
Error Explanation and Fault

Localization with Distance Metrics

Alex David Groce

March 2005
CMU-CS-05-121

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Edmund Clarke, Chair

Reid Simmons
David Garlan

Willem Visser, NASA Ames Research Center

Copyright c© 2005 Alex David Groce

This research was sponsored by the National Science Foundation (NSF) under grant nos. CCR-
0098072, CCR-0121547, CCR-9803774 and through an NSF Graduate Fellowship. The Siemens
Industrial Affiliates Program also provided funding related to this research. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the sponsoring
institutions, the U.S. Government or any other entity.

Keywords: Formal methods, model checking, fault localization, automated de-
bugging, distance metrics, bounded model checking

For my parents.

Abstract

When a program’s correctness cannot be verified, a model checker
produces a counterexample that shows a specific instance of undesirable
behavior. Given this counterexample, it is up to the user to understand
and correct the problem. This can be a very difficult task. The error
may be in the specification, the environment or modeling assumptions,
or the program itself. If the error is determined to be real, the fault
localization problem remains: before the problem can be corrected, the
faulty portion of the code must be identified. Industrial experience and
research show that debugging is a time-consuming and difficult step of
development even for expert programmers. The counterexample provided
by a model checker does not provide sufficient information to ease this
task. Counterexample traces can be very long and difficult to read, and
often include hundreds or potentially even thousands of lines of code
unrelated to the error.

Error explanation is the effort to provide automated assistance in
moving from a counterexample to a correction for an error. Explana-
tion provides information as to the cause of an error and includes fault
localization by indicating likely problem areas in the source code or spec-
ification.

This work presents a novel and successful approach to error explana-
tion. The approach is based on distance metrics for program executions.
The use of distance metrics is inspired by the counterfactual theory of
causality proposed by philosopher David Lewis, and the insights gained
from previous work on providing practical error explanation.

ii

Acknowledgments

It is traditional at this point to note that while a tremendous amount of gratitude
is due to the folks mentioned here, any flaws in this work are the unaided product
of the author. Far be it from me to deviate from a wise and correct tradition.

My advisor, Edmund Clarke, has provided support, encouragement, and (of
course) advice throughout my graduate school career. I thank him for all of his
efforts and ideas, and for making the Clarke group such a consistently wonderful
place to do model checking research that I almost wish I didn’t have to graduate.
I should also at this point thank Martha for taking care of all of us in the group,
including Ed.

I would also like to thank the other members of my thesis committee – David
Garlan, Reid Simmons, and Willem Visser – for their feedback and support. In
particular, I would like to thank Willem for the many brainstorming sessions at Ames
during the first summer we looked into the idea of explaining counterexamples, and
for encouraging me to see how far error explanation could be taken.

Robert O’Callahan first directed my attention in a serious way to Andreas Zeller’s
delta debugging work; if not for that, it is very possible that this thesis would concern
something other than error explanation1.

On that note, I would like to thank Andreas Zeller very much for encouraging
this work, which began as an attempt to produce a model-checking based fault
localization technique half as nifty as delta debugging (and its many variations).
In particular, Andreas and the other participants at the December 2003 Dagstuhl
on Understanding Program Dynamics provided many valuable insights into how to
improve (and present) this work.

1To determine if that’s true, we might use a distance metric on possible worlds and Lewis’
counterfactual theory: in the closest possible world to ours in which Rob never mentioned Zeller’s
work to me, what is my thesis topic?

iii

The explain tool would not exist if not for the patience, intelligence, and pro-
gramming wizardry of Daniel Kroening. There really is no explain tool, only a
series of rickety hacks built on the solid foundation of CBMC. The explain GUI is
thanks to Flavio Lerda. Sagar Chaki provided a similar foundation in the MAGIC
tool for abstract error explanation.

Ofer Strichman, Daniel, Sagar, and Flavio are responsible for many essential
suggestions and insights. Helmut Veith, Prasana Thati, Natasha Sharygina, and
Anubhav Gupta also offered useful comments and critiques.

Manos Renieris’ ideas, code, and expert assistance were indispensable in the
empirical evaluation portion of this work. Fadi Aloul tuned, debugged, and added
features to the pseudo-Boolean solver PBS at my request in a truly obliging manner.
The tools in this thesis wouldn’t work at all without Fadi’s help, and it would have
been very difficult to make the case that they work without Manos’ insights.

Dimitra Giannakopoulou, Jamie Cobleigh, Corina Păsăreanu, Charles Pecheur,
and Sarfraz Khurshid all provided helpful comments and suggestions while I was
at NASA Ames Research Center (and afterward). Dimitra provided most helpful
comments on an early draft of the TACAS 2004 paper. Discussions with Thomas
Ball, Mayur Naik, Fabio Somenzi, Kavita Ravi, and Michael Ernst contributed in
important ways to the development of the ideas that appear in this thesis. I would like
to thank GrammaTech, Inc. for help in using CodeSurfer to generate the PDGs for
evaluation, and Thomas Reps and Tim Tietelbaum for useful suggestions. Roderick
Bloem, Stefan Staber, and ShengYu Shen also provided useful insight into related
ideas. Audiences at SPIN, TACAS, FSE, JPL, Microsoft Research, and IBM’s T. J.
Watson Research Center provided valuable comments and questions about this work
— in particular, Gerard Holzmann, Rajeev Joshi, Sriram Rajamani, Manuvir Das,
Mark Wegman, and Eran Yahav inspired fruitful ideas. I owe Rance Cleaveland a
great debt for having first interested me in model checking, and for having advised
me to attend graduate school at Carnegie Mellon.

Being a part of CMU SCS has been a lot of fun. I would like to thank all of the
folks here for making life in Pittsburgh enjoyable, and Sharon Burks in particular for
reminding me of all the things I kept forgetting I needed to do in order to graduate!

If I begin naming names, I’m sure to leave someone important out, so I’ll just
say that this bit thanks everyone who deserves thanks: all my great friends, from
Starmount High School in good old Yadkin County, from NC State, from CMU, from
zephyr (though the last group is generally disordered), and elsewhere. Without y’all,
my sanity would have failed long before this thing was finished.

iv

That said, I will explicitly mention those fine souls who loaned me books, critiqued
slides, asked me “just what is it you research, anyway?” (and listened to the answer,
then asked good questions) or read some portion of the thesis: thanks Josie, Kevin,
James, Bruce, Francisco, Pete, Chris, Jeffrey, Benôıt, Tom, Pat, William, Andrzej,
Darrell, David, Jennifer, Phil, Karl, Neel, and Lauren! Special thanks to Mahim for
loaning me his laptop at my thesis defense. If I’ve forgotten anyone here, I apologize
from the bottom of my heart2.

I must, naturally, thank my family: without the love and support of my mom
Carole, my dad Leonard, and my sister Andrea I doubt I’d have ever managed to be
accepted in polite society, much less complete a thesis.

Finally, thanks be to God for dappled things, er, for, quite literally, everything.

2Listing everyone on zephyr who helped out with LATEX would require more space than I think
I have.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of the Approach . 4

1.3 Explanation and Causality . 6

1.4 Lewis’ Counterfactual Theory of Causality 8

1.4.1 Causal Dependence . 9

1.5 Error Explanation with Distance Metrics 11

1.5.1 Limitations of the Approach 13

1.6 Narrative Table of Contents . 14

2 Background and Related Work 17

2.1 Philosophical Background . 17

2.2 Related Work . 19

2.2.1 Error Explanation and Fault Localization in Model Checking . 19

2.2.2 Error Explanation and Fault Localization in Testing 25

2.2.3 Slicing and Counterexample Minimization 27

2.2.4 Error Explanation and Fault Localization in Artificial Intelli-
gence (Model-Based Diagnosis) 29

2.2.5 String and Sequence Comparison 30

2.3 Original Contributions . 31

vii

3 Error Explanation with Distance Metrics 33

3.1 Distance Metrics for Program Executions 33

3.1.1 Representing Program Executions 34

3.1.2 The Distance Metric d . 42

3.1.3 Choosing an Unwinding Depth 48

3.2 Producing an Explanation . 49

3.2.1 Finding the Closest Successful Execution 50

3.3 Closest Successful Execution ∆s and Causal Dependence 56

4 ∆-Slicing 59

4.1 Motivation . 59

4.2 Computing a ∆-Slice . 63

4.3 Explaining and Slicing in One Step 69

4.3.1 Motivation . 69

4.3.2 Näıve Approach . 70

4.3.3 Shadow Variables . 71

4.3.4 Disadvantages of One-Step Slicing: The Relativity of Relevance 74

5 Case Studies and Evaluation for Concrete Explanation 77

5.1 Case Studies . 77

5.1.1 TCAS Case Study . 78

5.1.2 µC/OS-II Case Study . 89

5.2 Evaluation of Fault Localization . 92

5.3 Evaluation of Modifications to the Distance Metric 98

5.3.1 Measuring Distance Over Input Changes Only 98

5.3.2 Increasing the Weight for Input Changes 100

5.3.3 Increasing the Weight for Control Flow Changes 101

5.3.4 Allowing Arbitrary Value Changes (Interventions) 102

5.4 Evaluation of One-Step Slicing . 103

viii

5.4.1 One-Step Slicing in Action . 104

6 Causal Dependence and Explanation 109

6.1 Hypothesizing and Checking Causal Dependence 109

6.1.1 Motivation . 110

6.1.2 Algorithm for Checking Causal Dependence 111

6.1.3 Checking Causal Dependence in Practice 116

6.1.4 Alternative Approaches for Hypothesis Selection 117

7 Explaining Abstract Counterexamples 119

7.1 Motivation . 119

7.1.1 Predicate Abstraction . 121

7.1.2 Motivating Example . 125

7.2 Abstract Error Explanation . 135

7.3 A Distance Metric for Abstract Executions 138

7.3.1 Alignment . 140

7.3.2 The Distance Metric d . 143

7.4 Finding a Successful Execution . 145

8 Explaining LTL Property Failures 149

8.1 Successful Executions for LTL Properties 149

8.2 Example of LTL Explanation . 151

9 Case Studies and Evaluation for Abstract Explanation 165

9.1 Experimental Results . 165

9.1.1 Benchmarks . 166

9.2 Evaluation of Fault Localization . 168

9.3 Benchmark: Mutex Explanation . 168

9.4 SSL Explanation . 172

9.5 Comparing Concrete and Abstract Explanation 177

ix

9.5.1 Is Abstract Superior to Concrete? 177

9.5.2 Is Concrete Superior to Abstract? 179

9.5.3 Choosing a Distance Metric 181

10 Conclusions 183

10.1 Conclusions . 183

10.2 Future Work . 186

10.2.1 SSA and Abstract Explanation 186

10.2.2 Slicing . 187

10.2.3 Concurrency . 188

10.2.4 Explicit-State Approaches . 189

10.2.5 Explanation and Symbolic Execution 190

10.2.6 Metrics for More Complex Counterexample Forms 191

10.2.7 Further Empirical Evaluation and User Studies 191

10.2.8 Automated Program Correction 192

10.3 Summary . 194

Bibliography 195

A Command Line Options for the explain Tool 207

B TCAS Version #1 Counterexample 209

C TCAS Version #1 First Explanation 217

D TCAS Version #1 Counterexample (Post-Assumption) 225

E TCAS Version #1 Second Explanation 233

F µC/OS-II Counterexample 243

G µC/OS-II Explanation 253

x

List of Figures

1.1 Explaining an error using distance metrics 4

1.2 Causal dependence . 10

2.1 A counterexample, a negative, and a positive 21

3.1 minmax.c . 36

3.2 Constraints generated for minmax.c 38

3.3 Counterexample for minmax.c . 39

3.4 Counterexample values for minmax.ce 40

3.5 ∆s for minmax.c and the counterexample in Figure 3.3 52

3.6 Closest successful execution for minmax.c 54

3.7 Closest successful execution values for minmax.c 55

3.8 ∆ values (∆ = 1) for execution in Figure 3.6 55

4.1 slice.c . 60

4.2 ∆ values for slice.c . 61

4.3 Partial constraints for slice.c . 66

4.4 ∆-slicing constraints for slice.c . 67

4.5 ∆-slice for slice.c . 68

4.6 ∆-slice for minmax.c . 69

4.7 One-step ∆-slicing constraints for slice.c 73

5.1 diff of correct TCAS code and variation #1 79

xi

5.2 First explanation for variation #1 (after ∆-slicing) 79

5.3 Code for violated assertion . 80

5.4 Explaining tcasv1.c . 81

5.5 Second explanation for variation #1 (after ∆-slicing) 85

5.6 Values removed by ∆-slicing from report 86

5.7 Correctly locating the error in tcasv1.c 87

5.8 Code structure for µC/OS-II error . 90

5.9 Explanation for µC/OS-II error . 91

5.10 One-step slicing report for TCAS variation #1 105

5.11 Code for determining if RA is computed 106

6.1 sort.c . 113

6.2 Counterexample for sort.c . 114

6.3 Explanation for sort.c . 115

6.4 Causes for sort.c . 115

6.5 Causes for TCAS error #1 . 116

7.1 Error explanation with distance metrics 120

7.2 Counterexample-guided abstraction refinement (CEGAR) 121

7.3 minmax.c . 124

7.4 Concrete ∆ values for minmax.c . 125

7.5 Abstract ∆ values for minmax.c . 126

7.6 Abstract state space for minmax.c . 130

7.7 Abstract counterexample graph for minmax.c 131

7.8 Abstract counterexample for minmax.c. 132

7.9 Abstract successful execution graph for minmax.c 133

7.10 Abstract successful execution for minmax.c 134

7.11 Alignments for executions . 141

8.1 Successful executions for LTL properties 152

xii

8.2 locks.c . 155

8.3 Counterexample for locks.c . 157

8.4 Abstract ∆ values for locks.c . 160

8.5 Successful execution for locks.c . 161

9.1 Incorrect version of mutex code fragment 169

9.2 Correct version of mutex code fragment 169

9.3 Abstract ∆ values for mutex lock failure 170

9.4 Mutex locking property . 171

9.5 SSL-1 code fragment . 172

9.6 Abstract ∆ values for SSL-1 . 173

9.7 Counterexample for SSL-1 . 174

xiii

xiv

List of Tables

5.1 Scores for localization techniques . 94

5.2 Scores for metric over inputs-only . 99

5.3 Scores when interventions are allowed 102

5.4 Scores with one-step slicing . 104

9.1 Experimental results for MAGIC examples 167

xv

xvi

Chapter 1

Introduction

“Did the Nightmare kill the Venetian painter known as Giancristoforo

Doria?”

“The painter you name died at the hands of his callous fellow conspirators.

The conditions of his imprisonment in the Arqana destroyed him. He died

from a madness inherent within him. He committed suicide. He was killed

by sorcery. The Arabian Nightmare took him. His death was determined and

more than determined. There are always more causes than events. . .”

- Robert Irwin, The Arabian Nightmare

1.1 Motivation

In an ideal world, given a trace demonstrating that a system violates a specification,

a programmer or designer would always be able in short order to identify and correct

the faulty portion of the code, design, or specification. In the real world, dealing

1

with an error is often an onerous task, even with a detailed failing run in hand.

Debugging is one of the most time consuming tasks in the effort to improve software

quality [Ball and Eick, 1996], and locating an error is the most difficult aspect of the

debugging process [Vesey, 1985]. This work describes the application of a technology

traditionally used for discovering errors to the problem of understanding and isolating

errors.

The goal of this thesis research can be broken down into two related (but not

equivalent) tasks, error explanation and fault localization:

• Definition 1 (error explanation)

Error explanation describes automated approaches that aid users in moving

from a trace of a failure to an understanding of the essence of the failure and,

perhaps, to a correction for the problem.

Error explanation is to some extent a fundamentally psychological problem, and it

is unlikely that completely formal proof of the superiority of any approach is possible.

By this we do not mean that objective evaluation of explanation methods is impos-

sible: user studies and other measures of increased programmer productivity may

well serve to demonstrate the superiority of inferiority of explanation approaches.

By “psychological” we rather mean that a logically defensible explanation that does

not aid actual programmers in correcting errors is, in some sense, missing the point.

The best proof of an explanation is more likely to lie in whether it aids in correcting

an error, rather than relying on a formally definable logical evaluation.

2

• Definition 2 (fault localization)

Fault localization is the more specific task of identifying the faulty core of a

system: which components are responsible for an error. Alternatively, fault

localization can be thought of as reporting which portions of a system should be

modified in order to correct an error.

Fault localization is suitable for quantitative evaluation, and we present com-

parisons of quantitative results to establish the effectiveness of the distance metric

approach, based on an evaluation method recently adopted by the fault localization

community [Cleve and Zeller, 2005; Renieris and Reiss, 2003]. To some extent, given

the very reasonable assumption that determining the location of a fault is a key task

in understanding and correcting an error [Vesey, 1985], demonstrating that a method

is effective for fault localization provides a strong argument that the method will be

useful for the more general task of error explanation. This assumption suggests that

on the one hand, error explanation subsumes fault localization, and, on the other

hand, that fault localization is the most critical aspect of error explanation. This

seems natural, given that an ideal explanation would presumably be a description

of the best (from the point of view of correctness and understandability of resulting

code) fix for an error, and that this would necessarily entail a localization of the code

which is to be altered (and thus a very precise localization).

A more concrete way to think about the difference between explanation and

localization is that an explanation will likely involve a story about causality: “A

happens, which causes B to happen, which causes C to happen, which results in

3

CBMC explain

SAT solver PBS

counterexample

counterexample

closest successful execution

s

S S’

P + spec.

finds a counterexample finds closest successful execution
 as measured by a distance metric

1
2 4

3
6

5 ∆ sliced
∆ s

Figure 1.1: Explaining an error using distance metrics

an error.” A localization will have a simpler structure, simply indicating program

modules, functions, lines, or expressions as likely to be faulty.

Model checking [Clarke and Emerson, 1981; Clarke et al., 2000b; Queille and

Sifakis, 1982] tools explore the state-space of a system to determine if it satisfies a

specification. When the system disagrees with the specification, a counterexample

trace [Clarke et al., 1995] is produced. This work explains how a model checker

can provide error explanation and fault localization information in addition to a

counterexample witness, in order to ease the debugging process.

1.2 Overview of the Approach

For a program P , the process (Figure 1.1) is as follows:

4

1. The bounded model checker CBMC uses loop unrolling and static single as-

signment to produce from P and its specification a SAT problem, S. The

satisfying assignments of S are bounded executions of P that violate the spec-

ification (counterexamples).

2. CBMC uses a SAT solver to find a counterexample.

3. The explain tool produces a propositional formula, S ′. The satisfying assign-

ments of S ′ are executions of P that do not violate the specification. explain

extends S ′ with constraints representing an optimization problem: find a sat-

isfying assignment that is as similar as possible to the counterexample, as

measured by a distance metric on executions of P .

4. explain uses the PBS solver to find a successful execution that is as close as

possible to the counterexample.

5. The differences (∆s) between the successful execution and the counterexample

are computed.

6. A slicing step is applied to reduce the number of ∆s the user must examine.

The ∆s are then presented to the user as explanation and localization.

If the explanation is unsatisfactory at this point, the user may need to add as-

sumptions and return to step 1 (see Section 5). The most important novel contri-

butions of this work are the third, fourth, and sixth steps of this process: previous

approaches to error explanation did not provide a means for producing a successful

5

execution guaranteed to be as similar as possible to a counterexample, and lacked

the notion of causal slicing.

In Chapter 7, this basic outline will be revisited and generalized, but the essential

idea of combining bounded model checking [Biere et al., 1999] with an optimization

problem [Aloul et al., 2002] to generate a successful execution that is maximally

similar to a given counterexample will remain unchanged.

1.3 Explanation and Causality

There are many possible approaches to error explanation. A basic notion shared

by many researchers in this area [Ball et al., 2003; Groce and Visser, 2003; Zeller,

2002] and many philosophers [Sosa and Tooley, 1993] is that to explain an event

(e.g. an error trace in a program) is to identify its causes. A second common

intuition is that successful executions that closely resemble a faulty run can shed

considerable light on the sources of the error (by an examination of the differences

in the successful and faulty runs) [Groce and Visser, 2003; Renieris and Reiss, 2003;

Zeller and Hildebrandt, 2002].

The sources of the second intuition are probably complex (and, naturally, related

to intuitions about causality), though it seems reasonable to expect that the experi-

ence of many researchers (and most programmers) in debugging code that is poorly

understood is involved: before an error can be understood, some notion of correct

behavior must be available for comparison. A similar successful execution provides

a basis for forming expectations about correct behavior — not only some correct

6

behavior of the program, but a correct behavior relevant to the erroneous behavior

in question.

The idea that explanation is “about” causality, on the other hand, is a funda-

mental matter of definition: whatever notion of explanation or localization is used

appears to relate to the causal structure of the system. Given this basic assumption,

a natural approach to error explanation and fault localization is to search for a theory

of causality that satisfies certain criteria:

1. The theory should provide a computable definition of causality. Automated

localization and explanation cannot rely on a purely psychological notion that

cannot be translated into algorithmic terms.

2. In addition to determining whether events are causally related, the theory

should be applicable to finding causes: given an event, explanation and lo-

calization rely on producing hypotheses about causality, rather than simply

determining if a given candidate cause agrees with the theory.

3. The theory should also be agreeable to basic intuitions: the results are fi-

nally intended to be used by a programmer/designer or verification expert,

and should be, at some level, based on principles that the user can understand.

Given that explanation and localization is an interactive process, some degree

of understanding to allow the user to effectively guide the process is desirable.

The second requirement also makes quantitative evaluation of a method derived

from a theory possible: given a fault localization, it is possible to determine its

7

quality and compare to competing methods [Renieris and Reiss, 2003].

1.4 Lewis’ Counterfactual Theory of Causality

David Lewis [Lewis, 1973a] has proposed a theory of causality that provides a more

formal justification for the second intuition if we assume explanation is the anal-

ysis of causal relationships. If explanation is, at heart, about causality, and, as

Lewis proposes, causality can be understood using a notion of similarity (that is, a

distance metric), it is reasonable to expect that successful executions resembling a

counterexample can be used to explain an error.

Following Hume [Hume, 1739, 1748; Sosa and Tooley, 1993] and others, Lewis

holds that a cause is something that makes a difference: if the cause c had not been,

the effect e would not have been. Lewis equates causality to an evaluation based on

distance metrics between possible worlds (counterfactual dependence) [Lewis, 1973b].

This provides a philosophical link between causality and distance metrics for program

executions.

For Lewis, an effect e is dependent on a cause c at a world w iff at all worlds most

similar to w in which ¬c, it is also the case that ¬e. Causality does not depend on

the impossibility of ¬c and e being simultaneously true of any possible world, but on

what happens when we alter w as little as possible, other than to remove the possible

cause c. This seems reasonable: when considering the question “Was Larry slipping

on the banana peel causally dependent on Curly dropping it?” we do not, intuitively,

take into account worlds in which another alteration (such as Moe dropping a banana

8

peel) is introduced. This intuition also holds for causality in programs, despite the

more restricted context of possible causes: when determining if a variable’s value

is a cause for a failed assertion, we wish to consider whether changing that value

results in satisfying the assertion without considering that there may be some other

(unrelated) way to cause the assertion to fail. Distance metrics between possible

worlds are problematic, and Lewis’ proposed criteria for such metrics have been

criticized on various grounds [Horwich, 1987; Kim, 1973; Sosa and Tooley, 1993].

Program executions are much more amenable to measurement and predication

than possible worlds. The problems introduced by the very notion of counterfac-

tuality are also avoided: a counterfactual is a scenario contrary to what actually

happened. Understanding causality by considering events that are, by nature, only

hypothetical may make theoretical sense, but imposes certain methodological diffi-

culties. On the other hand, when explaining features of program executions, this

aspect of counterfactuality is usually meaningless: any execution we wish to consider

is just as real, and just as easily investigated, as any other. A counterexample is in

no way privileged by actuality.

1.4.1 Causal Dependence

If we accept Lewis’ underlying notions, but replace possible worlds with program exe-

cutions and events with propositions about those executions, a practically applicable

definition of causal dependence emerges1:

1Our causal dependence is actually Lewis’ counterfactual dependence.

9

b b’

effect
ee

effecteffect
e

b’a

cause
c

effect
e

ab

cause
c

d(a,b) d(a,b’) d(a,b) d(a,b’)

Causal dependence No causal dependence

Figure 1.2: Causal dependence

Definition 3 (causal dependence)

A predicate e is causally dependent on a predicate c in an execution a iff:

1. c and e are both true for a (we abbreviate this as c(a) ∧ e(a))

2. There exists an execution b such that: ¬c(b) ∧ ¬e(b)∧

(∀b′ . (¬c(b′) ∧ e(b′))⇒ (d(a, b) < d(a, b′)))

where d is a distance metric for program executions (defined in Section 3.1). In

other words, e is causally dependent on c in an execution a iff executions in which

the removal of the cause also removes the effect are more like a than executions in

which the effect is present without the cause.

