best.

To quantitatively support our initial example from the introduction (Section 1)—
using discordant pairs to illustrate the difficulty in choosing coverage for evaluating
test suites—we measured average percentage of concordant and discordant pairs for
all pairs of criteria. We observe that there are substantial percentages of discordant

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 M. Gligoric et al.

pairs (tables IX and X). Also, we observe that the percentage of discordant pairs is
similar for Java and C, and does not vary substantially among the compared coverage
criteria or between Size-varied Selection and Coverage-varied Selection.

Finally, tables XI and XII show some statistics about the discordant pairs. Specifi-
cally, we show the percentage of the discordant pairs (i.e., (¢, m) and (¢/,m')) that have
both difference in coverage (Jc — ¢/|) and difference in mutation score (|m — m/|) above
some threshold (N € {5%,10%,...,50%}). The results show that one may frequently
encounter discordant pairs with large differences. The last column (in tables XI and
XII) characterizes the max combined differences in mutation score and coverage, i.e.,
max(]c — /| x |m — m’|). For BC, for example, the max of 5,617.69 for Coverage-varied
Selection comes from two test suites where the difference in coverage is 68.35% while
the difference in mutation score is 82.19%, and the max of 6,060.72 for Size-varied
Selection comes from two test suites where the difference in coverage is 73.49% while
the difference in mutation score is 82.47%.

6.1. Threats to Validity

The primary threat is to external validity: our set of programs and suites, while fairly
large by the standards of previous literature on comparing coverage criteria, may not
be representative of general results. In particular, we examined a larger number of
data structures and a smaller number of real-world programs, and our examples were
chosen in a partly opportunistic, rather than random, way: we needed subjects with
many tests available or easily produced. Our selection of Java data structures, how-
ever, at minimum sheds light on the validity of several previous evaluations of testing
techniques over these subjects. Construct validity is primarily threatened by ignoring
some predicates for PCT because of technical constraints (e.g., we were not able to gen-
erate predicates in a class where instrumented methods would exceed the 64KB limit
set by the Java classfile specification).

7. RELATED WORK

Many previous studies have investigated the effectiveness of coverage criteria. The
contribution of this paper is to perform a large study to address the specific needs
of researchers now investigating automated testing techniques: given two test suites,
likely non-adequate, what criteria are best for predicting the ability of those suites
to kill mutants (and thus, arguably, detect faults)? Are criteria recently adopted by
researchers effective for this purpose?

Frankl and Weiss [Frankl and Weiss 1993] performed an experimental comparison
of branch coverage (BC) and def-use coverage, showing that def-use is more effective
than BC and that there is stronger correlation between def-use and fault detection
than BC and fault detection; their primary conclusions concerned adequate suites, but
some experiments included non-adequate suites. Our work targets similar questions
but differs in that we compare SC, BC, DBB, IMP, AIMP, and PCT coverages, use
larger applications, use a much larger set of tests produced by various testing tech-
niques, use (many) mutants as opposed to (few) real bugs, and extensively explore
non-adequate test suites.

Cai and Lyu [Cai and Lyu 2005] also investigated the correlation between different
coverage criteria—BC, decision coverage, P-use, and C-use—and fault detection, using
a linear regression model. Their conclusions are drawn based on experiments on one
example, with 426 mutants and 1,200 tests. Different test suites were formed: all tests,
tests from a specification, randomly generated tests, tests that cause exceptions, and
tests that do not cause exceptions. Their results showed that coverage criteria were
only a moderate indicator for fault detection, with large variance for different test
suites. Some other studies [Hutchins et al. 1994; Frankl and Iakounenko 1998] also

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:29

showed small or inconsistent correlation between coverage criteria and fault detection.
Namin and Andrews [Namin and Andrews 2009] investigated the correlation between
coverage criteria, effectiveness, and size of a test suite. The study showed that both
coverage and size are non-linearly correlated with effectiveness. An additional con-
clusion was that the best result is achieved if both size and coverage are taken into
account. Gupta and Jalote [Gupta and Jalote 2008] examined the efficiency of cover-
age criteria using minimal adequate test suites for SC, BC, and predicate coverage
(the latter simply being coverage of all atomic predicates from conditionals measured
only at the conditionals, not to be confused with PCT). In their results, while predi-
cate coverage was the most effective (correlated to mutation score), BC was the most
efficient when suite size was considered. Other studies [Li et al. 2009; Adolfsen 2011]
used smaller programs and suites than the listed studies, and/or only examined small
sets of (seeded) faults. A different kind of study by Wei et al. examined the correlation
of BC to fault detection in 14 Eiffel classes, over a period of 2,520 hours of random
testing (divided into 6 hour runs) [Wei et al. 2012]. They found that the correlation
between BC and fault detection was very high during the first 10 minutes of testing,
when new branches were frequently being covered, but once BC was close to saturated,
the correlation became weak, and over 50% of faults were detected during the period
between 30 minutes and 6 hours, when BC seldom increased. Their conclusion was
that BC is a poor stopping criterion for random testing, and in this setting was not by
itself a good measure of suite quality.