Figure 1.2 shows two sets of executions. In each set, an execution a, featuring

both a potential cause c and an effect e, is shown. Also shown in each set is an

execution b, such that (1) neither the cause c nor the effect e is present in b and (2)

that is as similar as possible to a. That is, no execution which does not feature either

10

c or e is closer to a than b. Execution b′ in each group is, in like manner, as close as

possible to a, and features the effect e but not the potential cause c. If b is closer to

a than b′ is (that is, d(a, b) < d(a, b′), as in the first set of executions), we say that e

is causally dependent on c. If b′ is at least as close to a as b (as in the second set of

executions), we say that e is not causally dependent on c.

1.5 Error Explanation with Distance Metrics

This work presents a distance metric that allows determination of causal dependen-

cies and the implementation of that metric in a tool called explain [Groce et al.,

2004] that extends CBMC [CBMC Website], a model checker for programs written

in ANSI C. The focus of the work, however, is not on computing causal dependence,

which is only useful after forming a hypothesis about a possible cause c, but on

helping a user find likely candidates for c. Given a good candidate for c, it is likely

that code inspection and experimentation are at least as useful as a check for causal

dependence. Lewis’ theory provides only a method for determining if a candidate is

really a cause, not a method for generating candidates in the first place. The philo-

sophical discussion of causality is more relevant to settling disputes about proposed

causes than it is to the most important task for error explanation, coming up with

likely candidate causes.

The basic approach, presented in Chapter 3 (and outlined in Figure 1.1), is to

explain an error by finding an answer to an apparently different question about an

execution a: “How much of a must be changed in order for the error e not to occur?”

11

— explain answers this question by searching for an execution, b, that is as similar

as possible to a, except that e is not true for b. Typically, a will be a counterexample

produced by model checking, and e will be the negation of the specification. Section

3.3 provides a proof of a link between the answer to this question about changes to

a and the definition of causal dependence. The guiding principle in both cases is to

explore the implications of a change (in a cause or an effect) by altering as little else

as possible: differences will be relevant if irrelevant differences are suppressed.

It is these differences that will give the user a set of candidate causes for an

error. The key notion is that a cause is something that makes a difference. Some

counterexample inputs must change their values in order to avoid an error: what

happens as a result of these inputs changes which results in the error failing to

manifest itself? These behavioral changes should provide a user with insight into why

the error appears in the failing execution. Minimizing the distance (i.e., the number

of changes with respect to the counterexample) avoids the introduction of irrelevant

changes — things that don’t make a difference are not causes — and minimizes the

amount of information that a user must read in order to start hypothesizing causes.

We can expect that if these differences are, in fact, closely associated with the real

causes of error, high quality fault localization can be provided by indicating the

program source locations of the changes in computed values. Experimental results

bear out this indirect indication that changes with respect to a most similar successful

execution are valuable in establishing the causes of an error.

12

1.5.1 Limitations of the Approach

The approach presented is automated in that the generation of a closest successful

execution requires no intervention by the user; however, it may be necessary in some

cases for a user to add simple assumptions to improve the results produced by the

tool. For most of the instances seen in the case studies, this need for intervention

is a result of the structure of the property, and the introduction of assumptions to

improve the result can, in principle, be fully automated. More generally, however,

it is not possible to make use of a fully automated refinement of assumptions, as an

explanation can only be evaluated by a human user: there is no independent objective

standard by which the tool might determine if it has captured the right notion of the

incorrectness of an execution, in a sense useful for debugging purposes. In particular,

while the specification may correctly capture the full notion of correct and incorrect

behavior of the program, it will not always establish sufficient guidance to determine

the correct executions that are relevant to a particular failing execution. Assumptions

are used, in a sense, to refine the distance metric (instead of the specification) by

removing some program behaviors from consideration. The frequency of this need is

unknown: only one example required the addition of a non-automatable assumption.

See Section 5.1.1 for the details of this occasional need for additional guidance.

A more fundamental limitation is that reporting changes to a counterexample

with respect to a minimally distant successful execution does not work when a pro-

gram has no successful executions. In this case, the explain tool can still be used

to check candidate causes generated by some other method for causal dependence

13

(see Chapter 6), but the primary technique presented in this work will not provide

explanation or localization. In our experience, the programs to which model checkers

are applied typically do not present this problem, as model checking is most useful

for finding difficult-to-discover failing executions of programs that behave correctly

for most inputs.

1.6 Narrative Table of Contents

You’ve just finished reading Chapter 1, which presents a high level overview of the

goals, philosophical underpinnings, and central approach of the thesis. This chapter

also includes the narrative table of contents you are now reading.

Chapter 2 briefly addresses the subject of the philosophy of causality, and de-

scribes the large body of more practical work on error explanation and fault local-

ization. Related work in model checking and testing is presented in some detail;

model-based diagnosis and program slicing are presented in less detail, as the meth-

ods used in these approaches are less directly related to our distance metric based

technique.

The heart of the thesis is Chapter 3: if you have time to read only one chapter,

make it this one, which presents the basic technique for error explanation and fault

localization with distance metrics. In this critical chapter you will read about (1) a

distance metric for program executions and (2) an algorithm for finding a success-

ful execution that is as similar as possible to a given counterexample. The ideas

presented in Chapter 3 are crucial to the understanding of the subsequent chapters.

14

Chapter 4 introduces ∆-slicing, an algorithm for removing irrelevant information

from an error explanation. This material is the most technically involved section of

the thesis. Complete understanding of causal slicing is not essential for a basic grasp

of the distance metric based approach, but is likely to reward the reader in pursuit

of deeper insights into the relationship between explanation and causality.

The central experimental results of the thesis are presented in Chapter 5, which

is therefore essential reading. In addition to comparison with other explanation

and localization techniques and discussion of how to quantitatively evaluate fault

localization, the chapter provides a look at the practicalities of explanation for real

programs.

Chapter 6 is something of a digression; it shows how the explain tool can be

used to check causal dependence (as defined above) and automatically hypothesize

causes for an error. The reader in a hurry is advised to skip this portion of the thesis.

Abstract explanation is the subject of Chapters 7-9. Abstract explanation is a

generalization of the technique presented in Chapter 3 to executions in an abstract

state space, where each “execution” may represent many possible concrete execution.

Abstraction provides an automatic generalization of the differences in executions to

logical changes — e.g.., “x <= y to x > y” in place of “x = 10 to x = 20”.

Chapter 7 describes how (and why) to compute abstract explanations, following

a brief introduction to predicate abstraction and counterexample guided abstraction

refinement in software model checking.

Chapter 8 shows how abstract explanation can be applied to explain violations

15

of Linear Temporal Logic specifications, and is not essential reading.

Chapter 9 presents experimental results demonstrating the utility of abstract

explanation and compares and contrasts abstract explanation to the “concrete” ex-

planation technique presented in Chapter 3.

Chapter 10 summarizes major conclusions and proposes a number of possible

directions for future work.

16

Chapter 2

Background and Related Work

If it rained knowledge I’d hold out my hand; but I would not give myself

the trouble to go in quest of it.

- Samuel Johnson, as quoted in Boswell’s Life of Johnson

2.1 Philosophical Background

In this work, the assumption that explanation and localization are rooted in the idea

of causality is taken as a given. The problem of causality is one of the oldest issues in

philosophy [Sosa and Tooley, 1993]. A survey of the philosophical treatments, dating

at least to Aristotle (and arguably to the pre-Socratics) is beyond the scope of this

work. The modern development of the philosophy of causality can be considered to

begin with Hume [Hume, 1739, 1748]. Stalnaker [Stalnaker, 1968] and Lewis [Lewis,

1973a] propose counterfactual [Lewis, 1973b] theories of causality, but a number of

17

competing notions (e. g. that of Mackie [Mackie, 1965]) are often defended in the

philosophical community. Even without considering probabilistic causality [Salmon,

1980] and its related problems, it is safe to say that there is no philosophical consensus

on what it means for an event c to cause an event e.

Nonetheless, this work builds on the counterfactual framework for causality pro-

posed by David Lewis [Lewis, 1973a]. While Lewis’ theory is informative, it is not

essential that it be accepted to justify the work presented here. The empirical re-

sults (Chapters 5 and 9) demonstrate the effectiveness for localization of the distance

metric-based methods, and the works of Renieris and Reiss, Zeller, and others rely

on the basic assumption that similar executions provide information about causality

without making reference to Lewis’ work.

Objections to Lewis’ theory are often based on the arbitrary nature of distance

metrics on possible worlds or the problematic nature of events in his theory [Ben-

nett, 1987]. Both objections are substantially weakened with respect to program

executions: in particular, the concept of events need not be considered at all, only

observable predicates on the executions. Similarly, issues concerning the temporal

direction of causality [Bennett, 1984] are less problematic in a practically oriented

task such as automated debugging: whether it makes logical sense to ascribe a pred-

icate that holds after an error occurs as a cause of that error, it makes little sense

for purposes of assisting in debugging: the error cannot be “prevented” by code exe-

cuted after it occurs. Model checkers often consider an execution to terminate once

an error state is reached, which further reduces the importance of this consideration.

As noted in the introduction, the issues raised by the essential non-observability of

18

counterfactuals in the real world are irrelevant when considering program executions

in a model checker, as no particular execution or counterexample is privileged by

actuality.

2.2 Related Work

2.2.1 Error Explanation and Fault Localization in Model

Checking

The most basic level of explanation in model checking is the production of a coun-

terexample [Clarke et al., 1995; Clarke and Veith, 2003] demonstrating that a pro-

gram does not satisfy a specification. A counterexample serves as a rudimentary error

explanation in that it presents enough detail, in theory, to reconstruct the causality

of a failure; additionally, it serves as localization: the portion of the system exercised

in the counterexample provides a region in which to search for a fault. Unfortunately,

counterexamples typically present too much information: most of the detail provided

in any given counterexample is likely to be irrelevant to the error. Even finding the

shortest counterexample does not remove this problem: for many programs, even the

shortest path to a failure will contain much more non-faulty code than faulty code.

In cases where the faulty code induces an immediate failure, reading backwards from

the end of a counterexample may be sufficient, but faulty code may only manifest as

a failure after a large amount of additional code has been executed. In the kinds of

subtle hard-to-test-for errors that model checking is particularly suited for detecting,

19

this may be especially likely to happen.

A quite considerable body of work has described proof-like and evidence-based

counterexamples [Chechik and Gurfinkel, 2003; Namjoshi, 2001; Peled et al., 2001;

Stevens and Stirling, 1998; Tan and Cleaveland, 2002]. Automatically generating

assumptions for verification [Cobleigh et al., 2003] can also be seen as a kind of error

explanation: an assumption describes the conditions under which a system avoids

error. However, all of these approaches appear to be unlikely to result in succinct

explanations for errors, as they may encode the full complexity of the transition

system; one measure of a useful explanation lies in how much it reduces the informa-

tion the user must consider (this is the underlying rationale behind the evaluation

technique used in this thesis and in other studies of fault localization).

Error explanation facilities are now featured in Microsoft’s SLAM [Ball and Ra-

jamani, 2001] model checker [Ball et al., 2003] and NASA’s Java PathFinder 2 (JPF)

[Visser et al., 2003] model checker [Groce and Visser, 2003]. Jin, Ravi, and Somenzi

proposed a game-like explanation (directed more at hardware than software systems)

in which an adversary tries to force the system into error [Jin et al., 2002]. Of these,

only JPF uses a (weak) notion of distance between traces, and it cannot solve for

nearest successful executions.

The SLAM implementation of error explanation [Ball et al., 2003] first generates

all possible successful paths through the system being model checked. A projection

to control locations is then made to determine locations that appear in counterex-

ample paths vs. successful paths. In the event that only data, rather than control

20

A

2

0

1

3

a

b

b

a

Counterexample

a

b
4

0

1

5

a

Negative

a

A

a

3

b

b

a

a

5

0

2

3

Positive

4

Figure 2.1: A counterexample, a negative, and a positive

flow, distinguishes paths, data values can be taken into account. The published ex-

periments show good results; unfortunately, the current version of SLAM does not

support these features, so obtaining up-to-date experimental results or comparisons

across examples with this method has been difficult.

The JPF approach [Groce and Visser, 2003] is similar in spirit, but only collects

a subset of the successful and unsuccessful paths. The model checker explores the

“neighborhood” of a counterexample (which can be defined in part by the search

strategy used, including heuristic searches [Groce and Visser, 2002, 2004]) and di-

vides paths into positives and negatives, based on their relationship to the original

counterexample (Figure 2.1). In particular, positives and negatives are executions

which reach the same control location and take the same action (the JPF explana-

tion method considers Labeled Transition Systems) as the counterexample: a positive

proceeds to a non-error state, and a negative proceeds to an error state.

JPF provides a number of analyses over these paths (which can be found in a

way that approximates a weak distance metric, so that good and bad paths “closer”

21

to a given counterexample are discovered first), including control location and non-

deterministic choice analyses and examination of thread interleavings. Section 5.2

presents results from applying the JPF facilities to a case study, and comparing to

the techniques reported here. The JPF implementation has the important feature

of providing explanations for concurrent software, demonstrating that thread inter-

leaving changes often lead to a quick understanding of how to fix an error. This

“transform analysis” (which applies to other nondeterministic behavior, but is most

powerful, perhaps, in the case of thread interleavings) is a direct inspiration for the

distance metric approach presented in this thesis.

The most important differences between the SLAM and JPF approaches can be

summarized by noting that SLAM achieves completeness in exploration, which can

be both beneficial and harmful. JPF’s use of a limited notion of distance metrics

can produce explanations in cases where complete exploration makes this difficult,

but the ad hoc nature of the metrics and exploration reduces the effectiveness and

efficiency, as compared to the techniques presented in this thesis (see Chapter 5 for

details).

The method of Jin, Ravi, and Somenzi (the “Fate and Free Will” approach) di-

vides the variable space of a system into values controlled by a user and values con-

trolled by an adversary. Using the onion-ring expansion of a symbolic model checker,

this approach computes a strategy for forcing the system into error or avoiding er-

ror. The explanation is in terms of which variables are crucial for driving the system

toward or away from the error states. It is difficult to compare results from this

method to the focus of the work in this thesis, as the aim is to explain hardware

22

errors, and the explanations are of a different structure.

Shen et al. [Shen et al., 2004c] propose an algorithm quite similar in spirit to

the basic approach taken in our work: finding a closest execution by a distance

metrics. They address the problem of multiple nearest witnesses (MNW) by use of

an iteration over control flow predicates (which might be thought of as a kind of

secondary distance metric that refines the original metric). In all instances other

than the “toy” example used to show the virtues of abstract explanation, we have

not observed MNW to be a problem — picking an arbitrary successful run appears

to work quite well. It may be that the distance metric used by Shen et al. [Shen

et al., 2004a,b] makes this more of an issue, as it appears to be more coarse and

purely dependent on control-flow than the one presented in Chapter 3.

Sharygina and Peled [Sharygina and Peled, 2001] propose the notion of the neigh-

borhood of a counterexample and suggest that an exploration of this region may be

useful in understanding an error. However, the exploration, while aided by a testing

tool, is essentially manual and offers no automatic analysis.

Temporal queries [Chan, 2000] use a model checker to fill in a hole in a temporal

logic formula with the strongest formula that holds for a model. Chan and others

[Chan, 2000; Gurfinkel et al., 2002] have proposed using these queries to provide

feedback in the event that a property does not hold on a model.

Hopper, Seshia, and Wing combine security protocol model checking [Clarke

et al., 2000c] with Kindred’s theory-generation [Kindred and Wing, 1996] to improve

analysis of attacks on security protocols [Hopper et al., 2000]. In particular, they (1)

23

use theory-generation to produce dubious assumptions and search for examples of vi-

olations of these assumptions using the model checker and (2) use theory-generation

to determine which assumptions have failed in a counterexample generated by the

model checker.

Simmons and Pecheur noted in 2000 that explanation of counterexamples was

important for incorporating formal verification into the design cycle for autonomous

systems, and suggested the use of truth maintenance systems (TMS) [Nayak and

Williams, 1997] for explanation [Simmons and Pecheur, 2000].

Leino et al. have proposed a method for generating counterexamples from refutation-

based theorem prover results, and have suggested that error explanation and fault

localization techniques similar to those for model checking could be used in this

framework [Leino et al., 2004].

Jobstmann, Griesmayer, and Bloem have investigated program repair in a game

theoretic formulation in which they concentrate on memoryless strategies in order

to avoid adding new program state [Jobstmann et al., 2005]. While no evidence of

successful automatic software correction for realistic programs is shown, the algo-

rithm has complexity comparable to that of model checking and the authors demon-

strate that given a localization, it may be practical to compute actual repairs for

assignments in some faulty programs. Staber, Jobstmann, and Bloem propose that

diagnosing a fault in software coincides with the problem of finding a fix, and apply

their technique to the minmax example from our TACAS 2004 paper [Groce, 2004],

a locking example, and a sequential multiplier [Staber et al., 2005].

24

Finally, Kumar, Kumar, and Viswanathan have investigated the fundamental

complexity of the error explanation problem [Kumar et al., 2005]. The first class of

explanation they consider is a determination of the smallest number of changes to

a system that will ensure that a given counterexample is no longer exhibited. For

three models (Mealy machines, extended finite state machines, and pushdown au-

tomata) the authors show that this problem is NP-complete, and that no polynomial

approximation algorithm can exist unless P = NP. The second explanation class con-

sidered is that featured in this thesis work: finding a non-counterexample execution

of a system that most closely resembles a given counterexample. For this class, the

authors present a polynomial time dynamic programming algorithm for Mealy ma-

chine and pushdown automata representations. For extended finite state machines,

this problem is as difficult as finding an edit-distance to correct the system. While

the theoretical complexity of the dynamic programming algorithm improves on the

NP-complete (because SAT-based) techniques presented in subsequent chapters, the

time complexity was not generally an issue in our experimental results (Chapters 5

and 9), given that model checking must be performed first.

2.2.2 Error Explanation and Fault Localization in Testing

Fault localization and visualization techniques based on testing, rather than verifi-

cation, differ from the verification or model-based approaches in that they rely on

(and exploit) the availability of a good test suite. When an error discovered by a

model checker is not covered by a test suite, these techniques may be of little use.

25

Dodoo, Donovan, Lin and Ernst [Dodoo et al., 2000] use the Daikon invariant de-

tector [Ernst et al., 1999] to discover differences in invariants between passing and

failing test cases, but propose no means to restrict the cases to similar executions

relevant for analysis or to generate them from a counterexample. Pytlik et al. re-

port on a (largely unsuccessful) attempt to use potential invariants discovered by

Daikon to localize faults [Pytlik et al., 2003]. Hangal and Lam’s DIDUCE tool also

makes use of invariants (and violations of hypothesized invariants) to isolate errors

in Java programs [Hangal and Lam, 2002]. The JPF implementation of error expla-

nation also computes differences in invariants between sets of successful executions

and counterexamples using Daikon [Groce and Visser, 2003]. Program spectra [Har-

rold et al., 2000; Reps et al., 1997] and profiles provide the basis for a number of

testing based approaches, which rely on the presence of anomalies in summaries of

test executions. The Tarantula tool [Jones et al., 2002] uses a visualization technique

to illuminate (likely) faulty statements in programs, as does χSlice [Agrawal et al.,

1995].

This work was partly inspired by the success of Andreas Zeller’s delta debugging

technique [Zeller and Hildebrandt, 2002], which extrapolates between failing and

successful test cases to find similar executions. The original delta-debugging work

applied to test inputs only, but was later extended to minimize differences in thread

interleavings [Choi and Zeller, 2002]. Delta-debugging for deriving cause-effect chains

[Zeller, 2002] takes state variables into account, but requires user choice of instru-

mentation points and does not provide true minimality or always preserve validity

of execution traces. Cleve and Zeller extended the cause-effect chain approach to

26

consider relations in time as well as space, by discovering the point where cause tran-

sitions occur, and new variables become failure causes [Cleve and Zeller, 2005]. The

AskIgor project [AskIgor Website] makes cause-effect chain debugging available via

the web.

Renieris and Reiss [Renieris and Reiss, 2003] describe an approach that is quite

similar in spirit to the one described here, with the advantages and limitations of

a testing rather than model checking basis. They use a distance metric to select a

successful test run from among a given set rather than, as in this paper, to auto-

matically generate a successful run that resembles a given failing run as much as is

possible. Experimental results show that this makes their fault localization highly

dependent on test case quality. Section 5.2 makes use of a quantitative method for

evaluating fault localization approaches proposed by Renieris and Reiss.

2.2.3 Slicing and Counterexample Minimization

The “slicing” technique presented in Section 4 should be understood in the context

of both work on program slicing [Agrawal et al., 1995; Tip, 1995; Weiser, 1979; Zhang

et al., 2003] and some work on counterexample minimization [Groce and Kroening,

2004; Ravi and Somenzi, 2004; Shen et al., 2005]. The technique presented here can

be distinguished from these approaches in that it is not a “true” slice, but the result

of a causal analysis that can only be performed between two executions which differ

on a predicate (in this application, the presence of an error).

In general, program slicing is another approach to the problem of determining

27

which portions of a program might contain an error: a static slice backwards from

the point at which an error is detectable should contain the faulty code. Dynamic

slicing provides the same localization property, for a specific execution of a program.

Agrawal [Agrawal et al., 1995] treats slicing very much as a debugging technique,

and makes use of intersections and other slice operations for debugging purposes.

Counterexample minimization also attempts to reduce the amount of irrelevant

information contained in a counterexample. Some aspects of this work resemble

slicing approaches, in that they make use of the irrelevance of certain variables to

the SAT results for a bounded model checking problem [Ravi and Somenzi, 2004].

However, attempts to minimize the length of an error trace or to “semantically”

reduce the program variable values in a counterexample [Groce and Kroening, 2004]

are essentially unrelated to slicing.

Both slicing and counterexample minimization are, in some sense, orthogonal to

fault localization. In particular, fault localization and our style of explanation are

not suited to the task of grasping all “important” behavior in a trace. When using

model checking to produce “counterexamples” that are best seen as solutions to a

problem (i.e., model checking for planning), minimization is likely to be more useful

than explanation.

28

2.2.4 Error Explanation and Fault Localization in Artificial

Intelligence (Model-Based Diagnosis)

Analyses of causality from the field of artificial intelligence usually rely on causal the-

ories or more precise logical models of relationships between components than are

available in model checking of software systems [Galles and Pearl, 1997; Lucas, 1998;

Reiter, 1987], but is applicable in some cases to software systems with specifications

on the level considered in in this work. The JADE system for diagnosing errors in

Java programs makes use of model-based techniques [Mateis et al., 2000]. The pro-

gram model is extracted automatically, but requires a programmer to answer queries

to manually identify whether variables have correct values at points that are candi-

dates for diagnosis. Mayer and Stumptner present a more automated system based

on multiple abstract models and a conflict detection mechanism [Mayer and Stumpt-

ner, 2003]. Wotawa has discussed the relationship between model-based debugging

and program slicing [Wotawa, 2002] and program mutation [Wotawa, 2001].

Shapiro [Shapiro, 1983] introduced a technique for debugging logic programs that

also relies on interaction with a user as an oracle. Further developments based on

this technique have reduced the (potentially very large) number of user queries (in

part by use of slicing) [Kókai et al., 1997]. Related techniques for debugging of

programs in functional languages, such as Haskell, rely on similar models or queries

and a semantics of the consequences of computations [Alpuente et al., 2002].

We have worked with Mota, Oliviera, et al. on preliminary efforts to integrate our

error explanation techniques into an agent-based approach to software development,

29

and explain errors in UML models [Mota et al., 2003].

The idea of automatically correcting programs suggested in Section 10.2.8 bears

more obvious connections to diagnosis work than the techniques presented in the

bulk of this thesis. Given the state of the art in model-based diagnosis, it appears

that successful program correction would probably require either a user to answer

queries as an oracle or a higher degree of specification than is generally provided

in software model checking. Pursuit of automatic correction would also introduce a

connection to literature on program mutation and mutation testing [Budd, 1980].

2.2.5 String and Sequence Comparison

The distance metrics used for concrete explanation (Chapter 3) are based on the

static single assignment (SSA) form [Alpern et al., 1988] and loop unrolling tech-

niques often used in static analysis and compiler optimization. The metrics for

abstract explanation presented in Chapter 7 are more similar to those used in tra-

ditional string or biological sequence analysis [Durbin et al., 1998; Gusfield, 1997;

Sankoff and Kruskal, 1983]. In either case, the metric is a Levenshtein distance

[Sankoff and Kruskal, 1983], a count of atomic operations needed to transform one

string (or execution) into another (similar to Zeller’s ∆s [Zeller and Hildebrandt,

2002]). For solving the distance metric constraints produced in either case, we rely

on an encoding as a pseudo-Boolean problem [Aloul et al., 2002].

30

2.3 Original Contributions

This thesis presents a new distance metric for program executions, and uses this

metric to provide error explanations based on David Lewis’ counterfactual analysis

of causality. While previous approaches have taken into account the similarity of

executions, our approach is the first to automatically generate a successful execution

that is maximally similar to a counterexample. Solving this optimization problem

produces a set of differences that is as succinct as possible. Our novel slicing algo-

rithm then makes use of the program semantics and the fact that we are interested

only in causal differences to further reduce the amount of information that must

be understood by a user. By extending the original idea to distance metrics and

explanations over abstract executions of a program, we provide for automatic gen-

eralization to the logical causes of an error. The idea of abstract error explanation

also introduces the notion that automatically generated program abstractions can

be used for program understanding as well as verification.

31

32

Chapter 3

Error Explanation with Distance

Metrics

“. . . I’m glad I was able to give a scientific explanation to it, or it would

have worried me.”

- R. A. Lafferty, “Narrow Valley”

3.1 Distance Metrics for Program Executions

A distance metric [Sankoff and Kruskal, 1983] for program executions is a function

d(a, b) (where a and b are executions of the same program) that satisfies the following

properties:

1. Nonnegative property: ∀a . ∀b . d(a, b) ≥ 0

2. Zero property: ∀a . ∀b . d(a, b) = 0⇔ a = b

33

3. Symmetry: ∀a . ∀b . d(a, b) = d(b, a)

4. Triangle inequality: ∀a . ∀b . ∀c . d(a, b) + d(b, c) ≥ d(a, c)

In order to compute distances between program executions, we need a single,

well-defined representation for those executions.

3.1.1 Representing Program Executions

Bounded model checking (BMC) [Biere et al., 1999] also relies on a representation for

executions: in BMC, the model checking problem is translated into a SAT formula

whose satisfying assignments represent counterexamples of a certain length.

CBMC [Kroening et al., 2004] is a BMC tool for ANSI C programs. Given an

ANSI C program and a set of unwinding depths U (the maximum number of times

each loop may be executed), CBMC produces a set of constraints that encode all

executions of the program in which loops have finite unwindings. CBMC uses un-

winding assertions to notify the user if counterexamples with more loop executions

are possible. The representation used is based on loop unrolling and a transformation

very much like static single assignment (SSA) form [Alpern et al., 1988]. CBMC first

unrolls all loops (and recursion) in a program to some bounded depth. The SSA-

like transformation then produces a new program in which each variable is assigned

exactly once and control flow is represented by conditional expressions (like the φ

functions used in traditional SSA). This differs from more traditional SSA in that

CBMC carries through the use of φ functions to produce a purely equational form

34

in which control flow has been completely removed from the program. The \guard

functions used below are therefore not quite the same as the traditional “magic” n-

ary φ functions found in SSA, but are a true replacement for the original program’s

control flow. This transformation allows execution of the program (to a bounded

depth) to be expressed completely by a series of equations. CBMC maintains a map-

ping from SSA(-like) form1 variables to the pre-transformation source code, ensuring

that counterexamples and explanation results can be given in terms of the original

program.

CBMC and explain handle the full set of ANSI C types, structures, and pointer

operations including pointer arithmetic. CBMC checks only safety properties, al-

though in principle BMC (and the explain approach) can handle full LTL [Biere

et al., 2002]2.

Given the example program minmax.c (Figure 3.1), which contains an intention-

ally introduced fault, CBMC produces the constraints shown in Figure 3.2 (U is

not needed, as minmax.c is loop-free)3. The renamed variables describe unique as-

signment points: most#1 denotes the second possible assignment to most, least#2

denotes the third possible assignment to least, and so forth. CBMC assigns unini-

tialized (#0) values nondeterministically — thus input1, input2, and input3 will

be unconstrained 32 bit integer values. The \guard variables encode the control flow

1In subsequent discussion, we will refer to this SSA-like form as “SSA form” for the sake of

convenience.
2Explanation for LTL properties has been implemented for error explanation in MAGIC [Chaki

et al., 2004c], as described in Chapter 8.
3Output is slightly simplified for readability.

35

1 int main () {

2 int input1, input2, input3; //input values

3 int least = input1; //least#0

4 int most = input1; //most#0

5 if (most < input2) //guard#1

6 most = input2; //most#1,2

7 if (most < input3) //guard#2

8 most = input3; //most#3,4

9 if (least > input2) //guard#3

10 most = input2; //most#5,6 (ERROR!)

11 if (least > input3) //guard#4

12 least = input3; //least#1,2

13 assert (least <= most); //specification

14 }

Figure 3.1: minmax.c

36

of the program (\guard#1 is the value of the conditional on line 5, etc.), and are

used when presenting the counterexample to the user (and in the distance metric).

Control flow is handled by conditional choice functions, as usual in SSA form: the

constraint {-10}, for instance, assigns most#2 to either most#1 or most#0. The value

assigned depends on the value of the conditional (\guard#1, from source line 5) for

the assignment to most#1. The syntax is that of the C conditional expression: if

\guard#1 is true (i.e., most#0 < input2#0), most#2 is assigned the value of most#1,

otherwise it gets the value for most#0. Thus most#2 is the value assigned to most

at the point before the execution of line 7 of minmax.c. The property/specification

is represented by the claim, {1}, which appears below the line, indicating that the

conjunction of these constraints should imply the truth of the claim(s). A solution

to the set of constraints {-1}-{-14} is an execution of minmax.c. If the solution

satisfies the claim, {1} (least#2 <= most#6), it is a successful execution of min-

max.c; if it satisfies the negation of the claim, ¬{1} (least#2 > most#6), it is a

counterexample.

CBMC generates CNF clauses representing the conjunction of ({-1}∧{-2}∧ . . .

{-14}) with the negation of the claim (¬{1}). CBMC calls zChaff [Moskewicz et al.,

2001], which produces a satisfying assignment in less than a second. The satisfying

assignment encodes an execution of minmax.c in which the assertion is violated

(Figure 3.3).

Figure 3.4 shows the counterexample from Figure 3.3 in terms of the SSA form

assignments (the internal representation used by CBMC for an execution).

37

{-14} least#0 == input1#0

{-13} most#0 == input1#0

{-12} \guard#1 == (most#0 < input2#0)

{-11} most#1 == input2#0

{-10} most#2 == (\guard#1 ? most#1 : most#0)

{-9} \guard#2 == (most#2 < input3#0)

{-8} most#3 == input3#0

{-7} most#4 == (\guard#2 ? most#4 : most#3)

{-6} \guard#3 == (least#0 > input2#0)

{-5} most#5 == input2#0

{-4} most#6 == (\guard#3 ? most#5 : most#4)

{-3} \guard#4 == (least#0 > input3#0)

{-2} least#1 == input3#0

{-1} least#2 == (\guard#4 ? least#1 : least#0)

|--------------------------

{1} least#2 <= most#6

Figure 3.2: Constraints generated for minmax.c

38

Initial State

--

State 1 line 2 function c::main

--(input1#0)

input1 = 1

State 2 line 2 function c::main

--(input2#0)

input2 = 0

State 3 line 2 function c::main

--(input3#0)

input3 = 1

State 4 line 3 function c::main

---(least#0)

least = 1

Figure 3.3: Counterexample for minmax.c

39

State 5 line 4 function c::main

--(most#0)

most = 1

State 12 line 10 function c::main

--(most#6)

most = 0

Failed assertion: assertion line 13 function c::main

Figure 3.3 (continued)

input1#0 = 1 most#3 = 1

input2#0 = 0 most#4 = 1

input3#0 = 1 \guard#3 = TRUE

least#0 = 1 most#5 = 0

most#0 = 0 most#6 = 0

\guard#1 = FALSE \guard#4 = FALSE

most#1 = 0 least#1 = 1

most#2 = 1 least#2 = 1

\guard#2 = FALSE

Figure 3.4: Counterexample values for minmax.ce

40

In the counterexample, the three inputs have values of 1, 0, and 1, respectively.

The initial values of least and most (least#0 and most#0) are both 1, as a result

of the assignments at lines 3 and 4. Execution then proceeds through the various

comparisons: at line 5, most#0 is compared to input2#0 (this is \guard#1). The

guard is not satisfied, and so line 6 is not executed. Lines 8 and 12 are also not

executed because the conditions of the if statements (\guard#2 and \guard#4 re-

spectively) are not satisfied. The only conditional that is satisfied is at line 9, where

least#0 > input2#0. Line 10 is executed, assigning input2 to most rather than

least.

In this simple case, understanding the error in the code is not difficult (especially

as the comments to the code indicate the location of the error). Line 10 should be an

assignment to least rather than to most. A good explanation for this faulty program

should isolate the error to line 10. We follow Renieris and Reiss in considering the

fault to be the program point at which a change should be made to correct the

error. Of course, there may be many ways to fix an error. The preference of one way

to satisfy a specification rather than another is to some extent subjective. In this

case, however, other possible candidates for the “fault” do seem less natural: e.g.,

changing the guard on line 9 alone cannot result in a guarantee of satisfaction for

the assertion. Given that most can end up holding the value of any of the inputs

(as a result of the comparisons on lines 5-8), including input2, a small modification

to the program ensuring satisfaction of the assertion on line 14 probably requires

comparing least and input2 — in order to avoid the case where least is greater

than most because most is input2. For the larger programs examined in Chapter 5,

41

the “best fixes” and thus fault locations are both difficult to reasonably dispute and

established beforehand by a third party.

For given loop bounds (irrelevant in this case), all executions of a program can

be represented as sets of assignments to the variables appearing in the constraints.

Moreover, all executions (for fixed U) are represented as assignments to the same

variables. Different flow of control will simply result in differing \guard values (taking

the place of the traditional φ functions) assignments.

3.1.2 The Distance Metric d

The distance metric d will be defined only between two executions of the same

program with the same maximum bound on loop unwindings4. This guarantees that

any two executions will be represented by constraints on the same variables. The

distance, d(a, b), is equal to the number of variables to which a and b assign different

values. Formally:

Definition 4 (distance, d(a, b)) Let a and b be executions of a program P , rep-

resented as sets of assignments, a = {v0 = vala0 , v1 = vala1 , . . . , vn = valan} and

b = {v0 = valb0, v1 = valb1, . . . , vn = valbn}.

d(a, b) =
n∑

i=0

∆(i)

4Counterexamples can be extended to allow for more unwindings in the explanation.

42

where

∆(i) =

0 if valai = valbi

1 if valai 6= valbi

Here v0, v1, etc. do not indicate the first, second, third, and so forth assignments

in a considered as an execution trace, but uniquely named SSA form assignments.

The pairing indicates that the value for each assignment in execution a is compared

to the assignment with the same unique name in execution b. SSA form guarantees

that for the same loop unwindings, there will be a matching assignment in b for

each assignment in a. In the running example {v0, v1, v2, v3, v4 . . . } are {input1#0,

input2#0, input3#0, least#0, most#0, . . . }, execution a could be taken to be the

counterexample (Figures 3.3 and 3.4), and execution b might be the most similar

successful execution (see Figures 3.6 and 3.7).

This definition is equivalent to the Levenshtein distance [Sankoff and Kruskal,

1983] if we consider executions as strings where the alphabet elements are assign-

ments and substitution is the only allowed operation5. The properties of inequality

guarantee that d satisfies the four metric properties.

The metric d is measuring all variable value and control flow changes needed

to “transform” execution a into execution b or vice versa. This includes changes

in input variables and “internal” variables that are fully determined by the inputs.

Of course, it would be possible to only measure changes over input variables (as

these are the only variables a user has full control over), or only over input variables

5A Levenshtein distance is one based on a composition of atomic operations by which one

sequence or string may be transformed into another.

43

and control flow changes, and so forth. The purpose of the metric, however, is not

to find a sequence of inputs that is “close” to the original set — it is to find an

entire execution that is similar. Changing inputs is not a very useful “solution” to

an error, it is simply a means to the end of fault localization and error explanation.

A small change in input might result in a drastic change in behavior. Consider the

case of a reactive system accepting commands from a user that allows for an “abort”

sequence, after which all other inputs are ignored and no the system takes no actions.

Changing the first command sequence sent to such a system to “abort” will result

in an execution with very similar inputs to a failure. The resulting behavior is also

(presumably) error free. However, it is not very useful for purpose of localizing a

fault induced by improper response to an input later in the command sequence. Even

if the distance is measured over inputs, changes over intermediate variables need to

be tracked in order to compute a localization (unless the localization is restricted to

input points, which greatly reduces the chances of pinpointing a fault). Experimental

results (see Section 5.3.1) confirm the hypothesis that measuring changes over inputs

results in less effective fault localization than measuring distance over all aspects of

executions.

Another notion of “closest execution” would allow changes to values at any point

in program execution, even if the change (called an intervention) results in a vio-

lation of the program semantics/transition relation. It should be clear that this is

problematic for fault localization: typically a “symptomatic” value close to an as-

sertion will be arbitrarily changed to produce “correct” (but impossible) program

behavior, giving no information about the real location of the fault. In the event

44

that such a change is coincident with a fault, it is likely to be close enough to the

detected error that a simple reverse-reading of the counterexample trace would also

quickly discover the error. As expected, experimental results (Section 5.3.4) show

that this kind of metric6 unlikely to result in a fruitful approach to explanation.

The metric d differs from the metrics often used in sequence comparison in that

it does not need to make use of a notion of alignment. In the distance metrics tradi-

tionally used to compare strings sequences [Sankoff and Kruskal, 1983], an alignment

determines which alphabet symbols or sequence elements should be compared in com-

puting a distance. The need for alignments arises from the possibility that strings

being compared may have different numbers of characters, for example. If program

executions are represented by sequences of states and actions, the same issue of align-

ment naturally arises: should state #2 of execution a be compared to state #2 of

execution b, or to some other state? If control flow is such that the respective second

states of the executions are in different control locations, this may not be the best

possible choice. Consider the case in which execution a of some program P takes a

branch at line 1 and thus has control flow passing through lines 1, 2, 3, 4, and 5 of

the program, while execution b does not take the branch, and so passes through lines

1, 4, and 5. If a and b are represented not in SSA form, but as sequences of states

(5 states in the case of a, and 3 in the case of b), comparing the executions without

alignment (or, rather, with a näıve fixed alignment) will “pair up” the control loca-

tions for states as follows: {(1, 1), (2, 4), (3, 5)}, with the states at locations 4 and 5

of a not matched with any states from b. However, the same variables may not even

6Strictly speaking, this is a change in the set of “executions” allowed, not a change in the metric.

45

be in scope at different control locations: it seems more reasonable to compute the

distance by comparing the states at the same control locations and leave the states

at locations 2 and 3 unmatched. In the presence of loops, even the principle of com-

paring states with matching control locations does not establish a unique matching,

and so an alignment must be chosen in order to determine the distance between two

sequences: the true distance is determined by choosing an alignment that produces

a minimal distance, where distance is a function not only of the sequences but of

alignment.

The SSA form based representation encodes executions as assignments to vari-

ables, not as state/action sequences: while control flow can be extracted from this

representation, it is not necessary to take any measures to handle cases in which

two executions have different control flow. In contrast, the MAGIC [Chaki et al.,

2003a, 2004a] implementation of error explanation [Chaki et al., 2004c] (see Chapter

7) does represent an execution as a series of states and actions, including a pro-

gram counter to represent control flow. Although viewing executions as sequences

of states is a natural result of the usual Kripke structure approach to verification,

the need to compute an alignment and compare all data elements when two states

are aligned can impose a serious overhead on explanation [Chaki et al., 2004c] (this

issue is revisited in Chapter 9).

In the CBMC/explain representation, however, the issue of alignments does not

arise. Executions a and b will both be represented as assignments to input1, input2,

input3, \guard#0-\guard#4, least#0-least#2, and most#0-most#6. The distance

between the executions, again, is simply a count of the assignments for which they

46

do not agree. This does result in certain counter-intuitive behavior: for instance,

although neither execution a nor execution b executes the code on line 12 (\guard#4

is FALSE in both cases), the values of least#1 will be compared. Therefore, if the

values for input3 differ, this will be counted twice: once as a difference in input3,

and once as a difference in least#1, despite the second value not being used in

either execution. In general, a metric based on SSA form unwindings may be heavily

influenced by results from code that is not executed, in one or both of the executions

being compared. Any differences in such code can eventually be traced to differences

in input values, but the weighting of differences may not match user intuitions. It

is not that information is lost in the SSA form encoding: it is, as shown in the

counterexamples, possible to determine the control flow of an execution from the

\guard (or φ function) values; however, to take this into account complicates the

metric definition and introduces a potentially expensive degree of complexity into

the optimization problem of finding a maximally similar execution7.

A state and alignment based metric avoids this peculiarity, at a potentially high

computational cost. Experimental results [Chaki et al., 2004c] show that in some

cases the “counterintuitive” SSA form based metric may produce better explanations

— perhaps because it takes all potential paths into account. In all cases, we are

comparing two executions, on of which contains a fault. This means that we cannot

be certain that code that is not executed is in fact irrelevant to the fundamental

problem: one possible error is that a condition that should have been satisfied in the

7Each ∆, as shown below, would potentially introduce a case split based on whether the code

was executed in one, both, or neither of the executions being compared.

47

counterexample a was not satisfied. If this condition is satisfied in the successful

execution b it obviously might be beneficial to take into account that a’s execution

over the incorrectly omitted control flow would have been very similar to b’s execution

of the same code. The same reasoning applies, in a less compelling manner, to the

case in which b also fails to execute the omitted code, but fails to execute it because

a change elsewhere means the omission is correct.

In summary, the representation for executions presented here has the advantage

of combining precision and relative simplicity, and results in a very clean (and easy

to compute) distance metric. The pitfalls involved in trying to align executions with

different control flow for purposes of comparison are completely avoided by the use

of SSA form. Obviously, the details of the SSA form encoding may need to be hidden

from non-expert users (the CBMC GUI provides this service) — a good presentation

of a trace may hide information that is useful at the level of representation. Any

gains in the direct presentability of the representation itself (such as removing values

for code that is not executed) are likely to be purchased with a loss of simplicity in

the distance metric d, as seen in the metric used by MAGIC.

3.1.3 Choosing an Unwinding Depth

The definition of d presented above applies to executions with the same unwinding

depth and therefore (due to SSA form) the same variable assignment. However, it

is possible to extend the metric to any unwinding depth by simply considering there

to be a difference for each variable present in the successful execution but not in the

48

counterexample. Using this extension of d, a search for a successful execution can be

carried out for any unwinding depth. It is, of course, impossible to bound in general

the length of the closest successful execution. In fact, no successful execution of a

particular program may exist. However, given a closest successful execution within

some unwinding bounds, it is possible to determine a maximum possible bound

within which a closer execution may be found. For a program P , each unwinding

depth determines the number of variables in the SSA form unwinding of the program.

If the counterexample is represented by i variables, and the successful execution’s

unwinding requires j > i variables, then the minimum possible distance between the

counterexample and any successful execution at that unwinding depth is j− i. Given

a successful execution with distance d from a counterexample, it is impossible for a

successful execution with unwinding depth such that j − i ≥ d to be closer to the

counterexample.

3.2 Producing an Explanation

Generating an explanation for an error requires two phases:

• First, explain produces a successful execution that is as similar as possible

to the counterexample. Section 3.2.1 describes how to set up and solve this

optimization problem.

• The second phase produces a subset of the changes between this execution and

the counterexample which are causally necessary in order to avoid the error.

49

The subset is determined by means of the ∆-slicing algorithm described in

Chapter 4.

3.2.1 Finding the Closest Successful Execution

The next step is to consider the optimization problem of finding an execution that

satisfies a constraint and is as close as possible to a given execution. The constraint is

that the execution not be a counterexample. The original BMC problem is formed by

negating the verification claim V , where V is the conjunction of all assertions, bounds

checks, overflow checks, unwinding assertions, and other conditions for correctness,

conditioned by any assumptions. For minmax.c, V is:

{1}: least#2 <= most#6

and the SAT instance S to find a counterexample is formed by negating V :

¬{1}: least#2 > most#6.

In order to find a successful execution it is sufficient to use the original, unnegated,

claim V .

The changes that, when counted, give the distance to a given fixed execution

(e.g., a counterexample) can be easily added to the encoding of the constraints that

define the transition relation for a program. The values for the ∆ functions necessary

to compute the distance are added as new constraints (Figure 3.5) by the explain

50

tool. For the SSA form based metric, this (rather simple) set of Boolean variables

conditioned on whether the value from the fixed execution has been changed is fully

sufficient to allow computation of the distance to that fixed execution. These ∆

constraints are the same as the Delta(i) from Definition 4. The distance d(a, b)

(where a is the fixed execution) is just the sum of these ∆ values, considered as 1

where there is a change and 0 where there is no change.

These constraints do not affect satisfiability; correct values can always be assigned

for the ∆s. The ∆ values are used to encode the optimization problem. For a fixed

a, d(a, b) = n can directly be encoded as a constraint by requiring that exactly n of

the ∆s be set to 1 in the solution. However, it is more efficient (as the structure and

optimization aspect of the problem can then be incorporated into the SAT solver’s

algorithm [Aloul et al., 2002]) to use pseudo-Boolean (0-1) constraints8 [Barth, 1995]

and use the pseudo-Boolean solver PBS [Aloul et al., 2002] in place of zChaff. A

pseudo-Boolean formula has the form:

(Σn
i=1ci · bi) ./ k

where for 1 ≤ i ≤ n, each bi is a Boolean variable, ci is a rational constant, k is

a rational constant, and ./ is one of {<, ≤, >, ≥, =}. For our purposes, each ci

is 1, and each bi is one of the ∆ variables introduced above9. PBS accepts a SAT
8So called because they use Boolean values to represent not logical constraints alone but sum-

mations in the sense of 0-1 ILP.
9In practice, several ∆ variables (for example, changes in guards) may be equivalent to the same

CNF variable, after simplification. In this case, the coefficient on that variable is equal to the

number of ∆s it represents, but we can treat the ∆(i)s as independent without loss of generality,

as the result is the same.

51

input1#0∆ == (input1#0 != 1)

input2#0∆ == (input2#0 != 0)

input3#0∆ == (input3#0 != 1)

least#0∆ == (least#1 != 1)

most#0∆ == (most#1 != 1)

\guard#1∆ == (\guard#1 != FALSE)

most#1∆ == (most#2 != 0)

most#2∆ == (most#3 != 1)

\guard#2∆ == (\guard#2 != FALSE)

most#3∆ == (most#4 != 1)

most#4∆ == (most#5 != 1)

\guard#3∆ == (\guard#3 != TRUE)

most#5∆ == (most#6 != 0)

most#6∆ == (most#7 != 0)

\guard#4∆ == (\guard#4 != FALSE)

least#1∆ == (least#2 != 1)

least#2∆ == (least#3 != 1)

Figure 3.5: ∆s for minmax.c and the counterexample in Figure 3.3

52

problem expressed as CNF, augmented with a pseudo-Boolean formula. In addition

to solving for pseudo-Boolean constraints such as d(a, b) = k, d(a, b) < k, d(a, b) ≥ k,

PBS uses a binary search to solve pseudo-Boolean optimization problems, minimizing

or maximizing d(a, b). For error explanation, the pseudo-Boolean problem is to

minimize the distance to the counterexample a.

From the counterexample shown in Figure 3.3, we can generate an execution (1)

with minimal distance from the counterexample and (2) in which the assertion on line

13 is not violated. Constraints {-1}-{-14} are conjoined with the ∆ constraints (Fig-

ure 3.5) and the unnegated verification claim {1}. The pseudo-Boolean constraints

express an optimization problem of minimizing the sum of the ∆s. The solution is

an execution (Figure 3.6) in which a change in the value of input2 results in least

<= most being true at line 13. This solution is not unique. In general, there may be

a very large set of executions that have the same distance from a counterexample.

The values of the ∆s (Figure 3.8) allow us to examine precisely the points at which

the two executions differ. The first change is the different value for input2. At least

one of the inputs must change in order for the assertion to hold, as the other values

are all completely determined by the three inputs. The next change is in the potential

assignment to most at line 6. In other words, a change is reported at line 6 despite

the fact that line 6 is not executed in either the counterexample or the successful

execution. It is, of course, trivial to hide changes guarded by false conditions from

the user; such changes are retained in this presentation in order to make the nature

of the distance metric clear. Such assignments are automatically removed by the

∆-slicing technique presented in Chapter 4 (see Figure 4.6). This is an instance of

53

Initial State

--

State 1 line 2 function c::main

--(input1#0)

input1 = 1

State 2 line 2 function c::main

--(input2#0)

input2 = 1

State 3 line 2 function c::main

--(input3#0)

input3 = 1

State 4 line 3 function c::main

---(least#0)

least = 1

State 5 line 4 function c::main

--(most#0)

most = 1

Figure 3.6: Closest successful execution for minmax.c

54

input1#0 = 1 most#3 = 1

input2#0 = 1 most#4 = 1

input3#0 = 1 \guard#3 = FALSE

least#0 = 1 most#5 = 1

most#0 = 1 most#6 = 1

\guard#1 = FALSE \guard#4 = FALSE

most#1 = 1 least#1 = 1

most#2 = 1 least#2 = 1

\guard#2 = FALSE

Figure 3.7: Closest successful execution values for minmax.c

Value changed: input2#0 from 0 to 1

Value changed: most#1 from 0 to 1

file minmax.c line 6 function c::main

Guard changed: least#0 > input2#0 (\guard#3) was TRUE

file minmax.c line 9 function c::main

Value changed: most#5 from 0 to 1

file minmax.c line 10 function c::main

Value changed: most#6 from 0 to 1

Figure 3.8: ∆ values (∆ = 1) for execution in Figure 3.6

55

the counter-intuitive nature of the SSA form: because the condition on line 5 is still

not satisfied (indeed, none of the guards are satisfied in this successful execution),

the value of most which reaches line 7 (most#2) is not changed. While one of the

potential values for most at the merge point is altered, the “φ function”, i.e., the

conditional split on the guard for most#2, retains its value from the counterexample.