Studies investigating related questions (e.g., which criteria are best for prior-
itizing/minimizing regression suites) are numerous, with results that also vary,
though BC has arguably performed fairly well [Rothermel et al. 2001]. Harder et
al. examined the power of various adequacy criteria, noting the possibility of
size as a confounding factor [Harder et al. 2003]. Some recent related work is
that of Hassan and Andrews [Hassan and Andrews 2013], which extends previous
work [Namin and Andrews 2009] to a comparison of BC, def-use coverage, and a
novel coverage, called Multi-point Stride Coverage (MPSC), that has resemblances
to a generalized version of AIMP. Their results showed that def-use coverage was
highly correlated with BC in practice, BC was more correlated with fault detec-
tion than other criteria, and MPSC was fairly well correlated with fault detection.
Since some MPSC coverages subsume AIMP, we would like to compare the two ap-
proaches using rank correlation to see if our findings with respect to strength and
predictive power hold here as well. Of all previous studies, we find that only a
few [Wong et al. 1994; Wong et al. 1995; Namin et al. 2008; Namin and Andrews 2009;
Inozemtseva 2012] mention Kendall’s 7 or Spearman’s p correlations, and those do not
provide a comparison of multiple criteria as candidates for use in evaluating suites.
For example, Inozemtseva [Inozemtseva 2012] only measures block coverage, and uses
machine learning to find a regression involving this measure combined with suite size,
but proposes no guidance as to whether block is the best coverage to measure. In con-
trast, we use 7, and p to compare criteria, across a variety of suite selection and gen-
eration approaches. Recently, Papadakis et al. [Papadakis et al. 2014] used Kendall 7
to compare correlation between mutation score and fault detection with correlation
between t-wise coverage (for several Combinatorial Interaction Testing input models)
and fault detection; the results showed that mutation score correlates better with fault
detection than t-wise coverage correlates with fault detection.

Most recently, similar to our prior work [Gligoric et al. 2013], Inozemtseva and
Holmes [Inozemtseva and Holmes 2014] studied correlation between test suite cover-
age (statement, branch, and modified condition coverage), size, and mutation score.
The study was performed on five Java programs, including JFreeChart and JodaTime.
Test suites were created by random sampling from the pool of existing (manually writ-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 M. Gligoric et al.

ten) tests; 1,000 test suites were created for each size between three test methods and
the available number of test methods. This approach for creating suites is similar to
our Size-varied Selection. Their paper shared our conclusion that correlation does not
follow the subsumption hierarchy (though in their work, this is reported over fewer
criteria). The correlation results, when size is not controlled for, are also similar to our
results for Size-varied Selection. Finally, their study reports low correlation when size
is controlled for, in contrast to some studies. We also showed that size alone is a worse
predictor of mutation score than any coverage criteria.

Another recent study [Gopinath et al. 2014] explicitly adapts the evaluation mea-
sures for coverage criteria used in this paper and applies them to a different, but
related problem. Rather than comparing multiple suites for a single program (the
typical research problem), the study addresses the problems of software developers
attempting to determine whether a single, existing suite (be it manually written or
automatically generated) for a program is effective. The goal (prediction of mutation
scores) is the same, but the purpose is to determine if a single suite would have good
mutation score, not to compare suites. Based on data from hundreds of open-source
Java programs on GitHub, that study finds that statement coverage (vs. block, BC, and
a variation of AIMP) best predicts mutation score for both manually written suites
in the repository and tests automatically generated by Randoop [Pacheco et al. 2007].
We speculate that the difference in problem statement (correlation across multiple
programs with a single suite vs. across multiple suites for each program) drives the
difference in results, especially as it presumably results in many fewer ties. In general
the results are not radically different than our own—all correlations (7, and R?) are
above 0.65 (and some above 0.9) for all criteria for manually written suites, though
7, for suites generated by Randoop is relatively low for all criteria (0.48-0.54). The
results also confirm our claim that the subsumption hierarchy does not match correla-
tion with mutation scores; in fact, the ranking of criteria in their study is precisely the
opposite of the subsumption hierarchy.