The next change occurs at the guard to the erroneous code: least#0 is no longer

less than input2#0, and so the assignment to most at line 10 is not executed. The

potential value that might have been assigned (most#5) is also changed, as input2

has changed its value. Finally, the value of most that reaches the assertion, most#6,

has changed from 0 to 1 (because line 10 has not been executed, although in this

case executing line 10 would not change the value of most). The explanation shows

that not executing the code at line 10, where the fault appears, causes the assertion

to succeed. The error has been successfully isolated.

3.3 Closest Successful Execution ∆s and Causal

Dependence

The intuition that comparison of the counterexample with minimally different suc-

cessful executions provides information as to the causes of an error can be justified

by showing that ∆s from a (closest) successful execution are equivalent to a cause c:

Theorem 1 Let a be the counterexample trace and let b be any closest successful

execution to a. Let D be the set of ∆s for which the value is not 0 (the values in

56

which a and b differ). If δ is a predicate stating that an execution disagrees with b

for at least one of these values, and e is the proposition that an error occurs, e is

causally dependent on δ in a.

Proof:

A predicate e is causally dependent on δ in a iff for all of the closest executions

for which ¬δ is true, ¬e is also true. Since ¬δ only holds for executions which agree

with b for all values in D, ¬δ(b) must hold. Additionally, ¬e(b) must be true, as b is

defined as a closest successful execution to a. Assume that some trace b′ exists, such

that ¬δ(b′) ∧ e(b′) ∧ d(a, b′) ≤ d(a, b). Now, b′ must differ from b in some value (as

e(b′)∧¬e(b)). However, b′ cannot differ from b for any value in D, or δ(b′) would be

true. Thus, if b′ differs from b in a value other than those in D, b′ must also differ

from a in this value. Therefore, d(a, b′) > d(a, b), which contradicts our assumption.

Hence, e must be causally dependent on δ in a.

In the running example minmax.c, δ is the predicate (input3#0 != 0) ∨ (most#3

!= 0) ∨ (least#1 != 0) ∨ (least#2 != 0). Finding the closest successful exe-

cution also produces a predicate c(δ) on which the error is causally dependent. Ac-

tually, this proof holds for any successful execution. Minimizing the distance serves

to minimize the number of terms in δ. A δ with minimal terms can be used as a

starting point for hypotheses about a more general cause for the error. As Cleve

and Zeller note [Cleve and Zeller, 2005], finding a cause (in some formal sense) is

often neither difficult nor useful (the full program state at the point of failure is “a

cause”; the set of inputs is “a cause”, etc. — and these may indeed be causes by

57

Lewis’ definition of causal dependence): the challenge is to find a small cause with

sufficient explanatory power to provide an understanding of a fault.

More generally, this proof should hold for any metric that can be formulated in

terms of a Levenshtein distance, i.e., any metric based on operations that can be

represented by mutually exclusive independent terms — such as the atomic changes

to the SSA form representation. Such a formulation should be possible for the

non-SSA form metric presented in later chapters for abstract executions; however,

the reduction to atomic terms is considerably less natural, and the value of the

explanations as conjunctions in terms of predicates on states and predicates once

alignment and position are taken into account is dubious. If an SSA-based abstract

explanation approach is introduced, the formulation in these terms again becomes

natural.

It is important to note that this proof does not mean that the explanation is in

any sense guaranteed to be useful to a user. There is no reason to expect that always

producing a “good” explanation (even in the limited sense of fault localization) is

possible, given the partial specifications typically available. The proof guarantees

that the explanation reflects a cause of error in Lewis’ sense, but not that this will be

a sense very useful to a programmer hoping to correct the error. Experimental results

show that explanation along these lines often succeeds in providing useful feedback,

and is typically much better for fault localization than competing techniques. This is

an independent result, not a confirmation of any “implications” of the above proof.

58

Chapter 4

∆-Slicing

The simplification of anything is always sensational.

- G. K. Chesterton, Varied Types

4.1 Motivation

A successful path with minimal distance to a counterexample may include changes

in values that are not actually relevant to the specification. For example, changes in

an input value are necessarily reflected in all values dependent on that input.

Consider the program and ∆ values in Figures 4.1 and 4.2. The change to z is

necessary but also irrelevant to the assertion on line 14. In this case, various static

or dynamic slicing techniques [Tip, 1995] would suffice to remove the unimportant

variable z. Generally, however, static slicing is of limited value as there may be some

execution path other than the counterexample or successful path in which a variable

59

1 int main () {

2 int input1, input2;

3 int x = 1, y = 1, z = 1;

4 if (input1 > 0) {

5 x += 5;

6 y += 6;

7 z += 4;

8 }

9 if (input2 > 0) {

10 x += 6;

11 y += 5;

12 z += 4;

13 }

14 assert ((x < 10) || (y < 10));

15 }

Figure 4.1: slice.c

60

Value changed: input2#0 from 1 to 0

Guard changed: input2#0 > 0 (\guard#2) was TRUE

line 9 function c::main

Value changed: x#4 from 12 to 6

line 10 function c::main

Value changed: y#4 from 12 to 7

line 11 function c::main

Value changed: z#4 from 9 to 5

line 12 function c::main

Figure 4.2: ∆ values for slice.c

is relevant. Dynamic slicing, in which a slice is computed based on a given set of

program inputs (rather than over all possible program paths), raises the question

of whether to consider the input values for the counterexample or for the successful

path.

If we assume a failing run with the values 1 and 1 for input1 and input2, a

typical dynamic slice on the execution would indicate that lines 2, 3, 4, 5, 6, 9, 10,

and 11 are relevant. In this case, however, the explanation technique has already

focused our attention on a subset of the failing run: no changes appear other than

at lines 9, 10, 11, and 12. If dynamic slicing was applied to these ∆ locations rather

than the full execution, lines 9, 10, and 11 would be considered relevant, as both x

and y influence the assertion at line 14. Using the differences rather than the full

61

execution goes beyond the reductions provided by a dynamic slice, whether we use

the dynamic slice to reduce the size of the Deltas or the Deltas to filter a dynamic

slice of the full execution.

Notice, however, that in order to avoid the error, it is not required that both x

and y change values. A change in either x or y is sufficient. It is true that in the

program as written, a change is only observed in x when a change is also observed

in y, but the basic assumption of error explanation is that the program’s behavior

is incorrect. It might be useful to observe (which dynamic slicing will not) that

within a single execution two routes to a value change that removes the observed

error potentially exist.

This issue of two causal “routes” within an execution is independent of the possi-

bility that there may be more than one successful execution at a particular distance

. In the case of slice.c, there are clearly two possible explanations based on two

executions at the same distance from the counterexample: one in which input1 is

altered and one in which input2 is altered. If multiple explanations at the same dis-

tance exist, explain will arbitrarily select one. In the event that this choice reflects

a way to avoid the consequences of an error rather than capturing the faulty code,

assumptions must be used to narrow the search space, as described in Section 5.1.1.

The ∆-slicing technique assumes that a single explanation has already been chosen.

It should be noted that ∆-slicing can sometimes be used to “detect” a bad choice of

explanation (as discussed in Section 5.2) in that an explanation may be reduced to

a very small set of ∆s that clearly cannot contain a fault.

62

4.2 Computing a ∆-Slice

The same approach used to generate the ∆ values can be used to compute an even

more aggressive “dynamic slice.” In traditional slicing, the goal is to discover all

assignments that are relevant to a particular value, either in any possible execution

(static slicing) or in a single execution (dynamic slicing). In reporting ∆ values,

however, the goal is to discover precisely which differences in two executions are

relevant to a value. Moreover, the value in question is always a predicate (the

specification). A dynamic slice is an answer to the question: “What is the smallest

subset of this program that always assigns the same values to this variable at this

point?” ∆-slicing answers the question “What is the smallest subset of changes in

values between these two executions that results in a change in the value of this

predicate?”

To compute the ∆-slice, we use the same ∆ and pseudo-Boolean constraints as

presented above. The constraints on the transition relation, however are relaxed.

For every variable vi such that ∆(i) = 1 in the counterexample with constraint

vi = expr, and values valai and valbi in the counterexample and closest successful

execution, respectively, a new constraint is generated:

(vi = valai) ∨ ((vi = valbi) ∧ (vi = expr))

That is, for every value in this new execution that changed, the value must be

either the same as in the original counterexample or the same as in the closest

successful run. If the latter, it must also obey the transition relation, as determined

63

by the constraint vi = expr. For values that did not change (∆(i) = 0) the constant

constraint vi = valai is used (which is a simplification of the above constraint, given

that we know both sides of the conjunction constrain the value to the same constant).

Consider the SSA form variable x#3, which has a value of 12 in both the coun-

terexample (a) and the successful execution (b). The ∆ value associated with x#3 is

0, and so the old constraint1 for x#3, x#3 == x#2 + 6 is replaced in the ∆-slicing

constraints with the constant constraint x#3 == 12.

The variable y#4, on the other hand, is assigned a value of 12 in the counterex-

ample (a) and a value of 7 in the successful execution (b), and is therefore associated

with a ∆ value of 1. The constraint for this variable is y#4 == (\guard#2 ? y#3

: y#2). To produce the new constraint on y#4 for ∆-slicing, we take the general

form above and substitute y#4 for vi, 12 for valai , 7 for valbi , and (\guard#2 ? y#3

: y#2) for expr:

(y#4 == 12) || ((y#4 == 7) && (y#4 == (\guard#2 ? y#3 : y#2)))

The “execution” generated from these constraints may not be a valid run of the

program (it will not be, in any case where the slicing reduces the size of the ∆s).

However, no invalid state or transition will be exposed to the user: the only part

of the solution that is used is the new set of ∆s. These are always a subset of the

original ∆s. The improper execution is only used to focus attention on the truly

necessary changes in a proper execution. The change in the transition relation can

be thought of as encoding the notion that we allow a variable to revert to its value

1Constraints are always the same for both counterexample and successful execution.

64

in the counterexample if this alteration is not observable with respect to satisfying

the specification.

The ∆-slicing algorithm is:

1. Produce an explanation (a set of ∆s) for a counterexample as described in

Section 3.2.1.

2. Modify the SAT constraints on the variables to reflect the ∆s between the

counterexample and the chosen closest successful execution by

• replacing the constraints for variables in the set of ∆s with:

(vi = valai) ∨ ((vi = valbi) ∧ (vi = expr))

• and replacing the constraints for all other variables with

vi = valai

(which is the same as vi = valbi , in this case).

3. Use PBS to find a new (potentially better) solution to the modified constraint

system, under the same distance metric as before.

Figure 4.3 shows some of the original constraints for slice.c. The modified con-

straints used for computing the ∆-slice are shown in Figure 4.4. The relaxation of

the transition relation allows for a better solution to the optimization problem, the

65

. . .

{-7} \guard#2 == (input2#0 > 0)

{-6} x#3 == x#2 + 6

{-5} y#3 == y#2 + 5

{-4} z#3 == z#2 + 4

{-3} x#4 == (\guard#2 ? x#3 : x#2)

{-2} y#4 == (\guard#2 ? y#3 : y#2)

{-1} z#4 == (\guard#2 ? z#3 : z#2)

|--------------------------

{1} \guard#0 => x#4 < 10 || y#4 < 10

Figure 4.3: Partial constraints for slice.c

66

. . .

{-7} \guard#2 == (input2#0 > 0)

{-6} x#3 == 12

{-5} y#3 == 12

{-4} z#3 == 9

{-3} (x#4 == 12) || ((x#4 == 6) && (x#4 == (\guard#2 ? x#3 : x#2)))

{-2} (y#4 == 12) || ((y#4 == 7) && (y#4 == (\guard#2 ? y#3 : y#2)))

{-1} (z#4 == 9) || ((z#4 == 5) && (z#4 == (\guard#2 ? z#3 : z#2)))

|--------------------------

{1} \guard#0 => x#4 < 10 || y#4 < 10

Figure 4.4: ∆-slicing constraints for slice.c

67

Value changed: input2#0 from 1 to 0

Guard changed: input2#0 > 0 (\guard#2) was TRUE

line 9 function c::main

Value changed: y#4 from 12 to 7

Figure 4.5: ∆-slice for slice.c

∆-slice shown in Figure 4.5. Another slice would replace y with x. It is only neces-

sary to observe a change in either x or y to satisfy the assertion. ∆-slicing produces

either lines 9 and 10 or 9 and 11 as relevant, while dynamic slicing produces the

union of these two routes to a changed value for the assertion.

The ∆-slicer can be used to produce all of the possible minimal slices of a set

of differences (in this case, these consist of a change to x alone and a change to y

alone), indicating the possible causal chains by which an error can be avoided, when

the first slice produced does not help in understanding the error. Additional slices

can be produced by adding a constraint to the SAT representation that removes the

latest slice from the set of possible solutions (i.e. a blocking clause). The new set

of constraints are given to PBS, along with a pseudo-Boolean constraint restricting

solutions to those at the same distance as the previous slice(s). This can be repeated

(growing the constraints by one blocking clause each time) until the PBS constraints

become unsatisfiable, at which point all possible slices have been produced. This

division into causal “routes” is not a feature of traditional dynamic slicing.

68

Value changed: input2#0 from 0 to 1

Guard changed: least#0 > input2#0 (\guard#3) was TRUE

file minmax.c line 9 function c::main

Value changed: most#6 from 0 to 1

Figure 4.6: ∆-slice for minmax.c

Revisiting the original example program, we can apply ∆-slicing to the explana-

tion in Figure 3.8 and obtain the smaller explanation shown in Figure 4.6.

In this case, the slicing serves to remove the changes in values deriving from code

that is not executed that are introduced by the reliance on SSA form.

4.3 Explaining and Slicing in One Step

4.3.1 Motivation

The slicing algorithm presented above minimizes the changes in a given successful

execution, with respect to a counterexample. However, it seems plausible that in

some sense this is solving the wrong optimization problem: perhaps what we really

want is to minimize the size of the final slice, not to minimize the pre-slicing ∆s. It

is not immediately clear which of two possible optimization problems will best serve

our needs:

69

• Find an execution of the program P with minimal distance from the coun-

terexample a. This distance, naturally, may take into account behavior that is

irrelevant to the erroneous behavior and will be sliced away.

• Find an execution of the program P that minimizes the number of relevant

changes to the counterexample a (where relevance is determined by ∆-slicing).

We refer to the second approach as one-step slicing, as the execution and slice

are computed at the same time. As it turns out, while it is possible to formulate (in

pseudo-Boolean terms) and solve the second problem and implement one-step slicing,

the technique turns out to perform quite poorly. In Section 4.3.4 we use this surpris-

ing result to provide a better understanding of what precisely ∆-slicing accomplishes

and how it differs from static slicing: the key insight is that “relevance” is a static

notion in the case of static slices; in the case of ∆-slicing it is radically dependent

on the executions in question in a way that goes even beyond the execution-relative

nature of dynamic slicing.

Before returning to the issue of which approach is best, we will demonstrate that

solving the second optimization problem is indeed feasible.

4.3.2 Näıve Approach

The simplest approach to computing a one-step slice would be to use the slicing

constraints in place of the usual SSA unwinding in the original search for a closest

execution. The constraint used in the two phase approach:

70

(vi = valai) ∨ ((vi = valbi) ∧ (vi = expr))

relies upon a knowledge of valbi from an already discovered closest successful execu-

tion. Unfortunately, removing this term to produce the constraint:

(vi = valai) ∨ (vi = expr)

fails to guarantee that the set of observed changes will be consistent with any ac-

tual execution of the program (or even that each particular changed value will be

contained in any valid execution of the program).

4.3.3 Shadow Variables

In order to preserve the property that the slice is a subset of an actual program

execution, the one-step slicing algorithm makes use of shadow variables.

For each assignment in the original SSA, a shadow copy is introduced, indicated

by a primed variable name. For each shadow assignment, all variables from the

original SSA are replaced by their shadow copies, e. g.:

v6 = v3 + v5

becomes

v′6 = v′3 + v′5

71

and the constraints ensuring a successful execution are applied to the shadow vari-

ables. In other words, the shadow variables are exactly the constraints used to

discover the most similar successful execution: the shadow variables are constrained

to represent a valid successful execution of the program. Using ∆s based on the

shadow variables would give results exactly equivalent to the first step of the two-

phase algorithm, in that the only change is the priming of variables.

The slicing arises from the fact that the distance metric is not computed over the

shadow variables. Instead, the shadow variables are used to ensure that the observed

changes presented are a subset of a single valid successful execution. The ∆s for the

distance metric are computed over non-primed variables constrained in a manner

very similar to the first ∆-slicing algorithm:

(vi = valai) ∨ ((vi = val′i) ∧ (vi = expr))

with valbi replaced by val′i. Rather than first computing a minimally distant successful

execution, the one-step slicing algorithm produces a (possibly non-minimally distant)

successful execution as it computes a minimal slice. Because it cannot be known

which variables will be unchanged, there are no constant constraints as in the two-

step algorithm (recall that the constant constraints are just a simplification of the

above expression, in any case).

The ∆s are computed over the non-shadow variables using the same distance

metric as in both steps of the two phase algorithm. The ∆s that are reported to the

user use the values from the non-primed variables: however, for all actual changes,

72

. . .

{-12} x#3’ == 6 + x#2’

{-11} (x#3 == 12) || ((x#3 == x#3’) && (x#3 == 6 + x#2))

{-10} y#3’ == 5 + y#2’

{-9} (y#3 == 12) || ((y#3 == y#3’) && (y#3 == 5 + y#2))

{-8} z#3’ == 4 + z#2’

{-7} (z#3 == 9) || ((z#3 == z#3’) && (z#3 == 4 + z#2))

{-6} x#4’ == (\guard#2’ ? x#3’ : x#2’)

{-5} (x#4 == 12) || ((x#4 == x#4’) &&

(x#4 == (\guard#2 ? x#3 : x#2)))

{-4} y#4’ == (\guard#2’ ? y#3’ : y#2)

{-3} (y#4 == 12) || ((y#4 == y#4’) &&

(y#4 == (\guard#2 ? y#3 : y#2)))

{-2} z#4’ == (\guard#2’ ? z#3’ : z#2)

{-1} (z#4 == 9) || ((z#4 == z#4’) &&

(z#4 == (\guard#2 ? z#3 : z#2)))

|--------------------------

{1} \guard#0 => x#4 < 10 || y#4 < 10

{2} \guard#0’ => x#4’ < 10 || y#4’ < 10

Figure 4.7: One-step ∆-slicing constraints for slice.c

73

this will match the shadow value, which guarantees that all changes are a subset of

a valid successful execution. Figure 4.7 shows a subset of the shadow and normal

constraints produced for slice.c. In the case of slice.c, slicing in one-step produces no

changes: the slice is already minimal.

4.3.4 Disadvantages of One-Step Slicing: The Relativity of

Relevance

Interestingly, when the results of one-step and two-phase slicing differ, it is generally

the case that the one-step approach produces less useful results. Table 5.4 in Sec-

tion 5.4 shows the results for applying one-step slicing to various case studies. The

one-step approach does not provide a significant improvement in localization over

the original counterexamples, and is considerably less effective than the two-phase

algorithm (results in Table 5.1): the explanations produced are, on average, of much

lower quality, and take longer to produce.

That the two-phase approach is faster is not surprising. The PBS optimization

problems in both phases will always be smaller than that solved in the one-step

approach (by a factor of close to two, due to the need for shadow variables). The

slicing phase is also highly constrained: setting one bit of any program variable may

determine the value for 32 (or more) SAT variables, as each SSA form value has only

two possible values.

The most likely explanation for the poor explanations produced by one-step slic-

ing is that it solves the wrong optimization problem. In ∆-slicing, “relevance” is

74

not a deterministic artifact of a program and a statement, as it is in static slicing.

Instead, relevance is a function of an explanation: the ∆-slicing notion of relevance

makes sense only in the context of a given counterexample and successful execution.

If the successful execution is poorly chosen, the resulting notion of relevance (and

hence the slice) will be of little value. Optimizing the size of the final slice is unwise

if it is possible for a slice to be small because it is based on a bad explanation —

and, as shown in Chapter 5, this is certainly possible. It is not so much that opti-

mizing over “irrelevant” changes is desirable, but that it is impossible to know which

changes are relevant until we have chosen an execution. Given that the distance

metric already precludes irrelevant changes that are not forced by relevant changes,

it is probably best to simply optimize the distance between the executions and trust

that slicing will remove irrelevant behavior — once we have some context in which

to define relevance.

75

76

Chapter 5

Case Studies and Evaluation for

Concrete Explanation

Of course if I trace the details of how I got here I can come up with an

explanation, but on a gut level I’m still not convinced.

- Haruki Murakami, Sputnik Sweetheart

5.1 Case Studies

Two case studies provide insight into how error explanation based on distance metrics

performs in practice. The TCAS resolution advisory component case study allows for

comparison of fault localization results with other tools, including a testing approach

also based on similarity of successful runs. The µC/OS-II case study shows the

applicability of the explanation technique to a more realistically sized example taken

77

from production code for the kernel of a real-time operating system (RTOS). The

fault localization results for both studies are quantitatively evaluated in Section 5.2.

5.1.1 TCAS Case Study

TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection

and resolution system used by all US commercial aircraft. The Georgia Tech version

of the Siemens suite [Rothermel and Harrold, 1999] includes an ANSI C version of

the Resolution Advisory (RA) component of the TCAS system (173 lines of C code)

and 41 faulty versions of the RA component. A previous study of the component

using symbolic execution [Coen-Porisini et al., 2001] provided a partial specification

that was able to detect faults in 5 of the 41 versions (CBMC’s automatic array

bounds checking detected another 2 faults). The inability to detect other faults was

a consequence of the partial specification, rather than a failure of the model checker:

no more detailed assertional spec for the TCAS code was available. In addition

to these assertions, it was necessary to include some obvious assumptions on the

inputs1.

Variation #1 of the TCAS code differs from the correct version in a single line

(Figure 5.1). A ≥ comparison in the correct code has been changed into a > com-

parison on line 100. Figure 5.2 shows the result of applying explain to the coun-

terexample generated by CBMC for this error (after ∆-slicing). The counterexample

1CBMC reports overflow errors, so altitudes over 100,000 were precluded (commercial aircraft

at such an altitude would be beyond the aid of TCAS in any case).

78

100c100

// (correct version)

< result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation >= ALIM())));

// (faulty version #1)

> result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation > ALIM())));

Figure 5.1: diff of correct TCAS code and variation #1

Value changed: Input Down Separation#0 from 400 to 159

Value changed: P1 BCond#1 from TRUE to FALSE

line 255 function c::main

Figure 5.2: First explanation for variation #1 (after ∆-slicing)

79

PrB = (ASTEn && ASTUpRA);

. . .

P1 BCond = ((Input Up Separation < Layer Positive RA Alt Thresh) &&

(Input Down Separation >= Layer Positive RA Alt Thresh));

assert(!(P1 BCond && PrB)); // P1 BCond -> ! PrB

Figure 5.3: Code for violated assertion

passes through 90 states before an assertion (shown in Figure 5.3) fails.

The TCAS system monitors radar data to check for the presence of aircraft that

might pose a collision threat by coming too close to the TCAS-equipped aircraft.

When this occurs it is said that an intruder has entered the protected zone. TCAS

estimates the time remaining to point of closest approach and calculates a vertical

separation between the two aircraft, assuming that the TCAS carrying aircraft either

maintains its trajectory or begins an upward or downward maneuver. Depending on

this calculation, TCAS may compute a Resolution Advisory (RA), instructing the

pilot to climb or descend in order to make collision less likely [Coen-Porisini et al.,

2001]. The code examined in the case study is the portion of TCAS that is responsible

for determining the best RA. The assertion in Figure 5.3 requires that:

If

• the separation between planes if an upward RA is chosen (Up Separation) is

less than the safe threshold for separation (Layer Positive RA Alt Thresh)

80

Figure 5.4: Explaining tcasv1.c

81

and

• the separation between planes if a downward RA is chosen (Down Separation)

is greater than or equal to the safe threshold for separation.

(together these conditions constitute P1 BCond) then it is not the case that:

• a resolution advisory has been computed (ASTEn) and

• a climbing Resolution Advisory (RA) has been selected (ASTUpRA)

(together these conditions constitute PrB).

In other words, the assertion requires that TCAS will not tell a pilot to climb

if climbing will not produce an adequate vertical separation to avoid collision and

descending will produce a safe separation. This is part of the property P1 in the

partial specification (P1 also requires the symmetric case to hold when a downward

RA is computed) [Coen-Porisini et al., 2001].

The explanation given is not particularly useful. The assertion violation has

been avoided by altering an input so that the antecedent of the implication in the

assertion is not satisfied — in other words, by changing inputs so that the downward

RA is no longer clearly preferable to the upwards RA. This shows that the distance

metric-based technique is not always fully automated; fortunately user guidance is

easy to supply in this case. We are really interested in an explanation of why the

second part of the implication (PrB) is true in the error trace, given that P1 BCond

holds: how can TCAS suggest going upwards, when the conditions are such that

a downwards RA is preferable? To coerce explain into answering this query, we

82

add the constraint assume(P1 BCond); to variation #1. After model checking the

program again we reapply explain. The new explanation (Figure 5.5) is far more

useful.

In this particular case, which might be called the implication-antecedent problem,

automatic generation of the needed assumption is feasible: the tool needs to observe

only the implication structure of the failed assertion, and that the successful exe-

cution falsifies the antecedent. An assumption requiring the antecedent to hold can

then be introduced. Even in this simple case, some kind of programmer annotation

might be best, as the syntactic structure of the implication is lost in the transforma-

tion to a conjunction — not only must the tool arbitrarily decide which conjunct is

an antecedent, but it must make the assumption that negated conjunction “really”

represent implications. This issue could be avoided by introducing an operation for

implication into the assertion language, or using comments (as above) to indicate

implications.

The original counterexample after adding the assumption is still valid, as it clearly

satisfies the assumption2. As noted in the introduction it is not to be expected

that all assumptions about program behavior that are not encoded directly in the

specification can be generated by the tool. In some cases, users may need to augment

a program with “subtle” assumptions that the distance metric and specification do

not capture (e.g. in one of the TCAS cases, the requirement that executions in which

2A new counterexample is used in the TCAS example to avoid having to adjust line numbers, but

an automatically generated assumption would not require source code modification as the assume

would not introduce a new program source line.

83

TCAS does not compute an advisory are unlikely to be useful for understanding

errors in computing the advisory). Adding these assumptions doesn’t require an

understanding of the error, only of behavior that is (for some reason) not useful to

compare with the counterexample.

Observe that, as in the first explanation, only one input value has changed. The

first change in a computed value is on line 100 of the program — the location of the

fault! Examining the source line and the counterexample values, we see that ALIM()

had the value 640. Down Separation also had a value of 640. The subexpression

(!(Down Separation > ALIM())) has a value of TRUE in the counterexample and

FALSE in the successful run. The fault lies in the original value of TRUE, brought

about by the change in comparison operators and only exposed when ALIM() =

Down Separation. The rest of the explanation shows how this value propagates to

result in a correct choice of RA.

The utility of ∆-slicing can be shown by considering the additional values present

in the unsliced version of the report (Figure 5.6).

Figures 5.4 and 5.7 show the explanation process as it appears in the explain

GUI. The error is highlighted in red, and all source lines appearing in the explanation

are highlighted in orange. Note that although the counterexample in the screenshots

is actually for a different assertion violation (CBMC’s initial settings, including the

heuristics used to call the SAT solver, determine which counterexample is produced),

the localization information is unchanged.

Appendix B provides the full listing of the original counterexample for TCAS Ver-

84

Value changed: Input Down Separation#0 from 500 to 504

Value changed: Down Separation#1 from 500 to 504

line 215 function c::main

Value changed: result#1 from TRUE to FALSE

line 100 function c::Non Crossing Biased Climb

Value changed: result#3 from TRUE to FALSE

Value changed: tmp#1 from TRUE to FALSE

line 106 function c::Non Crossing Biased Climb

Guard changed: \guard#1 && tmp#1 (#7) was TRUE

line 144 function c::alt sep test

Value changed: need upward RA#1 from TRUE to FALSE

line 144 function c::alt sep test

Guard changed: \guard#15 && need upward RA#1 (#16) was TRUE

line 152 function c::alt sep test

Guard changed: \guard#15 && !need upward RA#1 (#17) was FALSE

line 152 function c::alt sep test

Guard changed: \guard#17 && !need downward RA#1 (#19) was FALSE

line 156 function c::alt sep test

Figure 5.5: Second explanation for variation #1 (after ∆-slicing)

85

Value changed: ASTUpRA#2 from TRUE to FALSE

Value changed: ASTUpRA#3 from TRUE to FALSE

Value changed: ASTUpRA#4 from TRUE to FALSE

Value changed: PrB#1 from TRUE to FALSE

line 230 function c::main

Figure 5.5 (continued)

Value changed: ASTUnresRA#3 from FALSE to TRUE

Value changed: alt sep#7 from 1 to 0

Value changed: ASTUnresRA#4 from FALSE to TRUE

Value changed: alt sep#8 from 1 to 0

Value changed: ASTUnresRA#5 from FALSE to TRUE

Value changed: result#4 from TRUE to FALSE

Value changed: alt sep#9 from 1 to 0

Value changed: need upward RA#2 from TRUE to FALSE

Value changed: tmp#2 from TRUE to FALSE

Value changed: r#1 from 1 to 0

line 166 function c::alt sep test

Figure 5.6: Values removed by ∆-slicing from report

86

Figure 5.7: Correctly locating the error in tcasv1.c

87

sion #1. For comparison,the full pre- and post-assumption explanations (including

the successful executions generated) are provided in Appendices C and E, respec-

tively. Appendix D provides the new counterexample produced after the assumption

is added (the old counterexample remains a valid counterexample, but the modifi-

cation of the program causes the SAT solver to generate a different solution to the

Bounded Model Checking query).

For one of the five interesting3 variations (#40), a useful explanation is produced

without any added assumptions. Variations #11 and #31 also require assumptions

about the antecedent of an implication in an assertion. The final variation, #41,

requires an antecedent assumption and an assumption requiring that TCAS is en-

abled (the successful execution finally produced differs from the counterexample to

such an extent that changing inputs so as to disable TCAS is a closer solution). The

second assumption differs from the implication-antecedent case in that adding the

assumption requires genuine understanding of the structure and behavior of TCAS.

Automation of this kind of programmer knowledge of which behaviors are relevant

to a particular counterexample (e.g., that comparison to executions in which TCAS

does not activate is not very helpful) is implausible.

3The two errors automatically detected by CBMC are constant-valued array indexing violations

that are “explained” sufficiently by a counterexample trace.

88

5.1.2 µC/OS-II Case Study

µC/OS-II [µC/OS-II Website] is a real-time multitasking kernel for microprocessors

and microcontrollers. CBMC applied to a (now superseded) version of the kernel

source discovered a locking protocol error that did not appear in the developers’ list

of known problems with that version of the kernel. The checked source code consists

of 2,987 lines of C code, with heavy use of pointers and casts. The counterexample

trace contains 43 steps (passing through 82 states) and complete values for various

complex data structures used by the kernel. Reading this counterexample is not a

trivial exercise.

Figure 5.8 shows the basic structure of the code containing the error. For this

error, the actual conditions in the guards are irrelevant: the error can occur even

if various conditions are mutually exclusive, so long as the condition at line 1927

is not invariably false. Figure 5.9 shows the explanation for the error produced by

explain.

The µC/OS locking protocol requires that the function OS EXIT CRITICAL should

never be called twice without an intervening OS ENTER CRITICAL call. The code

guarded by the conditional on line 1927 (and thus not executed in the successful

execution) makes a call to OS EXIT CRITICAL and sets a value to 1. The explanation

indicates that the error in the counterexample can be avoided if the guard on line

1927 is falsified. This change in control flow results in a change in the variable LOCK

(by removing the call to OS EXIT CRITICAL) and the variable error, which is set by

the code in the branch. ∆-slicing removes the change in error.

89

1925 OS ENTER CRITICAL(); . . .

1927 if (. . .) {

. . .

1929 OS EXIT CRITICAL(); . . .

1931 (*err) = 1;

/* missing return here! */

1932 } . . .

1934 if (. . .) { . . .

1938 OS EXIT CRITICAL();

. . .

1941 } else { . . .

1943 if (. . .) { . . .

1945 OS EXIT CRITICAL(); . . .

1948 } else {

. . .

1956 OS EXIT CRITICAL();

. . .

1981 return;

Figure 5.8: Code structure for µC/OS-II error

90

Guard changed: (. . .) && \guard#1 (#2) was TRUE

line 1927 function c::OSSemPend

Value changed: LOCK#9 from 0 to 1

Value changed: error#3 from 1 to 0

Figure 5.9: Explanation for µC/OS-II error

The source code for this branch should contain a return statement, forcing an

exit from the function OSSemPend (the return should appear between the assignment

at line 1931 and the end of the block at line 1932); it does not. The missing return

allows execution to proceed to a condition on line 1934. Both the if and else

branches of this conditional eventually force a call to OS EXIT CRITICAL, violating the

locking protocol whenever the guard at line 1927 is satisfied. explain has correctly

localized the error as far as is possible. The problem is a code omission, which

prevents the explanation from pinpointing the precise line of the error (no change

between executions can occur in missing source code, obviously), but the explanation

has narrowed the fault down to the four lines of code guarded by line 1927.

CBMC produces a counterexample for µC/OS-II in 44 seconds, and explain

generates an explanation in 62 seconds. ∆-slicing requires an additional 59 seconds,

but is obviously not required in this case. The SAT instance for producing a coun-

terexample consists of 235,263 variables and 566,940 clauses. The PBS instance

for explanation consists of 236,064 variables and 568,886 clauses, with 69 variables

appearing in the pseudo-Boolean constraint. Appendices F and G provide the full

91

counterexample and explanation, including the generated successful execution (a

large number of variables representing uninitialized pointer structures are omitted

from the appendices).

5.2 Evaluation of Fault Localization

Renieris and Reiss [Renieris and Reiss, 2003] propose a scoring function for evaluating

error localization techniques based on program dependency graphs (PDGs) [Horwitz

and Reps, 1992]. A PDG is a graph of the structure of a program, with nodes (source

code lines in this case) connected by edges based on data and control dependencies.

For evaluation purposes, they assume that a correct version of a program is available.

A node in the PDG is a faulty node if it is different than in the correct version. The

score assigned to an error report (which is a set of nodes) is a number in the range 0

- 1, where higher scores are better. Scores approaching 1 are assigned to reports that

contain only faulty nodes. Scores of 0 are assigned to reports that either include every

node (and thus are useless for localization purposes) or contain only nodes that are

very far from faulty nodes in the PDG. Consider a breadth-first search of the PDG

starting from the set of nodes in the error report R. Call R a layer, BFS0. We then

define BFSn+1 as a set containing BFSn and all nodes reachable in one directed step

in the PDG from BFSn. Let BFS∗ be the smallest layer BFSn containing at least

one faulty node. The score for R is 1− |BFS∗||PDG| . This reflects how much of a program

an ideal user (who recognizes faulty lines on sight) could avoid reading if performing

a breadth-first search of the PDG beginning from the error report. This scoring

92

method has been sufficiently accepted in the fault localization community to be used

by Cleve and Zeller in evaluating their latest improvements to the delta-debugging

technique [Cleve and Zeller, 2005].

Renieris and Reiss report fault localization results for the entire Siemens suite

[Renieris and Reiss, 2003]. Their fault localization technique requires only a set of

test cases (and a test oracle) for the program in question. The Siemens suite provides

test cases and a correct version of the program for comparison. To apply the explain

tool a specification must be provided for the model checker; unfortunately, most of

the Siemens suite programs have not been specified in a manner suitable for model

checking. It would be possible to hard-code values for test cases as very specific

assertions, but this obviously does not reflect useful practice — “successful” runs

produced might be erroneous runs not present in the test suite. Most of the Siemens

programs are difficult to specify using assertions. The TCAS component, however,

is suitable for model checking with almost no modification, as it computes an output

from a set of inputs and a logical specification [Coen-Porisini et al., 2001] for aspects

of this behavior is available.

Table 5.1 shows scores for error reports generated by explain, JPF, and the

approach of Renieris and Reiss. The score for the CBMC counterexample is given as

a baseline. CodeSurfer [Anderson and Teitelbaum, 2001] generated the PDGs and

code provided by Manos Renieris computed the scores for the error reports.

The first two columns under the “explain” heading show scores given to reports

provided by explain without using added assumptions, before and after ∆-slicing.

93

explain assume JPF R & R CBMC

Var. exp slice time assm slice time JPF time n-c n-s CBMC time

#1 0.51 0.00 4 0.90 0.91 4 0.87 1,521 0.00 0.58 0.41 1

#11 0.36 0.00 5 0.88 0.93 7 0.93 5,673 0.13 0.13 0.51 1

#31 0.76 0.00 4 0.89 0.93 7 FAIL - 0.00 0.00 0.46 1

#40 0.75 0.88 6 - - - 0.87 30,482 0.83 0.77 0.35 1

#41 0.68 0.00 8 0.84 0.88 5 0.30 34 0.58 0.92 0.38 1

Average 0.61 0.18 5.4 0.88 0.91 5.8 0.59 7,542 0.31 0.48 0.42 1

µC/OS-II 0.99 0.99 62 - - - N/A N/A N/A N/A 0.97 44

µC/OS-II* 0.81 0.81 62 - - - N/A N/A N/A N/A 0.00 44

Explanation execution times in seconds. Best results in boldface. FAIL indicates memory

exhaustion (> 768MB used). * indicates alternative scoring method.

Table 5.1: Scores for localization techniques

For versions #1, #11, #31, and #41, the original explanation includes a faulty node

as a result of an input change; however, the faulty node is only “accidentally” present

in the report, and is removed by slicing. This is not a failure of the slicing algorithm,

but a sign that the explanation is poor: the changes required to avoid the error do

not include a faulty node, but, because the TCAS code includes many dependencies

on the inputs, a change in a fault location happens to arise from the input change. In

other words, an input change needed to avoid the error affects a result computed in

faulty code by sheer coincidence. The coincidental change is then removed by slicing,

because it is completely irrelevant to the success of the execution. Because relevance

in ∆-slicing is defined with respect to a given execution (i.e., explanation), slicing

a bad explanation may produce a very small and clearly useless result, as in these

cases — it is relatively easy to rule out changes in inputs only as being a satisfactory

94

localization of a TCAS bug. These “negative” results suggest that ∆-slicing can

be used to detect very poor explanations: if nothing “interesting” (possibly faulty)

remains after slicing, the original explanation is almost certainly reflecting behavior

that we do not want to compare to the counterexample, such as in the implication-

antecedent case. The columns under the “assume” heading show explain results

after adding appropriate assumptions, if needed.

The next group of scores and times (under the “JPF” heading) show the results of

applying JPF’s error explanation tools [Groce and Visser, 2003] to the TCAS exam-

ple. Because JPF does not produce a single report in the same fashion as explain,

a combination of results from the various analyses produced by JPF, specifically

only(pos) ∪ only(neg) ∪ (all(neg)\all(pos)) ∪ (all(pos)\all(neg)) for transitions and

transforms, was used to evaluate the fault localization. The details of this compu-

tation are somewhat involved, but at a high level this report is based on a sample

of successful and failed executions of the program, and contains: (1) nodes appear-

ing in either only successful or only failing runs and (2) those nodes appearing in

either all successful but not all failed or all failed but not all successful runs. In

order to produce any results (or even find a counterexample) with JPF it is neces-

sary to constrain input values to either constants or very small ranges based on a

counterexample produced by CBMC. Comparison with the JPF scores is therefore

of somewhat dubious value.

The columns under the “R & R” heading show average scores for two of the

localization methods described by Renieris and Reiss [Renieris and Reiss, 2003].

The scores for their methods vary depending on which failing test case is used as

95

a basis for computing the localization. For the most part, the difference between

the minimum, maximum, and average scores for each variation were small (less than

0.04), except for variation #11, with a maximum score of 0.95 and a minimum of

0.00, producing a low average. The representation of executions used in Renieris

and Reiss’ approach is that of program spectra [Harrold et al., 2000; Reps et al.,

1997] containing basic information on control flow and loop execution, rather than a

detailed representation including internal variable values such as is used in explain.

The many low scores produced by these methods probably indicate collisions : cases

in which the spectra used are too coarse to distinguish between some failing run and

some successful run [Renieris and Reiss, 2003]. Run-times for these methods were

not reported by Renieris and Reiss, but should be similar to the time needed to run

the various test cases, plus some overhead. Running the test suite takes 1.6 seconds.

Previous to the most recent improvement to delta-debugging [Cleve and Zeller,

2005], the nearest neighbor techniques proposed by Renieris and Reiss had achieved

the best fault localization on the Siemens suite examples, and so form a good ba-

sis for comparison. We have not yet obtained TCAS-specific data to see how the

gains over Renieris and Reiss’ results achieved by Cleve and Zeller compare to our

improvements: for the suite in general, they report that 45% of test runs received

scores less than 0.60, but it is possible that TCAS results differ importantly from

these average scores. We do know that our average run-times for TCAS explanation

compare favorably to the delta-debugging technique, which took 184.8 seconds on

average for TCAS runs.

The last two columns provide a baseline for all results: scores and times for the

96

counterexamples generated by the CBMC model checker. When a method does not

improve on the score for the counterexample, that method can probably safely be

considered to have been a hindrance to debugging efforts in that instance.

After introducing assumptions and slicing, 0.88 was the lowest score for an ex-

plain report. Ignoring pre-assumption accidental inclusions of faults, ∆-slicing al-

ways resulted in improved scores. The best average results for any method are those

for the explain approach after adding assumptions and slicing.

The µC/OS-II explanation receives a score of 0.99 (∆-slicing does not change the

score in this case). Somewhat surprisingly, the CBMC counterexample itself receives

a score of 0.97: it is very short in comparison to the complete source code, and

(naturally) passes through the faulty node. Any fault-containing and succinct report

will receive a good evaluation for a sufficiently large program. Another useful way

to view the results in the µC/OS-II case is that the explanation points directly to

the error and contains four lines of results for a user to read. The counterexample

also includes the error, but contains over 450 lines of text for a user to understand.

Even after removing over 200 lines of program state information, the counterexample

contains over 220 lines. Reading from the end of counterexample, 30 lines (from state

82 to state 65) must be read before encountering the faulty node. It is presumably

far less likely that the user will grasp the significance of this branch when it is not

presented in isolation. To remedy the difficulty in distinguishing report quality for

large programs, a modified formula suggested by Manos Renieris uses the size of

the counterexample as a baseline in the formula, in place of |PDG|: 1 − |BFS∗|
|CE| .

Using this formula (results marked with a * in Table 5.1), the counterexample itself

97

receives a score of 0.004, and the µC/OS-II explanation is given a score of 0.81 (a

perfect explanation would receive a score of 0.95, as it must contain at least one

node: even the best explanation cannot reduce the user’s required reading below 5%

of the original counterexample nodes).

5.3 Evaluation of Modifications to the Distance

Metric

Given the small number of realistic examples available for study, it would be unwise to

draw strong conclusions about the utility of fine-tuning the distance metric. However,

it is worth examining the effects of a few natural variations on the basic distance

metric presented in Chapter 3.

5.3.1 Measuring Distance Over Input Changes Only

One obvious modification to the metric is to restrict the computation of distances

to a coarser granularity, such as would be available in testing. Using only input

variables to compute the distance between executions (but using all ∆s to compute

the localization, as input declarations are unlikely to be the source of error) should

indicate to some extent the source of the advantages of our approach over testing-

4In principle, a report could receive a negative score if it did not contain a faulty node; the

counterexample will always receive a score of 0.00, as it is the same size as itself and must contain

a faulty node.

98

explain assume CBMC

Var. exp slice time assm slice time CBMC time

#1 0.83 0.88 5 0.84 0.88 4 0.41 1

#11 0.46 0.46 4 0.51 0.54 5 0.51 1

#31 0.84 0.74 4 0.84 0.91 4 0.46 1

#40 0.84 0.86 4 - - - 0.35 1

#41 0.62 0.42 4 0.82 0.84 4 0.38 1

Average 0.72 0.67 5.3 0.75 0.79 4.3 0.42 1

µC/OS-II 0.96 0.97 62 - - - 0.97 44

µC/OS-II* 0.52 0.62 62 - - - 0.00 44

Table 5.2: Scores for metric over inputs-only

based analysis. If the primary benefit is the ability to search all executions, then

measuring over only inputs should still produce good results; if the high precision with

respect to internal behavior is the key factor, measuring distance over the externally

observable inputs only should result in localization more like that produced by the

technique of Renieris and Reiss.

Figure 5.2 shows the results of computing the distance metric (but not the local-

ization) over inputs only. For the TCAS variations, the average evaluation is 0.81,

considerably lower than the 0.90 for the more precise distance metric. It is interesting

to note that the pre-assumption results for measuring over inputs alone were actually

better than those for the original metric — because all of the TCAS explanations, for

either metric, are the result of exactly one input change, the coarser metric allows for

“more distant” solutions that are masked by the unfortunate implication-assumption

executions when using the very precise metric. However, the inputs-only metric fails

to localize variation #11, even when an assumption is added. In general, the TCAS

99

results suggest that the most important gain over testing is probably in the ability

to consider all possible executions, but that the more precise distance metric also

contributes significantly to the success of localization. The µC/OS-II results also

show a considerable loss of localization effectiveness when using the coarser metric,

particularly when using the counterexample as a baseline: the localization is still

better than that provided by the counterexample, but is not as accurate as when

using the fine-grained metric.

5.3.2 Increasing the Weight for Input Changes

As an alternative to measuring distance in terms of input changes alone, we can

simply increase the weight of input changes in the metric computation. Rather than

defining d(a, b) as simply:

n∑

i=0

∆(i)

where

∆(i) =

0 if valai = valbi

1 if valai 6= valbi

we can use a weighted set of ∆s:

∆(i) =

0 if valai = valbi

w if valai 6= valbi

100

where w depends on whether the change is in a program variable, an input, or a

guard.

If we make w 100 in the case of inputs and 1 in all other instances (thus weighting

changes to inputs 100 times more heavily in the optimization problem than other

alterations to the counterexample), we observe surprisingly little change in the ex-

planations produced. For the TCAS variations, only #11 — and it only after the

addition of assumptions — changes sufficiently to affect the localization (in other

cases the specific values to which inputs are altered change, but not so as to affect ei-

ther localization or the basic explanation). For #11, the heavier weighting of inputs

reduces the quality of the localization: the report receives before and after slicing

scores of 0.46 and 0.49 respectively (vs. 0.88 and 0.93 for the original metric). The

µC/OS-II explanation is unchanged by the alteration of the distance metric.

As stated above, drawing final conclusions about the utility of changes to the

metric is difficult without comparing results over a much larger variety of programs

and errors. It is safe to say that at present there is little indication that a heavier

weighting of input changes will contribute to better explanations, and some small

indication that such weighting might reduce the effectiveness of the technique.

5.3.3 Increasing the Weight for Control Flow Changes

Another plausible alteration to the distance metric would be to make changes in

control flow contribute more to the distance between executions than changes to

program variables. After all, a change in control flow is presumably more important

101

explain assume CBMC

Var. exp time assm time CBMC time

#1 0.33 46 0.33 61 0.41 1

#11 0.71 26 0.72 23 0.51 1

#31 0.00 38 0.67 54 0.46 1

#40 0.94 9 - - 0.35 1

#41 0.00 12 0.29 65 0.38 1

Average 0.40 26.2 0.50 50.8 0.42 1

µC/OS-II 0.62 116 - - 0.97 44

Table 5.3: Scores when interventions are allowed

than a variable value change. At the least, this seems to be the case in the “intuitive”

informal measures of similarity we use when speaking of program executions.

Increasing the weight for guard ∆s (i.e., changes in control flow) to 100 times

that for other changes does not result in any changes in localizations for the TCAS or

µC/OS-II examples. It seems possible that weighting control flow more heavily might

be useful in some cases, but no evidence for this can be found in our experiments.

5.3.4 Allowing Arbitrary Value Changes (Interventions)

Instead of changing the distance metric, it is also possible to relax our definition

of an execution of the program (as discussed in Section 3.1.2) by allowing interven-

tions : arbitrary injections of new values. Interventions resemble the relaxation of

the transition relation introduced by ∆-slicing, but are more radical: no restrictions

are made as to the interjected values, and the explanation is based on a potentially

completely unrealistic program execution, rather than a subset of a valid execution.

102

Figure 5.3 shows results when the restriction to valid executions is relaxed by

allowing interventions. We omit ∆-slicing results, as when interventions are allowed,

∆-slicing can provide no further reduction to an explanation (there are no secondary

effects of input changes, etc. — all changes are required in order to avoid the error).

The time taken to produce explanations increases considerably, and the average

quality of the explanations is greatly reduced. In one case (TCAS variation #40), a

very good explanation is obtained, but in three cases the explanations produced (even

in the post-assumption case for TCAS variations) score substantially worse than the

localization provided by the CBMC counterexample. The µC/OS-II explanation is

of such poor quality that we omit the alternative scoring method, as the localization

is clearly much worse than for the counterexample when the score is based on the

full PDG (this localization merits a negative score by the alternative method).

5.4 Evaluation of One-Step Slicing

Table 5.4 shows the poor results obtained by applying one-step slicing (Section 4.3)

to the case studies. Execution times are on average slightly over 4 times greater for

the TCAS results (and > 3.5 times longer for the µC/OS-II example, which includes

lengthy parsing and processing times). More importantly, the explanations produced

are of much lower quality. Without assumptions, the average quality drops below that

of the raw counterexamples. With assumptions, the explanations are only slightly

better than the counterexamples, on average. Averaging the best results overall gives

a score of 0.55, while for the two-phase algorithm, the average is a respectable 0.91.