Shuler and Zeller [Schuler and Zeller 2013] propose the idea of checked coverage as a
measure of oracle, rather than suite, effectiveness. Checked coverage measures cover-
age over the dynamic slice of statements influencing oracle statements only. They show
that for seven open-source projects this approach is better able to detect degradation
of oracle quality than even mutation testing. We focus only on traditional suite qual-
ity measurement, where the test inputs rather than the oracle alone are the primary
target for evaluation.

Baudry et al. [Baudry et al. 2006] introduced the concept of dynamic basic blocks
(DBBs) for measuring a test suite’s fault-localization capability. Our work evaluates
the use of DBBs as a coverage metric rather than for fault localization.

Ball [Ball 2004] introduced the theory behind PCT coverage and showed that PCT
subsumes BC and various decision coverages, and is incomparable to path coverage.
Although PCT was introduced in 2004 and was used to compare test-generation tech-
niques, it was not extensively evaluated empirically. Our study is the first that imple-
ments PCT and empirically investigates the PCT criterion.

Another category of related work includes studies that used some of the criteria we
used but for measuring the quality of test suites, which inspired our efforts. Visser
et al. [Visser et al. 2006] were the first to instrument code for measuring an approx-
imation of PCT coverage and compared a number of advanced test-generation tech-
niques against random testing using PCT. Because of the lack of tools that can per-
form instrumentation for PCT, predicates were selected manually. Specifically, not
all predicates were selected, the constructed predicates were not instantiated consis-
tently at all points (either blocks or statements), and some predicates were instanti-
ated when they were not in scope. Pacheco et al. [Pacheco et al. 2007] used the same

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:31

approach to PCT to demonstrate the effectiveness of feedback in random test gener-
ation. Later, Sharma et al. [Sharma et al. 2011] compared random testing and shape
abstraction on the same set of predicates as previous studies, but predicates were in-
stantiated systematically at all basic blocks. An extended version of that instrumen-
tation was used [Groce 2011; Groce et al. 2012] to evaluate the effectiveness of a new
test-generation technique based on reinforcement learning.

The last category of related work includes tools for measuring code coverage.
There are many tools available for both Java [Emma 2013; Cobertura 2013] and
C [gcov 2013] that can measure method, statement, branch, and path coverage. Addi-
tionally, tools for mutation testing [Schuler and Zeller 2009] can be placed in this cat-
egory. Ours is the first tool for systematically measuring Ball’'s PCT coverage. Because
detailed empirical evaluation requires such a tool, we implemented tools, both for Java
and C, that can instrument code for measuring PCT. Using our tools, we were able to
automatically and systematically instrument reasonably large code bases. The only
previous attempt (to our knowledge) to address PCT in practical automated terms was
in the FShell system [Holzer et al. 2009], which can perform model checking queries to
find paths to satisfy PCT coverage goals in C programs, but relies on being provided a
list of relevant predicates, does not distinguish between variables with the same name
in different scopes, and does not instrument for runtime collection of coverage data.

8. CONCLUSIONS

This paper considers these questions: (1) for researchers wishing to compare test suites
but lacking a statistically significant number of real faults and lacking the computa-
tional resources to perform mutation testing, is it useful to compare suites using cov-
erage criteria; if so, (2) which criteria are best at predicting mutation scores? Recent
literature has shown that these are critical questions to answer, because publications
are increasingly using coverage criteria to compare test suites and techniques. Our
results suggest that due to high effectiveness and low overhead, researchers should
use branch coverage to compare suites whenever possible, but most evaluated criteria
performed well in terms of predicting mutation score for most of our subjects, with
only dynamic basic blocks arguably ineffective for many small subjects. A variation
of intra-procedural acyclic path coverage performed best of all non-branch coverage
criteria, and has desirable simplicity, ease of implementation, and reasonable over-
head. Future work should evaluate these and other criteria on a larger set of subject
programs and test suites.

ACKNOWLEDGMENTS

We would like to thank Yu Lin, Qingzhou Luo, and Shalini Shamasunder for discussions about this work,
Mladen Laudanovic and Douglas Simpson for help with statistical analysis, Lingming Zhang for help with
Javalanche, Jamie Andrews for extremely valuable comments and for providing the C mutation tool, and
Fredrik Kjolstad for help with WALA.