103

explain assume CBMC

Var. exp time assm time CBMC time

#1 0.00 26 0.33 26 0.41 1

#11 0.46 18 0.46 16 0.51 1

#31 0.00 31 0.81 29 0.46 1

#40 0.84 15 - - 0.35 1

#41 0.00 27 0.33 26 0.38 1

Average 0.26 23.4 0.48 24.3 0.42 1

µC/OS-II 0.00 223 - - 0.97 44

µC/OS-II* 0.00 223 - - 0.00 44

Table 5.4: Scores with one-step slicing

The problems with one-step slicing arise in part from the ability to avoid an error

by changing only an input value and a very small number of intermediate values. The

SSA form allows most of the computational changes produced by such an alteration

to (correctly) be sliced away, but computing the distance metric over this tiny slice is

meaningless, given that the original executions were radically different. As explained

previously, ∆-slicing is relevant to an already chosen explanation; in the case of a

poor explanation (indicated by a large pre-slice distance), the definition of relevance

will result in a slice that provides poor explanation and localization.

5.4.1 One-Step Slicing in Action

Consider, for example, the explanation produced for the TCAS variation #1 by

one-step slicing (Figure 5.10).

The code shown in Figure 5.11 is used to determine if a Resolution Advisory

104

Value changed: Input Other Capability 1#0 from 2 to 1

Value changed: Other Capability#1 from 2 to 1

line 217 function c::main

Value changed: tcas equipped 1#1 from FALSE to TRUE

line 136 function c::alt sep test

Value changed: ASTEn#2 from TRUE to FALSE

Value changed: PrB#1 from TRUE to FALSE

line 230 function c::main

Figure 5.10: One-step slicing report for TCAS variation #1

is computed by TCAS: the properties for TCAS are, in a sense, predicated on the

assumption that ASTEn is set to true (indicating a resolution has been computed).

The implication in the assertion (P1 BCond⇒ !PrB) is always satisfied if no advisory

is computed, because this will force PrB to be false (see Figure 5.3). The change in

this explanation results in the if branch in this code not being taken. Although this

causes a large change in the program values, the slicing algorithm correctly notes

that the only value crucial for the property change is the alteration to the value of

ASTEn used in computing PrB.

Similar issues result in poor explanations for the other TCAS examples. It might

well be possible to generate good explanations with one-step slicing in its current

form, but the need to introduce a large number of user-produced assumptions makes

the technique of very limited value, given the better performance of two-phase slicing.

105

Bool enabled, tcas equipped, intent not known;

Bool need upward RA, need downward RA;

int alt sep;

ASTBeg = 1;

enabled = High Confidence && (Own Tracked Alt Rate <= OLEV) &&

(Cur Vertical Sep > MAXALTDIFF);

tcas equipped = Other Capability == TCAS TA;

intent not known = Two of Three Reports Valid && Other RAC ==

NO INTENT;

alt sep = UNRESOLVED;

if (enabled && ((tcas equipped && intent not known)

|| !tcas equipped))

{

ASTEn = 1;

Figure 5.11: Code for determining if RA is computed

106

In practice, it appears that computing distances over complete executions is simply

better than optimizing the ∆-slices, in the absence of some fundamental reworking

of one-step slicing.

107

108

Chapter 6

Causal Dependence and

Explanation

Your ’if’ is the only peacemaker; much virtue in ’if’.

- William Shakespeare, As You Like It, Act 5, Scene 4

6.1 Hypothesizing and Checking Causal Depen-

dence

Chapter 1 presents a notion of causal dependence (Definition 3) based on David

Lewis’ counterfactual theory of causality [Lewis, 1973a]. That definition states that

a predicate e is causally dependent on a predicate c in an execution a iff:

1. c(a) ∧ e(a))

109

2. ∃b . ¬c(b) ∧ ¬e(b) ∧ (∀b′ . (¬c(b′) ∧ e(b′))⇒ (d(a, b) < d(a, b′)))

In other words, e is causally dependent on c in a if the cause and effect both

appear in a and executions in which neither the cause nor effect appear are more like

a than executions featuring only the cause.

The technique presented in chapters 3-5 does not rely on checking causal de-

pendence. Determining if e depends on c is only useful after arriving at a likely

candidate cause. This would be putting the cart before the horse, as the chief goal

of error explanation is to help the user move from awareness of the existence of an

error to a small set of candidate causes.

6.1.1 Motivation

Unfortunately, differences in actual variable values are often too specific. The relevant

information is often a change in relationships between variables: i.e., not that x was

100 and must be changed to 200 to avoid violating an assertion, but that in the failing

run x < y and in the successful run, x > y. The standard explain approach may,

unfortunately, completely omit y from an explanation if only the value of x is altered

in the successful execution. Because the distance metric minimizes the number of

changes, such omissions are very likely to occur. A more general notion of ∆s would

report to the user all predicates whose values are different for the counterexample

and the successful execution; however, as the set of changed predicates is potentially

infinite (comparisons of variables with constant values, etc.), only a subset of the

potential ∆s can realistically be considered.

110

Directly presenting the set of changed ∆ predicates is not particularly useful:

changes in important variables are likely to introduce many accidental and unimpor-

tant changes, hiding the relevant differences in a large set of uninteresting results.

However, the set of changes can be used as a set of candidate causes for checking

causal dependence. Presenting only ∆s on which the error is causally dependent re-

sults in a practically applicable method. We can make use of the same mechanisms

used to produce the explanations in earlier chapters to automatically hypothesize

causes for an error.

In order to reduce the space of predicates to be explored, we restrict our attention

to ordering and equality relations between program variables, e.g. x == y, x < y, x

> y, x <= y, etc. Section 6.1.4 discusses alternative schemes for exploring the space

of potential causes for an error.

The set of predicate ∆s that need to be checked is further reduced by requiring

that one of the variables being compared has changed its value in the successful

execution. This is a conservative reduction (ignoring no potential causes): if neither

variable has changed value, the predicate value must be unchanged.

6.1.2 Algorithm for Checking Causal Dependence

Given a possible cause c, the counterexample execution a, and an error (or effect) e,

checking causal dependence requires two steps:

1. Find an execution b such that:

111

• c does not hold and

• the distance d(a, b) is minimal.

In order to find b, we make use of the same PBS-based approach used to find

a maximally similar successful execution (described in Chapter 3), except that

in place of the verification condition V , the negation of the hypothesized cause

is used (¬c).

The execution b is as similar as possible to the counterexample a, except that

the potential cause c is present in a but not in b. If the error e is present

in b, e is not causally dependent on c and the algorithm terminates.

2. Perform bounded model checking over all executions such that

• c does not hold and

• the distance to a is equal to d(a, b).

Again, this is made possible by the distance metric representation presented

in Chapter 3. The PBS constraints encode the restriction on the distance to a

(in this case an exact distance rather than an optimization problem), and we

use ¬c ∧ e as the claim. If this PBS formula is unsatisfiable, the error cannot

occur without the cause in executions at distance d from a.

If all such executions are error free (e does not hold, i.e., the PBS

formula is unsatisfiable), then e is causally dependent on c.

112

1 void f (int a, int b, int c)

2 {

3 int temp;

4 if (a > b) {

5 temp = a;

6 a = b;

7 b = temp;

8 }

9 if (b > c) {

10 temp = b;

11 b = c;

12 c = temp;

13 }

14 if (a < b) {

15 temp = a;

16 a = b;

17 b = temp;

18 }

19 assert ((a <= b) && (b <= c));

20 }

Figure 6.1: sort.c

113

Counterexample:

Initial State

--

temp=-1 (11111111111111111111111111111111)

a=0 (00000000000000000000000000000000)

b=0 (00000000000000000000000000000000)

c=-1 (11111111111111111111111111111111)

State 6 file sort.c line 10 function c::f

--

temp=0 (00000000000000000000000000000000)

State 7 file sort.c line 11 function c::f

--

b=-1 (11111111111111111111111111111111)

State 8 file sort.c line 12 function c::f

--

c=0 (00000000000000000000000000000000)

Failed assertion: assertion file sort.c line 19 function c::f

Figure 6.2: Counterexample for sort.c

114

Deltas after minimization:

Value changed: c#0 from -1 to 0

Guard changed: !(b#2 <= c#0) (\guard#2) was TRUE

file sort.c line 9 column 2 function c::f

Value changed: b#4 from -1 to 0

Value changed: b#6 from -1 to 0

Figure 6.3: Explanation for sort.c

Error is causally dependent on these predicates:

c#0 < a#0

c#0 < b#0

Figure 6.4: Causes for sort.c

115

Error is causally dependent on these predicates:

Input Down Separation#0 == Layer Positive RA Alt Thresh#1

Input Down Separation#0 <= Layer Positive RA Alt Thresh#1

Down Separation#1 == Layer Positive RA Alt Thresh#1

Down Separation#1 <= Layer Positive RA Alt Thresh#1

Figure 6.5: Causes for TCAS error #1

6.1.3 Checking Causal Dependence in Practice

Figure 6.4 shows a subset of the causes discovered for the counterexample shown

in Figure 6.2 (the sliced explanation for the error appears as Figure 6.3). In this

case, the only causes shown are those which relate two input values. The algorithm

actually detects 63 additional causes, relating inputs to intermediate values, or in-

termediate values to each other. For this reason, an option is provided to only check

for relationships between input variables. The high degree of causal dependence in

this case derives from the nature of the code: for a faulty sorting routine, ordering

relations will obviously be crucial to the occurrence of the error, unless the sorting

routine is invariably incorrect. The relationships between intermediate values are

somewhat uninteresting in this case, as the set of input values is equivalent to the

set of all values computed by the program.

For variation # 1 of the TCAS case study [Coen-Porisini et al., 2001; Rothermel

and Harrold, 1999] a much smaller set of causes (Figure 6.5) is produced without

116

restriction to input values. Figure 5.1 shows the error in the TCAS code as a diff

between correct and incorrect versions. The automatically generated explanation, as

described in Chapter 5, directs attention to line 100. The function call to ALIM() on

this line always returns a value that is equal to Layer Positive RA Alt Thresh#1.

Any user familiar with the specification of the TCAS code will be aware of this

equivalence. Knowing (i) that the fault can be localized to line 100 and (ii) that the

error is causally dependent on the predicate:

Down Separation#1 == Layer Positive RA Alt Thresh#1

a user should be able to quickly conclude that the > comparison on line 100 should

be a >= comparison.

Unfortunately, checking for causal dependency is considerably more expensive

than the basic explanation approach. Producing and slicing the closest execution

for TCAS variation #1 takes only 4 seconds; it takes 74 seconds to produce and

check a set of possible causes for the error. The additional cost of computing and

checking hypotheses varies, taking 207 more seconds than computing only a set of

∆s for variation #11, adding 63 seconds for #31, 64 more seconds for #40, and an

additional 353 seconds for variation #41.

6.1.4 Alternative Approaches for Hypothesis Selection

The particular choice of predicates for which to check causal dependence involves

a number of trade-offs: using too many predicates will increase computation time

117

and may result in redundant results; using too few may miss causal dependencies.

An obvious alternative method is to use predicates taken from guards and Boolean

assignments in the program source. Such comparisons should be generalized: if

x > y appears in a guard, checking x <= y, x == y, and so forth is necessary to

catch cases where the choice of comparison operations is incorrect. The primary

differences between this generalization and the method implemented in CBMC is that

no causality checking is done for (1) comparisons with constants and (2) comparisons

with temporary results that are never stored in a variable (i.e. x > (y + 50)). On

the other hand, comparisons between values that do not appear in guards together

are checked. Causal dependencies that are directly present in a guard in the source

code are generally not as difficult to detect as indirect dependencies: a change in

guard value is likely to appear in the explanation. For this reason, it seems at least

reasonable to expect that the current trade-off is often the correct choice.

Another alternative approach would be to leverage predicate abstraction. Chap-

ter 7 presents an explanation technique based on abstract executions of programs.

The predicates used in the abstract model could be tested for causal dependence.

Checking causal dependence is of less interest when using abstract executions, how-

ever, as the explanations are presented in terms of changes in relationships between

variables in the first place, and irrelevant ∆s in predicates are suppressed by the

metric and the abstract model.

118

Chapter 7

Explaining Abstract

Counterexamples

The difference between these two abstractions consists in the fact that

in the abstraction of the universal from the particular, that from which the

abstraction is made does not remain. . .

- St. Thomas Aquinas, Summa Theologica, I, 40.

7.1 Motivation

The explanation method presented in Chapter 3 may be generalized to apply to other

model checkers and representations for executions (Figure 7.1):

1. Generate a counterexample C for a specification Spec of a program P using a

119

counterexample

∆5 s

C

constraint solver

P + Spec

Model checker
counterexample

1

C

+ constraints

closest successful execution

BMC

S
2,3

4

finds closest successful execution
 as measured by distance metric

Figure 7.1: Error explanation with distance metrics

model checker1.

2. Use bounded model checking (BMC) [Biere et al., 1999] to unwind the tran-

sition relation of P to a finite bound2 and produce a propositional formula S

that represents exactly the executions of P that do not violate Spec.

3. Extend S with variables and constraints representing an optimization problem:

find a satisfying assignment that is as similar as possible to the counterexample

C, as measured by a distance metric on executions of P .

4. Solve the optimization problem from the previous step, producing a successful

execution with minimal distance from the counterexample.

5. Present the differences (∆s) between the successful execution and the coun-

1The counterexample now may be a finite path or a stem and cycle representation of an infinite

path containing a loop.
2In Chapter 3-6, this was typically the same as the bound used to produce the counterexample

C.

120

P
(Model checker)

A(P)

C

No error:
Specification holds

Abstract Verify

Spurious?Refine YES NO

Real counterexample

A’

Figure 7.2: Counterexample-guided abstraction refinement (CEGAR)

terexample as explanation and localization for the error.

In Chapters 3-6, the counterexample and successful execution were always con-

crete executions produced by the bounded model checker CBMC [Kroening et al.,

2004] and the explain tool [Groce et al., 2004]. The ∆s between successful and

failing runs were presented as changes at the level of the C type system, e.g. x =

2147483615 vs. x = 255. In this Chapter, we will preserve the structure of the

explanation method presented (and the use of BMC + pseudo-Boolean constraints),

but generalize to Deltas over logical predicates, e.g. x > y vs. x <= y.

7.1.1 Predicate Abstraction

Many successful software model checking projects, such as SLAM, BLAST, and

MAGIC [Ball and Rajamani, 2001; Chaki et al., 2004a; Henzinger et al., 2002] have

been based on predicate abstraction [Graf and Saidi, 1997] and counterexample-

121

guided abstraction refinement (CEGAR) [Ball and Rajamani, 2000; Clarke et al.,

2000a; Kurshan, 1995]. Rather than model checking a representation of the concrete

state-space of a system, these tools check properties of conservative abstractions of

programs, and refine the abstractions until either the program is shown to satisfy its

specification or a counterexample is generated. The CEGAR framework for verifying

a program P with specification Spec consists of four main steps (shown in Figure

7.2):

1. Abstract: Create a (finite-state) abstraction A(P) which safely abstracts P

by construction.

2. Verify: Check if A(P) |= Spec holds. That is, determine whether the ab-

stracted program satisfies the specification of P . If it does, P must also satisfy

the specification, and the program is successfully verified.

3. Check spurious: If A(P) does not satisfy the specification, a counterexample

C is generated. C may be spurious : not a valid execution of the concrete

program P . If C is not spurious, P does not satisfy its specification.

4. Refine: If C is spurious, refine A(P) in order to eliminate C, which represents

behavior that does not agree with the actual program P . Return to step 13.

SLAM, BLAST, and MAGIC use abstraction because concrete state-spaces are

often intractably large (or infinite). The reduced state-spaces produced by predicate

3This process may not terminate, as the problem is in general undecidable.

122

abstraction have not, typically, been viewed as useful objects for human examina-

tion. They are artifacts of the verification process, used for refuting or proving a

property of a system and then discarded. These automatically generated abstrac-

tions are usually more complex and less intuitive than those produced by humans,

and the state-spaces are still generally too large to be presented directly to users.

Nonetheless, we show that these automatically generated abstractions are useful for

program understanding, and that the predicates produced by the verification process

can enhance error explanation.

Abstract error explanation, described in detail below, is a selective use of automat-

ically generated predicate abstractions. Even though the abstracted program may

not be useful or interesting to a user, the differences in predicate values between

successful and faulty executions of a program may be very useful and interesting.

The key insight is that while the abstracted program is very complex, the predicates

produced by the abstraction process are highly meaningful, and often encode a con-

cise logical understanding of the behavior of the system with respect to a property.

Far from being meaningless by-products of verification, the predicates are the values

that must be known to distinguish real (faulty) runs of the program from spurious

behaviors that do not reflect actual execution. As we show, predicates sufficient to

find a non-spurious counterexample also describe non-spurious successful behavior

well in many cases.

123

1 int main () {

2 int input1, input2, input3;

3 int least = input1;

4 int most = input1;

5 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;

9 if (least > input2)

10 most = input2; //ERROR!

11 if (least > input3)

12 least = input3;

13 assert (least <= most);

14 }

Figure 7.3: minmax.c

124

Value changed: input3#0 from 1 to -2

Value changed: most#3 from 1 to -2

line 8 function c::main

Guard changed: least#0 > input3#0 (\guard#4) was FALSE

line 11 function c::main

Value changed: least#1 from 1 to -2

line 12 function c::main

Value changed: least#2 from 1 to -2

Figure 7.4: Concrete ∆ values for minmax.c

7.1.2 Motivating Example

As a motivating example, consider the program in Figure 7.3, presented previously

in Chapter 3. We have implemented error explanation (as described below) for

the MAGIC [Chaki et al., 2003a, 2004a] predicate-abstraction based software model

checker, and applied the explain tool and MAGIC’s error explanation facility to this

program in order to produce a concrete and an abstract explanation for the fault in

minmax.c.

Again, recall that the uninitialized values input1, input2, and input3 repre-

sent nondeterministically chosen inputs in both MAGIC and explain, and that line

13 provide the program specification, requiring that the (supposed) minimum value

among the three inputs determined by the program must be less than or equal to

125

Control location deleted (step #5):

10: most = input2

{most = [$0 == input2]}

Predicate changed (step #5):

was: most < least

now: least <= most

Predicate changed (step #5):

was: most < input3

now: input3 <= most

Predicate changed (step #6):

was: most < least

now: least <= most

Action changed (step #6):

was: assertion failure

Figure 7.5: Abstract ∆ values for minmax.c

126

the (supposed) maximum value the program discovers.

Figure 7.4 shows a concrete explanation of the error produced by the explain

tool. The explanations produced by explain can be highly sensitive to the partic-

ular options chosen when producing the constraints for the SAT solver. CBMC, for

reasons of efficiency, provides a number of command line options that modify the

equations generated by the SSA-like transformation: constant propagations, arith-

metic simplifications, and variable substitutions are all controllable, and it is often

difficult to predict which choices will result in the most easily solvable SAT formu-

las. In this case (though not in any of our larger case studies), applying certain

(semantics-preserving) arithmetic simplifications provided by CBMC results in a dif-

ferent explanation than the one shown in Chapter 3. For the same counterexample,

this choice of options produces a (rather difficult to understand) explanation that

notably does not successfully isolate the error to line 10. Recall that many successful

executions may exist at a minimal distance from a counterexample. For this program,

using the same options for explain as used to produce the counterexample (Figure

3.3 results in a good explanation (Figure 3.8), while slightly altering the CBMC

options (perhaps in order to speed up the explanation by applying further simpli-

fications to the constraints) produces an equidistant trace that does not provide a

good explanation. Interestingly, adding an assumption that the input values are all

>= 0 also causes explain to produce this weak explanation (except that the -2 is

changed to a 0); adding such an assumption does not alter the results for abstract

explanation. The problem of multiple closest executions is less likely to appear in the

abstract domain, as the number of possible program executions is (typically) much

127

reduced by abstraction. The importance of this concern is not clear: for non-toy

programs with larger executions (and proportionally more behavior irrelevant to an

error) the issue of multiple executions at the same distance did not generally result

in poor explanations.

Figure 7.5 shows the explanation produced by MAGIC using abstract ∆s4. The

explanation consists of a set of atomic changes to the counterexample produced by

MAGIC. In the counterexample, line 10 (the line with the error) is executed. In

the most similar successful execution, line 10 is not executed (a control location

in the counterexample is deleted – an explanation may also show an insertion, in

which a guard that was not satisfied in the counterexample becomes true in the

successful execution). The change in control flow does not result from a change in

predicate values; the abstraction is imprecise, and so the guard (least > input2)

is a nondeterministic choice. The change in control flow forces a change in predicate

values: if least > input2, then input2 is assigned to most. Given that least

> input2 and most = input2, it follows that least > most, which will cause the

assertion on line 13 to be violated. If the guard is false and the assignment does not

take place, the abstraction is precise enough to prove the invariant least <= most5,

preventing the assertion failure action6.

Note that MAGIC does not use a single monolithic set of predicates. A different

4Output is slightly simplified for readability.
5The other predicate change is a result of least being equal to input3 at this point.
6In MAGIC, actions are events that might appear in a specification, such as calls to obtain

locks, function return values, and assertion violations [Chaki et al., 2004a]. The epsilon action

represents unobservable behavior.

128

set of predicates may be tracked at each program control location. Notice that at

state 1 in the counterexample, the predicate input2 < least is tracked, but that the

relationship between input2 and least is not determined by the predicates in state

3. The particular predicates used at each location are computed by an algorithm

[Chaki et al., 2004b, 2003b] based on iterating weakest preconditions [Dijkstra, 1973;

Hoare, 1983] to determine which predicates to associate with each control location

(similar to the approach of Namjoshi and Kurshan [Namjoshi and Kurshan, 2000]).

Figure 7.6 shows the entire abstract state space of minmax.c, as generated by

MAGIC. Figures 7.7 and 7.9 show the counterexample and closest successful execu-

tion graphs produced by MAGIC (with actions removed for clarity). Figures 7.8 and

7.10 are more readable textual representations of the paths.

The abstract explanation is produced more quickly7 and highlights precisely the

nature of the error. The most similar successful execution avoids performing the

assignment at line 10, which ensures that the assertion holds: the fault is clearly

localized to line 10, and the predicates pinpoint the nature of the problem. The

concrete explanation, in contrast, presents changes to input values that do not im-

mediately indicate the nature of the problem. The control flow is altered, but in a

way that affects non-faulty code, in part because of the distance metric’s comparison

of values from non-executed code.

Because software model checkers use conservative abstractions, a non-spurious

counterexample can (in principle) be produced from even a very coarse abstraction

7The SAT instances are much smaller, as the 32-bit integers in the concrete case are replaced

by a few predicates.

129

LTS after predicate abstraction
Component #0 Procedure #0

Procedure name: main
Iteration #1

INIT

P0::least = P0::input1
P0::input1 <= P0::input3
P0::input2 < P0::input1

P0::input3 <= P0::input1
P0::input2 < P0::input3

epsilon_0

P0::least = P0::input1
P0::input1 < P0::input3

P0::input1 <= P0::input2
P0::input3 <= P0::input2

epsilon_0

P0::least = P0::input1
P0::input3 < P0::input1
P0::input2 < P0::input1
P0::input2 < P0::input3

epsilon_0

P0::least = P0::input1
P0::input1 < P0::input3

P0::input1 <= P0::input2
P0::input2 < P0::input3

epsilon_0

P0::least = P0::input1
P0::input1 <= P0::input3
P0::input1 <= P0::input2
P0::input3 <= P0::input1
P0::input3 <= P0::input2

epsilon_0

P0::least = P0::input1
P0::input3 < P0::input1
P0::input2 < P0::input1

P0::input3 <= P0::input2

epsilon_0

P0::least = P0::input1
P0::input3 < P0::input1

P0::input1 <= P0::input2
P0::input3 <= P0::input2

epsilon_0

P0::least = P0::input1
P0::input1 < P0::input3
P0::input2 < P0::input1
P0::input2 < P0::input3

epsilon_0

P0::most = P0::input1
P0::least <= P0::input3
P0::input2 < P0::least

P0::input3 <= P0::input1
P0::least <= P0::input1
P0::input2 < P0::input3

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::least <= P0::input3
P0::least <= P0::input2
P0::input1 < P0::input3
P0::least <= P0::input1

P0::input3 <= P0::input2

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::input3 < P0::least
P0::input2 < P0::least

P0::input3 <= P0::input1
P0::least <= P0::input1
P0::input2 < P0::input3

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::least <= P0::input3
P0::least <= P0::input2
P0::input1 < P0::input3
P0::least <= P0::input1
P0::input2 < P0::input3

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::least <= P0::input3
P0::least <= P0::input2

P0::input3 <= P0::input1
P0::least <= P0::input1

P0::input3 <= P0::input2

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::input3 < P0::least
P0::input2 < P0::least

P0::input3 <= P0::input1
P0::least <= P0::input1

P0::input3 <= P0::input2

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::least <= P0::input2
P0::input3 < P0::least

P0::input3 <= P0::input1
P0::least <= P0::input1

P0::input3 <= P0::input2

{P0::least = [$0 == P0::input1]}

P0::most = P0::input1
P0::least <= P0::input3
P0::input1 < P0::input3
P0::input2 < P0::least

P0::least <= P0::input1
P0::input2 < P0::input3

{P0::least = [$0 == P0::input1]}

branch (P0::least > P0::input2)
P0::input3 <= P0::most

P0::input3 <= P0::input2
P0::least <= P0::most

branch (P0::least > P0::input3)
P0::input3 <= P0::most
P0::least <= P0::most

P0::epsilon
P0::most = P0::input2
P0::input2 < P0::least

P0::input3 <= P0::input2

P0::epsilon

P0::least = P0::input3
P0::input3 <= P0::most

P0::epsilon

P0::temp_var_1 = assert (P0::least <= P0::most)
P0::least <= P0::most

P0::epsilon

branch (P0::least > P0::input3)
P0::input3 <= P0::most

P0::most < P0::least

{P0::most = [$0 == P0::input2]}

{P0::least = [$0 == P0::input3]}

return (())

P0::epsilon

P0::most = P0::input2
P0::input2 < P0::least

P0::input2 < P0::input3

branch (P0::least > P0::input3)
P0::most < P0::least

P0::most < P0::input3

{P0::most = [$0 == P0::input2]}

P0::least = P0::input3
P0::most < P0::input3

P0::epsilon

P0::temp_var_1 = assert (P0::least <= P0::most)
P0::most < P0::least

P0::epsilon

branch (P0::most < P0::input2)
P0::least <= P0::input3
P0::input2 < P0::least

P0::input3 <= P0::most
P0::input2 < P0::input3
P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input2)
P0::input3 < P0::least
P0::input2 < P0::least

P0::input3 <= P0::most
P0::input3 <= P0::input2

P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input3)
P0::input3 < P0::least

P0::input3 <= P0::most
P0::input3 <= P0::input2

P0::least <= P0::most

P0::epsilon

branch (P0::most < P0::input2)
P0::least <= P0::input2
P0::input3 < P0::least

P0::input3 <= P0::most
P0::input3 <= P0::input2

P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

P0::most = P0::input2
P0::least <= P0::input2
P0::input3 < P0::least

P0::input3 <= P0::input2

P0::epsilon

P0::epsilon

branch (P0::most < P0::input2)
P0::least <= P0::input3
P0::least <= P0::input2

P0::input3 <= P0::input2
P0::most < P0::input3
P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

P0::most = P0::input2
P0::least <= P0::input3
P0::least <= P0::input2

P0::input3 <= P0::input2

P0::epsilon

branch (P0::most < P0::input2)
P0::input3 < P0::least
P0::input2 < P0::least

P0::input3 <= P0::most
P0::input2 < P0::input3
P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input2)
P0::least <= P0::input3
P0::input2 < P0::least

P0::input2 < P0::input3
P0::most < P0::input3
P0::least <= P0::most

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input3)
P0::least <= P0::input3
P0::input2 < P0::input3
P0::most < P0::input3
P0::least <= P0::most

P0::epsilon

branch (P0::most < P0::input2)
P0::least <= P0::input3
P0::least <= P0::input2
P0::input3 <= P0::most

P0::input3 <= P0::input2
P0::least <= P0::most

P0::epsilon

branch (P0::most < P0::input3)
P0::least <= P0::input3
P0::input3 <= P0::most

P0::input3 <= P0::input2
P0::least <= P0::most

P0::epsilon

{P0::most = [$0 == P0::input2]}

P0::epsilon

{P0::most = [$0 == P0::input2]}

P0::epsilon

branch (P0::most < P0::input3)
P0::least <= P0::input3
P0::input3 <= P0::most
P0::input2 < P0::input3
P0::least <= P0::most

branch (P0::least > P0::input2)
P0::input3 <= P0::most
P0::input2 < P0::input3
P0::least <= P0::most

P0::epsilon

P0::epsilonP0::epsilon

P0::most = P0::input2
P0::least <= P0::input3
P0::least <= P0::input2
P0::input2 < P0::input3

{P0::most = [$0 == P0::input2]}

P0::most = P0::input3
P0::least <= P0::input3
P0::input2 < P0::input3

P0::epsilon

branch (P0::most < P0::input2)
P0::least <= P0::input3
P0::least <= P0::input2
P0::input2 < P0::input3
P0::most < P0::input3
P0::least <= P0::most

{P0::most = [$0 == P0::input1]}{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input3)
P0::input3 < P0::least

P0::input3 <= P0::most
P0::input2 < P0::input3
P0::least <= P0::most

P0::epsilon

P0::epsilon

P0::epsilon

P0::epsilon

P0::epsilon

{P0::most = [$0 == P0::input3]}

P0::epsilon

final location

return { ! }

{P0::least = [$0 == P0::input3]}

assertion_failure

Figure 7.6: Abstract state space for minmax.c

130

Projection of CE
Component #0 Iteration #1

P0::least = P0::input1 : [P0::input1 <= P0::input3,P0::input2 < P0::input1,P0::input3 <= P0::input1,P0::input2 < P0::input3]

P0::most = P0::input1 : [P0::least <= P0::input3,P0::input2 < P0::least,P0::input3 <= P0::input1,P0::least <= P0::input1,P0::input2 < P0::input3]

{P0::least = [$0 == P0::input1]}

branch (P0::most < P0::input2) : [P0::least <= P0::input3,P0::input2 < P0::least,P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : FALSE

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input3) : [P0::least <= P0::input3,P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : FALSE

P0::epsilon

branch (P0::least > P0::input2) : [P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : TRUE

P0::epsilon

P0::most = P0::input2 : [P0::input2 < P0::least,P0::input2 < P0::input3]

P0::epsilon

branch (P0::least > P0::input3) : [P0::most < P0::least,P0::most < P0::input3] : FALSE

{P0::most = [$0 == P0::input2]}

P0::temp_var_1 = assert (P0::least <= P0::most) : [P0::most < P0::least]

P0::epsilon

end_state

assertion_failure

Figure 7.7: Abstract counterexample graph for minmax.c

131

State 0: 3: least = input1

[input3 < input1, input2 < input1, input2 < input3]

State 1: 4: most = input1

[input3 <= input1, input3 < least, input2 < input3,

input2 < least, least <= input1]

State 2: 5: branch (most < input2) : FALSE

[input3 <= most, input3 < least, input2 < input3,

input2 < least, least <= most]

State 3: 7: branch (most < input3) : FALSE

[input3 <= most, input3 < least, input2 < input3, least <= most]

State 4: 9: branch (least > input2) : TRUE

[input3 <= most, input2 < input3, least <= most]

State 5: 10: most = input2

[input2 < input3, input2 < least]

State 6: 11: branch (least > input3) : FALSE

[most < least, most < input3]

State 7: 13: assert (least <= most)

[most < least]

ASSERTION FAILURE

Figure 7.8: Abstract counterexample for minmax.c.

132

Projection of CE
Component #0 Iteration #1

P0::least = P0::input1 : [P0::input1 <= P0::input3,P0::input2 < P0::input1,P0::input3 <= P0::input1,P0::input2 < P0::input3]

P0::most = P0::input1 : [P0::least <= P0::input3,P0::input2 < P0::least,P0::input3 <= P0::input1,P0::least <= P0::input1,P0::input2 < P0::input3]

{P0::least = [$0 == P0::input1]}

branch (P0::most < P0::input2) : [P0::least <= P0::input3,P0::input2 < P0::least,P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : FALSE

{P0::most = [$0 == P0::input1]}

branch (P0::most < P0::input3) : [P0::least <= P0::input3,P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : FALSE

P0::epsilon

branch (P0::least > P0::input2) : [P0::input3 <= P0::most,P0::input2 < P0::input3,P0::least <= P0::most] : FALSE

P0::epsilon

branch (P0::least > P0::input3) : [P0::input3 <= P0::most,P0::least <= P0::most] : FALSE

P0::epsilon

P0::temp_var_1 = assert (P0::least <= P0::most) : [P0::least <= P0::most]

P0::epsilon

return (()) : []

P0::epsilon

final location : []

return { ! }

Figure 7.9: Abstract successful execution graph for minmax.c

133

State 0: 3: least = input1

[input3 < input1, input2 < input1, input2 < input3]

State 1: 4: most = input1

[input3 <= input1, input3 < least, input2 < input3,

input2 < least, least <= input1]

State 2: 5: branch (most < input2) : FALSE

[input3 <= most, input3 < least, input2 < input3,

input2 < least, least <= most]

State 3: 7: branch (most < input3) : FALSE

[input3 <= most, input3 < least, input2 < input3, least <= most]

State 4: 9: branch (least > input2) : FALSE

[input3 <= most, input2 < input3, least <= most]

State 5: 11: branch (least > input3) : FALSE

[input3 <= most, least <= most]

State 6: 13: assert (least <= most)

[least <= most]

Figure 7.10: Abstract successful execution for minmax.c

134

of a program. An over-approximation of system behaviors ensures that if a con-

crete counterexample exists, an abstract counterexample will also exist. However,

the search algorithms used typically have no bias in favor of non-spurious counterex-

amples, and will often first discover a spurious counterexample if an abstraction is

too coarse. The difficulty of finding the needle of a non-spurious error path in a

haystack of unrealistic behaviors is why predicate abstraction is used in place of the

less expensive analysis of control flow alone. That the likelihood of generating a

non-spurious counterexample increases as the abstraction more closely captures the

real behavior of the system is a primary motivation behind the CEGAR approach.

The success of recent software model checking projects has shown that in many cases

a “good” abstraction can be found in the territory between the control flow graph

(CFG) of a program and its full concrete state-space. We propose that these “good”

abstractions, which are provided “for free” by efficient verification tools, can also be

used to improve program understanding and provide effective fault localization and

debugging assistance. Results produced by an implementation of error explanation

for the MAGIC tool [Chaki et al., 2004a] are presented in Chapter 9 as evidence of

this claim.

7.2 Abstract Error Explanation

The explanation approach shown in Figure 7.1 can be used by a predicate abstraction

and CEGAR based model checker, with the following three changes:

1. S, the formula representing executions of the program, is produced by unwind-

135

ing the transition relation of the abstract program A(P) to a finite depth.

2. An outer loop must be added to the explanation process: solutions to the opti-

mization problem, corresponding to abstract executions, may represent spuri-

ous behaviors, requiring multiple iterations to find a non-spurious most-similar

successful execution.

3. The tool reports ∆s to the user in terms of different control flow and predicate

values rather than concrete variable values.

The first difference presents challenges when encoding the distance metric. Our

previous explanation metrics relied on a static single assignment (SSA) [Alpern et al.,

1988] encoding of execution. SSA provided a means to avoid the issue of alignment,

i.e., which states of the successful execution should be compared to which states of

the counterexample. In SSA, all executions are represented by a set of assignments to

the same variables, and states are in a sense only implicit. SSA introduced a serious

drawback, however: the distance metric was computed over values from all possible

control flow paths. In some cases, a weak explanation was produced because the

executions produced very similar values in portions of the control flow not executed in

either the successful execution or the counterexample. The distance metric presented

in Section 7.3 relies on alignments to avoid this counter-intuitive and questionable

comparison over purely “hypothetical” values.

Another issue raised in unwinding the abstract transition relation is the choice

of an unwinding depth. In the approach taken in Chapter 3, the original counterex-

ample is produced by bounded model checking, and the bound used to discover a

136

counterexample can (often) be reused in explanation. Furthermore, in CBMC this

bound determined an upper limit for unrollings of loops, rather than a total number

of steps. The depth used for abstract explanations limits the total number of steps

in the successful execution. In practice, using a depth equal to the number of steps

in the counterexample plus a small constant factor (to allow for previously untaken

control branches) appears to suffice for most programs. As with SSA (see Section

3.1.3), while no upper bound can be given on the length of the closest successful

execution, it is possible to guarantee, given that a successful execution of length j

exists, a maximum upper bound within which a closer execution may be found (see

Section 7.4).

When a spurious successful execution is generated, a blocking clause is added to

the formula S to force generation of a different successful execution. The hypothesis

is that in order to generate a non-spurious counterexample, the model checker will

typically find a “good enough” abstraction to ensure that this process will converge

rapidly. Experimental results support this conclusion in most cases. It is also possible

to reuse the CEGAR abstraction refinement process at this stage in order to remove

the spurious behavior, treating a spurious successful execution in the same manner as

a spurious counterexample. However, this necessitates an expensive recomputation

of the transition relation and counterexample.

Finally, and most importantly, the changes necessary to avoid (or induce) error

are presented as ∆s of predicates of variables, rather than as concrete values. The

abstraction refinement process used to find a counterexample automatically, as a

side-effect, produces a high-level model of the behavior of the program. With con-

137

crete explanations, the user must generalize to the logical causes of error from the

overly specific values in the ∆s. An abstract (but non-spurious) counterexample or

successful execution, however, may represent many concrete behaviors of a program.

The predicates necessary to find a non-spurious path will provide a description of

the logical difference between these sets of concrete executions. As a simple exam-

ple, a concrete ∆ might indicate that in the counterexample x had the value of 47

and in the closest successful execution x had the value of 91. An abstract ∆, on

the other hand, might state that in the counterexample, x < y and in the successful

execution, x >= y. It is easy to see which explanation is more likely to capture the

underlying essence of the erroneous behavior. The abstract ∆ not only generalizes

the constraint on x, but introduces the information that this constraint is relative

to y. This claim relies on the assumption that in order to find a non-spurious coun-

terexample, refinement will typically have to produce an abstraction that effectively

captures important aspects of a program’s behavior.

7.3 A Distance Metric for Abstract Executions

The distance metric used for explanations is dependent on the representation of

program executions. For the MAGIC tool, an execution is an ordered sequence of

state-action pairs: {(s0, α0), (s1, α1), . . . (sn, αn)}. We will refer to a state-action

pair as a step. Each state, s, is composed of a control location c(s) and a predicate

valuation p(s). Predicate valuations are vectors of values for the predicates associated

138

with a particular control location. In the MAGIC abstraction framework, different

predicates may be tracked at different control locations [Chaki et al., 2004b, 2003b].

For all states with the same control location, however, p(s) will have the same size.

As an example, consider the control location at line 3 in Figure 7.3, int least

= input1. In the abstraction used to generate the counterexample, for any state

in which c(s) = 3 (using the line number to represent the unique control location),

|p(s)| = 3. The components of p(s) are values for distinct predicates. We write

pi(s) to refer to the ith component of p(s). p1(s) restricts the relationship of input1

to input3. The possible values are: (input1 < input3), (input3 < input1), and

(input3 = input1). The second and third components relate input1 to input2 and

input2 to input3.

Recall that the set of predicates associated with a given control location are

determined by a combination of weakest precondition iteration [Namjoshi and Kur-

shan, 2000] plus an optimization-based counterexample guided abstraction refine-

ment strategy [Chaki et al., 2004b, 2003b]. The exact choice of predicates at a given

location may be difficult to understand intuitively; however, because MAGIC at-

tempts to minimize (using pseudo-Boolean constraints) the set of predicates used to

find a counterexample (or prove a property), we expect the predicate sets to always

be relevant to “understanding” the program’s behavior with respect to a property.

The distance metric d is defined with respect to two executions, a and b. We

will assume that a is the counterexample, for the sake of convenience (the metric

is symmetric). We will use a superscript notation (e.g. sai) to distinguish states,

139

actions, and control locations of a and b.

7.3.1 Alignment

The distance metric is based on a comparison of states and actions. An obvious

approach would be to compare the ith step of a with the ith step of b. The two

executions, however, may be of different lengths — if any changes in control flow

are necessary to avoid the error, this will almost certainly be the case. In order

to properly compare a and b, it is necessary to determine an alignment [Sankoff

and Kruskal, 1983] mapping steps in a to steps in b. We will define alignment as a

relation between elements of a and b, such that if align(i, j), the ith step of a should

be compared with the jth step of b:

Definition 5 (alignment, align(i, j))

align(i, j) =

1 if c(sai) = c(sbj)

∧ ∀k 6= j . align(i, k) = 0

∧ ∀` 6= i . align(`, j) = 0

∧ ∀m > i, n < j . align(m,n) = 0

∧ ∀m < i, n > j . align(m,n) = 0

0

where i, `,m < |a| and j, k, n < |b|.

The conditions for alignment require that:

• Steps can be aligned only if they have matching control locations.

140

b

0

1

2

3

4

5

6

0

1

2

3

4

5

a

Given the alignments shown, step 3 of a cannot be aligned with steps 0, 4, or 5 of b

because alignments must be unique. Step 3 cannot be aligned with steps 0, 1, 2, 3, or

6 of b because alignments are not allowed to cross. Given these alignments, step 3 must

remain unaligned.

Figure 7.11: Alignments for executions

141

• Alignments are unique: each step in a is aligned with at most one step in b

and vice-versa.

• Alignments preserve ordering: e.g., if i is aligned with j, no earlier step in a

may align with a later step in b, and no later step in a may align with an earlier

step in b. Visually, this means that alignments cannot cross.

See Figure 7.11 for an example of the consequences of these constraints. For a

given a and b, there may be multiple alignments consistent with these conditions. In

the presence of loops, there may be several steps in a or b (or both) with the same

control location. There may also be steps in a or b that are not aligned with any

step in the other execution. These steps are unaligned:

Definition 6 (unaligned, unaligna/b(i/j))

unaligna(i) =

1 if ∀j . ¬ align(i, j)

0 otherwise

unalignb(j) =

1 if ∀i . ¬ align(i, j)

0 otherwise

where i < |a| and j < |b|.

A step may be impossible to align — either because no control location in the

other execution is matching, or, as in Figure 7.11, because certain other alignments

preclude the conditions from holding. It is important to note, however, that the first

142

condition requires only that if two steps are aligned, the conditions must hold. There

is no requirement that if the conditions hold, two steps must be aligned. The empty

relation is always a valid alignment. We define the conditions under which steps may

be aligned, rather than must be aligned.

The distance metric is defined so as to pick the best (i.e., distance-minimizing)

alignment. Defining the “true” distance as the minimal distance over the choice of all

possible alignments is a standard method in string and sequence comparison [Sankoff

and Kruskal, 1983].

7.3.2 The Distance Metric d

Given a and b we define the distance d(a, b) based on the number of atomic changes

(∆s) needed to transform a into b. The first component of the metric (i.e., subset

of the total ∆s) is possible alterations to predicate values. ∆p is defined over steps

i and j of a and b as well as over whole executions. The sum of individual step

differences is used to define the total ∆p between two complete executions:

Definition 7 (∆p(i, j, v),∆p(a, b))

∆p(i, j, v) =

1 if align(i, j) ∧ pv(sai) 6= pv(s
b
j)

0 otherwise

where i < |a|, j < |b|, and v < |p(sai)|.

∆p(a, b) =

|a|−1∑

i=0

|b|−1∑

j=0

|p(sai)|−1∑

v=0

∆p(i, j, v)

143

∆p(i, j, v) is 1 iff step i and step j are aligned and have differing predicate values

for the vth component of their predicate valuations. This comparison is always valid

if i and j are aligned since this requires that they share a control location. In MAGIC

requiring alignment before comparing predicates is particularly crucial, as predicates

from different control locations may not be comparable.

Changes in actions are defined in a similar alignment-based manner:

Definition 8 (∆α(i, j),∆α(a, b))

∆α(i, j) =

1 if align(i, j) ∧ αai 6= αbj

0 otherwise

where i < |a|, and j < |b|.

∆α(a, b) =

|a|−1∑

i=0

|b|−1∑

j=0

∆α(i, j)

These ∆s account for all possible differences in aligned states. In order to describe

control flow differences between a and b, the metric d must also take into account

the unaligned states of the executions:

Definition 9 (∆c(a, b))

∆c(a, b) =

|a|−1∑

i=0

unaligna(i) +

|b|−1∑

j=0

unalignb(j)

The distance metric is then defined as the minimal weighted sum of predicate,

action, and control ∆s, over all possible alignments:

144

Definition 10 (distance, d(a, b))

d(a, b) = minalign(Wp ·∆p(a, b) +Wα ·∆α(a, b) +Wc ·∆c(a, b))

Wp, Wα, and Wc may reasonably vary, depending on the user’s interest in sim-

ilarity of observable actions, predicate values, and control locations. However, in

accordance with the principle that it is best to compare steps whenever possible, it

is suggested that Wc be chosen such that it is greater than the maximum possible ∆p

+ ∆α for a single step. In our experimental results, we have uniformly used Wp = 1,

Wα = 1, and Wc = max(|p(sa)|) + 2. With positive values for these weights, d satis-

fies the standard nonnegative, zero, symmetry, and triangle inequality properties of a

distance metric [Sankoff and Kruskal, 1983]. The use of an alignment-based metric,

such as d, is not intrinsically tied to abstraction. For any notion of executions based

on explicit steps and states, ∆p (really ∆s: changes to state components other than

control location) could be defined over the appropriate elements.

7.4 Finding a Successful Execution

The procedure for finding a successful execution b that is as similar as possible to a

counterexample a is as follows:

1. Unwind the transition relation of A(P) to a finite depth to produce a propo-

sitional constraint S. Solutions of S will represent executions of A(P) that do

not violate Spec. Any solution of S represents a potential b to be compared

against the counterexample.

145

2. For a fixed counterexample a, add to S Boolean variables for all possible align-

ments of a and b. For each i < |a| and j < max(|b|)8, a variable for align(i, j)

may be introduced. Rather than adding all |a| × max(|b|) variables, we ob-

serve that align(i, j) can be 1 only if it is possible for c(sai) to equal c(sbj).

In many cases, the unwinding of the transition relation will show that this

condition cannot be satisfied. The constraints given in Definition 5 are also

introduced only for alignments not ruled out by the transition relation: e.g., if

unwinding shows that states 3 and 10 of a and b cannot have matching control

locations under any possible execution sequence, there is no need to introduce

an alignment variable for align(3, 10).

3. Add ∆-variables for each possible difference between a and b. For each i <

|a|, j < max(|b|), and v < |p(sai)|, a variable is introduced for: unaligna(i),

unalignb(j), ∆p(i, j, v), and ∆α(i, j). The values are constrained in accordance

with the definitions in Section 7.3. When j ≥ |b| (because the successful

execution is shorter than the unwinding depth), the associated align variable

is forced to be 0, ensuring that ∆s variables for steps not in b are also 0.

4. Assign weights to the ∆-variables to produce a 0-1 ILP problem. Variables

representing unaligna(i) and unalignb(j) are given a weight equal to Wc.

∆p(i, j, v) and ∆α(i, j) are weighted according to Wp and Wα, respectively.

The optimization problem is to minimize the weighted sum over all ∆ vari-

ables and alignments. This weighted sum is equal to d(a, b).

8max(|b|) is the unwinding depth.

146

5. Use a 0-1 ILP solver to produce an alignment and b that minimize d(a, b). One

of two conditions may make it impossible to find such a b:

(a) All executions of the program P violate the specification Spec.

(b) All abstract executions in A(P) that represent at least one successful

execution also represent at least one counterexample. Because success

is measured in the abstract state-space, no b that does not represent a

counterexample can be found.

Using a shallower unwinding depth may make it possible to find b even if one

of these conditions holds. An execution that, if extended, will always become a

counterexample will be considered successful if it does not reach an error state

before max(|b|) steps. Clearly, this is sub-optimal. As noted in Chapter 1, the

distance metric based technique is unsuitable for programs that always fail.

It is also possible to know, if we have discovered a successful execution b,

whether a closer execution can potentially be found using a larger unwinding

depth. If the counterexample a is of length i and the successful execution b is of

length j > i, it is easily seen that there must be at least j − i unaligned steps.

Therefore, ∆c(a, b) must be at least j − i. The minimum distance possible

between a and b is thus Wc(j − i). If a closest successful execution b is found

at a distance d, there is no need to consider the possibility that an execution

of length j, such that Wc(j − i) ≥ d, can be closer to a.

6. Check that the execution b is not spurious. If b is spurious, add a blocking

clause to S forcing a different choice of b and re-solve the ILP problem.

147

7. Present b to the user. Use the ∆-variable values to present to the user the

changes that must be made to a in order to avoid the error (and produce b).

In our implementation, we use the pseudo-Boolean solver PBS [Aloul et al., 2002],

which combines a fast SAT procedure with special techniques for 0-1 ILP, to ef-

ficiently perform step 5. Returning to the motivating example (Figure 7.3), we

observe that it requires 421 Boolean variables to represent the transition relation for

A(P) up to a depth of 12 steps (this is sufficient to encode all possible executions

of the program). An additional 110 variables are required to represent the possible

alignments and ∆s. The full SAT instance has 531 variables and 1,841 clauses. The

CBMC representation, even without the overhead of alignment variables, has 1,759

variables and 5,747 clauses.

The output shown in Figure 7.5 is produced by examining the values of the

∆ and alignment values in the solution to the ILP problem. In this case, there

is one unaligned control location in a, at line 10 (the location of the error). The

(aligned) control locations in a and b that follow this change in control flow (lines

11 and 13) differ in predicate values, because the assignment of input2 to most

has been performed in a but not in b. The counterexample’s final action is an

assertion failure, while in b the assertion holds.