This material is based upon work partially supported by the National Science Foundation under Grant
Nos. CCF-0746856, CNS-0958199, CCF-1012759, and CCF-1054876.

REFERENCES

Martijn Adolfsen. 2011. Industrial validation of test coverage quality. Master’s thesis. University of Twente.
Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge University Press.

James H. Andrews, Lionel C. Briand, and Yvan Labiche. 2005. Is mutation an appropriate tool for testing
experiments?. In International Conference on Software Engineering. 402—-411.

James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin. 2006. Using Mutation Anal-
ysis for Assessing and Comparing Testing Coverage Criteria. Trans. Softw. Eng. 32 (2006), 608—624.

Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In International Conference on Software Engineering. 1-10.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 M. Gligoric et al.

Thomas Ball. 2004. A Theory of Predicate-Complete Test Coverage and Generation. Technical Report MSR-
TR-2004-28. Microsoft Research.

Thomas Ball. 2005. A Theory of Predicate-Complete Test Coverage and Generation. In Formal Methods for
Components and Objects. 1-22.

Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In International Symposium on Microar-
chitecture. 46-57.

Thomas Ball and Sriram K Rajamani. 2001. Automatically Validating Temporal Safety Properties of Inter-
faces. In Workshop on Model Checking of Software. 103—122.

Benoit Baudry, Franck Fleurey, and Yves Le Traon. 2006. Improving Test Suites for Efficient Fault Local-
ization. In International Conference on Software Engineering. 82-91.

Xia Cai and Michael R. Lyu. 2005. The effect of code coverage on fault detection under different testing
profiles. In International Workshop on Advances in Model-Based Testing. 1-17.

Sagar Chaki, Edmund M. Clarke, Alex Groce, and Ofer Strichman. 2003. Predicate Abstraction with Mini-
mum Predicates. In Correct Hardware Design and Verification Methods. 19-34.

Sagar Chaki, Alex Groce, and Ofer Strichman. 2004. Explaining Abstract Counterexamples. In Symposium
on the Foundations of Software Engineering. 73—82.

Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil Vaswani. 2009. HOLMES: Effec-
tive statistical debugging via efficient path profiling. In International Conference on Software Engineer-
ing. 34-44.

Norman Cliff. 1996. Ordinal Methods for Behavioral Data Analysis. Pyschology Press.

Cloc 2013. Count lines of code. http://cloc.sourceforge.net/.

Cobertura 2013. Cobertura. http:/cobertura.sourceforge.net/.

CoCo 2014. CoCo. http://mir.cs.illinois.edu/coco/.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms, Third Edition.
The MIT Press.

Herbert L. Costner. 1965. Criteria for Measures of Association. American Sociological Review 3 (1965).

Coverage 2013. Instrumented Container Classes - Predicate Coverage. http://mir.cs.illinois.edu/coverage/.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on Test Data Selection: Help
for the Practicing Programmer. Computer 11 (1978), 34—41.

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting Controlled Experimentation
with Testing Techniques: An Infrastructure and its Potential Impact. Empirical Softw. Engg. 10 (2005),
405-435.

Eclipse 2013. Eclipse. http:/http:/www.eclipse.org/.

Emma 2013. EMMA. http://emma.sourceforge.net/.

Phyllis G. Frankl and Oleg Iakounenko. 1998. Further empirical studies of test effectiveness. In Symposium
on the Foundations of Software Engineering. 153—-162.

Phyllis G. Frankl and Stewart N. Weiss. 1993. An Experimental Comparison of the Effectiveness of Branch
Testing and Data Flow Testing. Trans. Software Eng. 19 (1993), 774-7817.

Chen Fu and Barbara G. Ryder. 2005. Navigating error recovery code in Java applications. In Workshop on
Eclipse Technology eXchange. 40—44.

Juan Pablo Galeotti, Nicolas Rosner, Carlos Gustavo Lépez Pombo, and Marcelo Fabian Frias. 2010. Analy-
sis of invariants for efficient bounded verification. In International Symposium on Software Testing and
Analysis. 25-36.

geov 2013. gecov—a Test Coverage Program. http:/gce.gnu.org/onlinedocs/gec/Geov.html.

Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko Mari-
nov. 2013. Comparing Non-adequate Test Suites Using Coverage Criteria. In International Symposium
on Software Testing and Analysis. 302-313.

Patrice Godefroid. 2007. Compositional dynamic test generation. In Symposium on Principles of Program-
ming Languages. 47-54.

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite Evaluation by Developers.
In International Conference on Software Engineering. 72—82.

Alex Groce. 2009. (Quickly) Testing the Tester via Path Coverage. In Workshop on Dynamic Analysis. 22—28.

Alex Groce. 2011. Coverage rewarded: Test input generation via adaptation-based programming. In Inter-
national Conference on Automated Software Engineering. 380-383.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://cloc.sourceforge.net/
http://cobertura.sourceforge.net/
http://mir.cs.illinois.edu/coco/
http://mir.cs.illinois.edu/coverage/
http://http://www.eclipse.org/
http://emma.sourceforge.net/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites A:33

Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Mohammad Amin Alipour, Martin Erwig, and Camden
Lopez. 2012. Lightweight Automated Testing with Adaptation-Based Programming. In International
Symposium on Software Reliability Engineering. 161-170.

Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized Differential Testing as a Prelude to
Formal Verification. In International Conference on Software Engineering. 621-631.

Alex Groce, Chaogiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012. Swarm Testing. In Interna-
tional Symposium on Software Testing and Analysis. 78-88.

Joy Paul Guilford. 1956. Fundamental Statistics in Pyschology and Education. McGraw-Hill.

Atul Gupta and Pankaj Jalote. 2008. An approach for experimentally evaluating effectiveness and efficiency
of coverage criteria for software testing. Softw. Tools Technol. Transf. 10 (2008), 145-160.

Richard G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. Trans. Softw. Eng. 3 (1977), 279-290.

Michael Harder, Jeff Mellen, and Michael D. Ernst. 2003. Improving test suites via operational abstraction.
In International Conference on Software Engineering. 60-71.

Mohammad Mahdi Hassan and James H. Andrews. 2013. Comparing Multi-point Stride Coverage and
Dataflow Coverage. In International Conference on Software Engineering. 172-181.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2002. Lazy abstraction. In Sym-
posium on Principles of Programming Languages. 58-70.

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. 2009. Query-Driven Program
Testing. In International Conference on Verification, Model Checking, and Abstract Interpretation. 151—
166.

Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Experiments of the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In International Conference on Software
Engineering. 191-200.

Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly correlated with test suite effectiveness.
In International Conference on Software Engineering. 435—445.

Laura Michelle McLean Inozemtseva. 2012. Predicting Test Suite Effectiveness for Java Programs. Master’s
thesis. University of Waterloo.

JFreeChart 2013. JFreeChart. http:/www.jfree.org/jfreechart/.

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. Trans.
Soft. Eng. 37 (2011), 649-678.

JodaTime 2013. JodaTime. http:/joda-time.sourceforge.net/.

René Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. Using Non-redundant Mutation Opera-
tors and Test Suite Prioritization to Achieve Efficient and Scalable Mutation Analysis. In International
Symposium on Software Reliability Engineering. 11-20.

Maurice Kendall. 1938. A New Measure of Rank Correlation. Biometrika 1-2 (1938), 81-89.

James R. Larus. 1999. Whole Program Paths. In Programming Language Design and Implementation. 259—
269.

Nan Li, Upsorn Praphamontripong, and Jeff Offutt. 2009. An Experimental Comparison of Four Unit Test
Criteria: Mutation, Edge-Pair, All-Uses and Prime Path Coverage. In International Workshop on Muta-
tion Analysis. 220-229.

Akbar Siami Namin and James H. Andrews. 2009. The influence of size and coverage on test suite effective-
ness. In International Symposium on Software Testing and Analysis. 57—68.

Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. 2008. Sufficient mutation operators for
measuring test effectiveness. In International Conference on Software Engineering. 351-360.

George Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. 2002. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In International Conference on Compiler
Construction. 213-228.

A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. 1993. An experimental evaluation of selective
mutation. In International Conference on Software Engineering. 100-107.

Peter Ohmann and Ben Liblit. 2013. Lightweight Control-Flow Instrumentation and Postmortem Analysis
in Support of Debugging. In International Conference on Automated Software Engineering. 378-388.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random
Test Generation. In International Conference on Software Engineering. 75-84.

Mike Papadakis, Christopher Henard, and Yves Le Traon. 2014. Sampling Program Inputs with Mutation
Analysis: Going Beyond Combinatorial Interaction Testing. In International Conference on Software
Testing, Verification and Validation. 1-10.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.jfree.org/jfreechart/
http://joda-time.sourceforge.net/

A:34 M. Gligoric et al.

Sanjay J Patel, Tony Tung, Satarupa Bose, and Matthew M Crum. 2000. Increasing the size of atomic in-
struction blocks using control flow assertions. In International Symposium on Microarchitecture. IEEE,
303-313.

Purify 2013. IBM Rational Purify Documentation. ftp:/ftp.software.ibm.com/software/rational/docs/
documentation/manuals/unixsuites/pdf/purify/purify.pdf.

Gregg Rothermel, Roland Untch, Chengyun Chu, and Mary Jean Harrold. 2001. Test Case Prioritization.
Trans. Softw. Eng. 27 (2001), 929-948.

Atanas Rountev. 2004. Precise Identification of Side-Effect-Free Methods in Java. In International Confer-
ence on Software Maintenance. 82-91.

David Schuler and Andreas Zeller. 2009. Javalanche: efficient mutation testing for Java. In Symposium on
the Foundations of Software Engineering. 297-298.

David Schuler and Andreas Zeller. 2013. Checked coverage: an indicator for oracle quality. Software Testing,
Verification and Reliability 23, 7 (2013), 531-551.

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011. Testing Container
Classes: Random or Systematic?. In Fundamental Approaches to Software Engineering. 262-2717.

Rohan Sharma, Milos Gligoric, Vilas Jagannath, and Darko Marinov. 2010. A Comparison of Constraint-
Based and Sequence-Based Generation of Complex Input Data Structures. In Software Testing, Verifi-
cation, and Validation Workshops. 337-342.

Charles Spearman. 1904. The proof and measurement of association between two things. The American
Jjournal of psychology 15, 1 (1904), 72-101.

SQLite 2013. SQLite. http://www.sqlite.org/.

Alexandru Séilcianu and Martin Rinard. 2005. Purity and Side Effect Analysis for Java Programs. In Verifi-
cation, Model Checking, and Abstract Interpretation. 199-215.

Willem Visser, Corina S. Pasareanu, and Radek Pelanek. 2006. Test input generation for Java containers
using state matching. In International Symposium on Software Testing and Analysis. 37-48.

Marian Vittek, Peter Borovansky, and Pierre-Etienne Moreau. 2006. A Simple Generic Library for C. In
International Conference on Software Reuse. 423—426.

VMSpec 2013. Java class file format. http:/docs.oracle.com/javase/specs/jvms/se5.0/html/ClassFile.doc.html.

Filipos I. Vokolos and Phyllis G. Frankl. 1998. Empirical Evaluation of the Textual Differencing Regression
Testing Technique. In International Conference on Software Maintenance. 44-53.

WALA 2013. WALA: T. J. Watson Libraries for Analysis. http:/wala.sf.net.

Tao Wang and Abhik Roychoudhury. 2005. Automated path generation for software fault localization. In
International Conference on Automated Software Engineering. 347-351.

Yi Wei, Bertrand Meyer, and Manuel Oriol. 2012. Is Branch Coverage a Good Measure of Testing Effective-
ness? In Empirical Software Engineering and Verification, Bertrand Meyer and Martin Nordio (Eds.).
Vol. 7007. Springer Berlin Heidelberg, 194-212.

W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. 1994. Effect of test set size and
block coverage on the fault detection effectiveness. In International Symposium on Software Reliability.
230-238.

W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. 1995. Effect of Test Set Minimization
on Fault Detection Effectiveness. In International Conference on Software Engineering. 41-50.

YAFFS2 2013. YAFFS: A flash file system for embedded use. http://www.yaffs.net.

Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013. Operator-based and random
mutant selection: Better together. In International Conference on Automated Software Engineering. 92—
102.

Lu Zhang, Shan-Shan Hou, Jun-Jue Hu, Tao Xie, and Hong Mei. 2010. Is operator-based mutant selection
superior to random mutant selection?. In International Conference on Software Engineering. 435—-444.

Received January 2014; revised July 2014; accepted August 2014

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

ftp://ftp.software.ibm.com/software/rational/docs/documentation/manuals/unixsuites/pdf/purify/purify.pdf
ftp://ftp.software.ibm.com/software/rational/docs/documentation/manuals/unixsuites/pdf/purify/purify.pdf
http://www.sqlite.org/
http://docs.oracle.com/javase/specs/jvms/se5.0/html/ClassFile.doc.html
http://wala.sf.net
http://www.yaffs.net