148

Chapter 8

Explaining LTL Property Failures

HURRY UP PLEASE IT’S TIME

- T. S. Eliot, “The Waste Land”

8.1 Successful Executions for LTL Properties

The above explanation procedure and distance metric can be applied without modi-

fication to explain counterexamples to Linear Temporal Logic (LTL) formulas. The

BMC unwinding of the abstract transition relation, however, must be modified to

take into account a different notion of a successful execution. The implementation

of LTL property explanation described is for abstract executions, but the approach

presented in this section will work for concrete executions equally well.

For reachability properties, successful execution is guaranteed by adding con-

straints such that no error state can appear in b. For an LTL property Aφ, a success-

149

ful execution is a counterexample to A¬φ. A counterexample to Aφ demonstrates

that φ does not hold for all paths. A counterexample to A¬φ demonstrates that φ

can hold for some path. This is not guaranteed to be true — no such path my exist,

just as a program may have no successful executions at all, when considering safety

properties.

LTL model checking in MAGIC uses the standard approach in which a Büchi

automaton for the negation of the property is constructed [Gerth et al., 1995]. Coun-

terexamples are executions in the product automaton (the product of the model and

the Büchi automaton for the negation of the property) that contain a cycle that

passes through an accepting state. Accepting states in the product automaton are

projected from the Büchi automaton. In order to check for successful executions,

MAGIC unwinds a Büchi automaton for the property (rather than its negation)

along with the transition relation and adds constraints requiring a cycle through an

accepting condition to appear in the execution.

The use of a Büchi condition adds an additional possibility to the list of reasons

given in step 5 of the procedure in Section 7.4 for inability to find a successful

execution b: the unwinding depth may be insufficient to allow a cycle through an

accepting state. For reachability properties, a “spurious”1 successful execution can

sometimes be produced by lowering the unwinding depth. For LTL properties, the

unwinding depth may need to be increased in order to find a successful execution,

but any b that is discovered will represent an infinite behavior, and thus be immune

1Here, spurious is used in the sense that the execution will eventually violate the property, rather

than in the sense of abstraction-introduced behavior.

150

to extension to error — further steps cannot take a path with a cycle into an error

state, as the entire future of the path is represented by the stem and cycle2.

Because determining the unwinding depth sufficient to allow for a cycle is difficult,

MAGIC will automatically increase the unwinding depth (up to a given maximum)

when it fails to find a solution for b in an LTL explanation.

The underlying technique is quite similar, these changes aside, to the basic

method for abstract explanation, as shown in the example that follows: we find

an abstract execution that is successful and maximally similar to a counterexample,

and present differences between these to the user. The change in the definition of

success and the infinite length of counterexample and successful execution are suf-

ficient to handle LTL properties without further novel additions to the explanation

approach.

8.2 Example of LTL Explanation

As an example of the notion of successful execution used when explaining LTL coun-

terexamples, consider the property (A)G(lock ⇒ F (unlock)), which requires that

on all paths, at all steps, locking requires eventually unlocking. The Büchi automa-

ton on the left in Figure 8.1 accepts counterexamples to this property: executions

in which a lock is acquired (state 1) but not released (state 2). Because state 2 is

the only accepting state, counterexamples must have a cycle through program states

that do not unlock, and can only reach this state after having locked at least once

2Though b may, of course, be a spurious behavior introduced by abstraction.

151

! unlock

! unlock
lock

! lock

unlock

2

1 0*

2*

1*
0

Counterexample automaton Successful execution automaton

Büchi automata for (A)G(lock ⇒ F (unlock)), negated and un-negated. Each state is

labeled with a set of constraints: e.g., state 1 requires both lock and not unlock.

Figure 8.1: Successful executions for LTL properties

152

without unlocking (because state 2 is not an initial state of the automaton).

The automaton on the right accepts successful executions : executions which either

never lock or never lock after having unlocked (cycles on state 1*), or which unlock

infinitely often (cycles including state 2*). In this case minimizing the distance to

the counterexample increases the chance of finding a successful execution that locks,

as the counterexample will be forced to lock at least once.

The code in Figure 8.2 produces a non-spurious counterexample (Figure 8.3)

when checked against the LTL formula (A)G(lock ⇒ F (unlock)). It is possible to

exit the body of process without making a call to Unlock.

The explanation in Figure 8.4, based on the successful execution in Figure 8.5,

describes the conditions under which the error appears: in the counterexample, y is <

1 but not equal to 0. In the successful execution, y > 0. The error is avoided because

the assignment of y to z on line 9 now ensures that z will satisfy the condition at

line 15, creating a cycle in which process unlocks. The change in y has focused our

attention on the real problem with this code: the programmer has neglected to take

negative values of y into account, assuming that y != 0 implies y > 0.

For this example, MAGIC requires 247 milliseconds to unwind the transition

relation and 952 milliseconds to produce an explanation. The pseudo-Boolean con-

straints are over 2,825 variables and 20,246 clauses. The total time taken to produce

the abstraction (and the non-spurious counterexample) is 1,586 milliseconds, mostly

spent in four iterations of abstraction-refinement, in order to produce the 4 predicates

used in the abstraction (y == 0, y > 0, x == 0, and z > 0). The first explanation

153

produced is non-spurious; neither depth increase iterations or blocking clauses are

needed in this case (though for even more unrealistic toy LTL examples we did

observe a need for both blocking clauses and depth increase iterations).

154

1 int process () {

2 int x, y, z;

3 z = 0;

4 Lock ();

5 if (x == 0)

6 if (y == 0)

7 z = 1;

8 if (y != 0) {

9 z = y;

10 }

11 if (x != 0) {

12 z = 2;

13 Unlock ();

14 }

15 else if (z > 0) {

16 z = 3;

17 Unlock ();

18 }

19 }

Figure 8.2: locks.c

155

20 int main () {

21 while (1)

22 process ();

23 }

Figure 8.2 (continued)

156

21: branch (1) : [process::x == 0,process::y != 0,pro-

cess::y < 1] : TRUE

############ epsilon ############

3: process::z = 0 : [process::x == 0,process::y != 0,pro-

cess::y < 1]

############ {process::z = [$0 == 0]} ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ epsilon ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ lock ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ epsilon ############

5: branch (process::x == 0) : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1] : TRUE

############ epsilon ############

Figure 8.3: Counterexample for locks.c

157

6: branch (process::y == 0) : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1] : FALSE

############ epsilon ############

8: branch (process::y != 0) : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1] : TRUE

############ epsilon ############

9: process::z = process::y : [process::x == 0,pro-

cess::y != 0,process::y < 1]

############ {process::z = [$0 == process::y]} ############

11: branch (process::x != 0) : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1] : FALSE

############ epsilon ############

15: branch (process::z > 0) : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1] : FALSE

############ epsilon ############

21: branch (1) : [process::x == 0,process::y != 0,pro-

cess::y < 1] : TRUE

############ epsilon ############

Figure 8.3 (continued)

158

3: process::z = 0 : [process::x == 0,process::y != 0,pro-

cess::y < 1]

############ {process::z = [$0 == 0]} ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ epsilon ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ lock ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y != 0,process::y < 1]

############ epsilon ############

Figure 8.3 (continued)

159

Predicate changed (steps #0-18):

was: process::y != 0 , process::y < 1

now: process::y > 0

Predicate changed (steps #9-10):

was: process::z < 1

now: process::z > 0

Control location inserted (step #11):

16: process::z = 3

{process::z = [$0 == 3]}

Control location inserted (step #12):

17: process::temp var 6 = Unlock () [epsilon]

Control location inserted (step #13):

process::temp var 6 = Unlock () [unlock]

Control location inserted (step #14):

17: process::temp var 6 = Unlock () [epsilon]

Figure 8.4: Abstract ∆ values for locks.c

160

21: branch (1) : [process::x == 0,process::y > 0] : TRUE

############ epsilon ############

3: process::z = 0 : [process::x == 0,process::y > 0]

############ {process::z = [$0 == 0]} ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y > 0]

############ epsilon ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y > 0]

############ lock ############

4: process::temp var 4 = Lock () : [process::z < 1,pro-

cess::x == 0,process::y > 0]

############ epsilon ############

5: branch (process::x == 0) : [process::z < 1,pro-

cess::x == 0,process::y > 0] : TRUE

############ epsilon ############

6: branch (process::y == 0) : [process::z < 1,pro-

cess::x == 0,process::y > 0] : FALSE

############ epsilon ############

Figure 8.5: Successful execution for locks.c

161

8: branch (process::y != 0) : [process::z < 1,pro-

cess::x == 0,process::y > 0] : TRUE

############ epsilon ############

9: process::z = process::y : [process::x == 0,process::y > 0]

############ {process::z = [$0 == process::y]} ############

11: branch (process::x != 0) : [process::x == 0,pro-

cess::y > 0,process::z > 0] : FALSE

############ epsilon ############

15: branch (process::z > 0) : [process::x == 0,pro-

cess::y > 0,process::z > 0] : TRUE

############ epsilon ############

16: process::z = 3 : [process::x == 0,process::y > 0]

############ {process::z = [$0 == 3]} ############

17: process::temp var 6 = Unlock () : [process::x == 0,pro-

cess::y > 0]

############ epsilon ############

17: process::temp var 6 = Unlock () : [process::x == 0,pro-

cess::y > 0]

############ unlock ############

Figure 8.5 (continued)

162

17: process::temp var 6 = Unlock () : [process::x == 0,pro-

cess::y > 0]

############ epsilon ############

21: branch (1) : [process::x == 0,process::y > 0]

############ epsilon ############

Figure 8.5 (continued)

163

164

Chapter 9

Case Studies and Evaluation for

Abstract Explanation

Go in fear of abstraction.

- Ezra Pound

9.1 Experimental Results

We applied the MAGIC implementation of error explanation to several faulty pro-

grams. Table 9.1 summarizes the results. The results strongly support the claim

that finding a non-spurious successful execution will require very few iterations. No

benchmark required the addition of even one blocking clause to prevent a spurious

successful execution, even though in two cases considerable refinement was required

to produce a non-spurious counterexample. Results not shown in the table also re-

quired no blocking clauses. Such iterations were observed for a few artificial (and

165

unrealistic) examples with LTL properties: it seems reasonable to expect that spu-

rious cycles are somewhat harder to eliminate than spurious non-cyclic executions.

9.1.1 Benchmarks

The examples presented in Table 9.1 are taken from several sources. The smaller

benchmarks were taken from the regression tests for MAGIC (small fragments of

Linux kernel code with seeded errors). Additional benchmarks were taken from the

C source code of OpenSSL-0.9.6c, with seeded errors. In particular, SSL-1 and SSL-

2 are from faulty versions of the initial handshake protocol. Section 9.4 presents the

SSL-1 explanation (Figure 9.6) in greater detail as a case study. The final benchmark

is the source code for the µC/OS-II [µC/OS-II Website] real-time multitasking kernel

(RTOS) for microprocessors and microcontrollers. The error explained was original

to the source code, rather than added for our experiments.

The first ∆ can appear after the “first” fault in some cases (even for a good

explanation) because the order of control flow does not strictly follow line ordering

(these programs contain function calls). The information is included in order to show

the large number of cases in which the program fault is located at the point of the

the first ∆.

166

Program LOC T(Unwind) T(Search) PredIt Preds ExplIt 1st ∆ Fault Score CE

mutex-n-01.c (lock) 343 0.015 0.027 1 1 1 250 251* 0.785 6

mutex-n-01.c (unlock) 343 0.017 0.027 1 0 1 285 251* 0.993 6

pci-n-01.c 60 0.006 0.062 2 1 1 39 58 0.782 9

pci-rec-n-01.c 64 0.009 0.076 1 0 1 45 32* 0.720 8

SSL-1 2487 0.947 7.118 72 5 1 1213 1213 0.999 29

SSL-2 2487 0.369 3.084 16 5 1 1223 1223 0.999 52

µC/OS-II 2.00 2981 0.109 0.653 1 0 1 1936 1924 0.000 19

Program is the program with an error to be explained. Where a single program was

used with multiple specifications, the Spec is also given. LOC is the # of lines of code

for each example. T(Unwind) is total explanation unwinding time, T(Search) is

total explanation search time (all times in seconds). PredIt is the number of iterations

required to discover a non-spurious counterexample and generate the final A(P). Preds

gives the final number of predicates needed to disprove the property. ExplIt is the

number of iterations required to find a non-spurious successful execution. 1st ∆ is the

line# of the first (in source code execution ordering) ∆ reported. Fault is the line# of

the first fault in the program, with a * beside cases with multiple faults. Score is the

score for the full set of ∆s, by Renieris and Reiss’ evaluation. CE is the number of steps

in the counterexample.

Table 9.1: Experimental results for MAGIC examples

167

9.2 Evaluation of Fault Localization

The results presented in this section make use of the same scoring function as those

presented in chapter 5. The numeric results are again quite satisfactory. Unfortu-

nately, for the MAGIC examples, an alternative predicate-abstraction based model

checker was not available for comparison, and many of the examples either cannot

be checked by CBMC or make use of specifications that are not easily encoded as

CBMC-style assertions. Comparison to the SLAM [Ball et al., 2003] error explana-

tion facilities would be suitable, but in the current implementation of SLAM that

feature is not supported.

9.3 Benchmark: Mutex Explanation

Figures 9.1 and 9.2 show faulty and correct fragment of the code for the mutex-n-

01.c benchmark. The fault is at line 251: the incorrect code fails to make a required

call to pthread lock.

Figure 9.3 shows the explanation produced by MAGIC for a counterexample to

the locking property (presented in MAGIC’s FSP-like [Magee and Kramer, 1999]

notation in Figure 9.4) for the faulty code. The explanation shows that if the branch

at line 250 is taken and the program returns (and terminates), the locking property

is not violated. The branch condition depends on an equality that is not covered

by the abstraction, so this branch is a non-deterministic choice, and the successful

execution can diverge from the counterexample without any predicate value changes.

168

247 return (0);

248 case 2:

249 self = thread self();

250 if ((unsigned long)mutex-> m owner == (unsigned long) self)

{return (35);

251 }

252 mutex-> m owner = self;

253 return (0);

Figure 9.1: Incorrect version of mutex code fragment

247 return (0);

248 case 2:

249 self = thread self();

250 if ((unsigned long)mutex-> m owner == (unsigned long) self)

{return (35);

251 } pthread lock(& mutex-> m lock, self);

252 mutex-> m owner = self;

253 return (0);

Figure 9.2: Correct version of mutex code fragment

169

Control location inserted (step #4):

250: return (35)

return $0 == 35

Control location inserted (step #5):

final location

Control location deleted (step #6.4):

252: mutex -> m owner = self

mutex -> m owner = [$0 == self]

Control location deleted (step #6.5):

253: return (0)

Figure 9.3: Abstract ∆ values for mutex lock failure

170

cprog pthread mutex lock = pthread mutex lock {

abstract mutex lock 01,{$1-> m count >= 0},PthreadLock;

}

cproc pthread lock {

abstract { pthread lock abs,1,LockSpec};

}

cproc pthread mutex lock {

abstract {mutex lock 01,1,PthreadLock};

}

LockSpec = (lock -> return {} -> STOP).

PthreadLock = (lock -> Locked | {$1-> m count = [$0 == $1-

> m count + 1]} -> Locked | return {$0 == 22} -> STOP | re-

turn {$0 == 35} -> STOP),

Locked = (return $0 == 0 -> STOP | {$1-> m count = [$0 == 0]} -

> return {$0 == 0} -> STOP).

Figure 9.4: Mutex locking property

171

1210 s->shutdown = 0;

1211 ret = ssl3 get client hello(s);

1212 if (ret <= 0) {

1213 ret = ssl3 get client hello(s);

1214 goto end;

1215 }

1216 got new session = 1;

1217 s->state = 8496;

1218 s->init num = 0;

Figure 9.5: SSL-1 code fragment

Both executions are non-spurious. The explanation correctly identifies the control

flow necessary to avoid the error.

In the program dependency graph, of course, the fault on line 251 is immediately

dependent on this branch, resulting in a relatively good localization score (the pres-

ence of irrelevant lines 252 and 253 in the explanation prevent the explanation from

being scored more highly).

9.4 SSL Explanation

The specification for the SSL handshake protocol requires that if the get client hello

action is performed, then a send server hello must be performed, or the server call

172

Action changed (step #25):

was: get client hello

now: {ret = [$0 == -1]}

Control location deleted (step #26):

1213: ret = ssl3 get client hello (s) [{ret = [$0 == 1]}]

Predicate changed (step #26):

was: ret == 1

now: ret == -1

Predicate changed (step #27):

was: ret == 1

now: ret == -1

Action changed (step #27):

was: return { $0 == 1 }

now: return { $0 == -1 }

Control location inserted (step #28):

final location

Figure 9.6: Abstract ∆ values for SSL-1

173

1124: Time = tmp

############ {Time = [$0 == tmp]} ############

1125: cb = 0

############ {cb = [$0 == 0]} ############

1126: ret = -1

############ {ret = [$0 == -1]} ############

1127: skip = 0

############ {skip = [$0 == 0]} ############

1128: got new session = 0

############ {got new session = [$0 == 0]} ############

1129: * tmp 0 = 0

############ {* tmp 0 = [$0 == 0]} ############

1132: branch (s -> info callback != 0) : TRUE

############ epsilon ############

1134: cb = s -> info callback

############ {cb = [$0 == s -> info callback]} ############

1136: s -> in handshake = s -> in handshake + 1

############ {s -> in handshake = [$0 == s -> in handshake + 1]}

############

Figure 9.7: Counterexample for SSL-1

174

1148: branch (1) : TRUE

############ epsilon ############

1149: state = s -> state

############ {state = [$0 == s -> state]} ############

1151: branch (s -> state == 12292) : FALSE

############ epsilon ############

1153: branch (s -> state == 16384) : FALSE

############ epsilon ############

1154: branch (s -> state == 8192) : FALSE

############ epsilon ############

1155: branch (s -> state == 24576) : FALSE

############ epsilon ############

1156: branch (s -> state == 8195) : FALSE

############ epsilon ############

1192: branch (s -> state == 8480) : FALSE

############ epsilon ############

1193: branch (s -> state == 8481) : FALSE

############ epsilon ############

1204: branch (s -> state == 8482) : FALSE

############ epsilon ############

Figure 9.7 (continued)

175

1207: branch (s -> state == 8464) : TRUE

############ epsilon ############

1210: s -> shutdown = 0

############ {s -> shutdown = [$0 == 0]} ############

1211: ret = ssl3 get client hello (s)

############ epsilon ############

1211: ret = ssl3 get client hello (s)

############ {ret = [$0 == -1]} ############

1212: branch (ret < 1) : TRUE

############ epsilon ############

1213: ret = ssl3 get client hello (s)

############ epsilon ############

1213: ret = ssl3 get client hello (s)

############ get client hello ############

1213: ret = ssl3 get client hello (s)

############ {ret = [$0 == 1]} ############

1461: s -> in handshake = s -> in handshake - 1

############ {s -> in handshake = [$0 == s -> in handshake -

1]} ############

1464: return (ret)

############ return { $0 == 1 } ############

Figure 9.7 (continued)

176

must return a value of -1. The fault introduced at line 1213 (Figure 9.5) allows a re-

assignment of the return value ret (and presents another opportunity for a successful

client hello action). In the correct code, the assignment at line 1213 is not present.

The counterexample for this property (Figure 9.7) contains 29 states and actions

that a user must sort through in order to understand the error. Error explanation

produces a successful execution that differs in two actions, two predicates, and two

control locations (∆s in Figure 9.6). The key to the error is indicated as being the

faulty assignment at line 1213: if this call fails as the first call did (causing the branch

at line 1212 to be taken), the specification is not violated. In the counterexample,

the server call succeeds, having failed the first time, and the server returns success

without having responded to the received client hello. In the successful execution,

the second attempt to get a client hello also fails, and the value of ret correctly in-

dicates failure. The error has been localized to line 1213, and the precise conditions

under which the faulty assignment will result in erroneous behavior are indicated.

9.5 Comparing Concrete and Abstract Explana-

tion

9.5.1 Is Abstract Superior to Concrete?

Predicate abstraction tools such as SLAM, BLAST, and MAGIC are popular because

abstraction is a powerful tool for dealing with the state-space explosion problem. It

is at the least probable that predicate abstraction will typically scale better than

177

bounded model checking of concrete state-spaces. Abstract explanation improves the

expressiveness of explanations, allowing ∆s over predicates of values: with concrete

explanation, the change x == y vs. x > y is simply not expressible. A concrete ∆,

in fact, will only refer to the value of either x or y, but not both, hiding the essential

point that the relationship between these values is important.

It might appear that as the number of predicates grows, abstract explanations

would become increasingly difficult to read. However, only the predicates that must

change in order to avoid error will appear in an explanation. In general, it is reason-

able to expect that even with a large number of predicates, the number of predicate

changes would be roughly equivalent to the number of concrete value changes. In

the case that more predicate changes are present, important variable relationships

would be missing from the concrete explanation. In the case studies presented here,

very few predicates are included in the abstraction (precluding the possibility of over-

whelming numbers of changes): the Linux kernel fragments used only one predicate,

and the SSL examples showed changes in only one out of five total predicates in the

abstract model. Because MAGIC attempts to minimize the number of predicates

in the model, it is reasonable to expect that few, if any, irrelevant predicates will

be included in the model, and that subsumption will automatically handle cases

where both y < 0 and y < 5 change, for example, unless these are independently

important.

Another reasonable expectation is that abstraction, by creating a smaller state

space and thus, typically, fewer possible program executions, will help to avoid the

problem shown in the minmax.c example: multiple nearest successful executions at

178

the same distance, only some of which provide a good explanation. The distance

in the abstract case is based, we hope, on a smaller number of possible changes.

In no cases did MAGIC demonstrate the sensitivity to choice of model checking

methods that explain demonstrated; on the other hand, explain only shows this

difficulty on minmax.c. It is plausible that, while this issue might favor abstract

explanation, it typically arises only in the case of small, toy programs where the

range of distances is very small. Unless more examples in which the issue arises for

explain are discovered, this is a potentially minor advantage of abstract explanation.

These arguments present a tempting case for the claim that abstract explanation

is simply better than concrete explanation, at least when a program can be success-

fully abstracted. For some programs, of course, bounded model checking is more

effective than predicate abstraction: when a short counterexample exists and data

structures, pointer usage, or reliance on precise modeling of finite language semantics

(e.g. arithmetic overflow) make abstraction difficult, concrete model checking can

be a very effective alternative. This reflects differences in model checking techniques

rather than explanation techniques per se.

9.5.2 Is Concrete Superior to Abstract?

The result for µC/OS-II in Table 9.1 is startling: the explanation is of no value for

localization! Inspection shows that the unwinding depth allows the system to avoid

the consequences of a missing return statement by delaying the calls that expose the

error. The counterexample fails almost immediately after taking the branch guarding

179

the location of the missing return. Because the counterexample fails immediately

after error, any successful execution will be forced to insert new control locations.

The distance metric, unfortunately, ensures that it is “better” to introduce irrelevant

steps that delay the unlock call that exposes the error than to avoid the branch that

ensures failure (which requires that even more new control locations be added and

forces a costly unalignment after the branch). CBMC [Kroening et al., 2004] and

explain [Groce et al., 2004], in contrast, produce the optimal explanation, which

avoids taking the branch guarding the missing return location. With static single

assignment [Alpern et al., 1988], the change for the untaken branch is represented

by a pair of ∆s (one for the condition and one for the control flow change) and there

is no need to insert new control locations. For errors best explained purely in terms

of control flow, concrete explanation is just as expressive as abstract execution.

Although MAGIC is capable of model-checking the TCAS examples [Rothermel

and Harrold, 1999] used in the original presentation of distance metric based ex-

planation [Groce, 2004], it fails to produce explanations for the errors discovered.

The TCAS counterexamples are very lengthy and require many alignment variables.

To produce non-spurious executions, numerous predicates must be introduced at

most control locations in the program, although the values on which the predicates

are based are only assigned to at the beginning of execution. The PBS constraints

produced by MAGIC for TCAS are simply too large for PBS to solve (e.g., 287,081

variables and 48,432,204 clauses, with 16,374 of the variables appearing in the pseudo-

Boolean constraints), as a result of the very large number of alignment possibilities

and predicates required.

180

In contrast, the SSA unwinding used by CBMC only has to produce constraints

for these inputs at possible assignment or branching points. Because the TCAS code

is essentially a computation of a function with a very small range (3 values) from a

large set of unaltered inputs, CBMC and explain, despite using full 32-bit integers

in place of abstract values, produce a much simpler 0-1 ILP problem than MAGIC.

9.5.3 Choosing a Distance Metric

It is probably incorrect to ascribe these differences to concrete vs. abstract expla-

nation. A tool using SSA with abstract assignments would likely match or improve

upon the results produced by concrete explanation1. To our knowledge, no tool

supporting SSA and predicate abstraction currently exists2. For the time being, for

some programs, CBMC and explain may be the best model checking tools for error

explanation. It may be that the counter-intuitive SSA-based metric is, in fact, bet-

ter for some errors than the alignment-based metric used for abstract explanations

in this paper. Ideally, the choice of an SSA or alignment based distance metric is

orthogonal to the use of an abstract state-space.

The advantages shown by concrete explanation are empirical, and plausibly un-

derstood as artifacts of alignment vs. SSA form. The arguments in Section 9.5.1 are

more definitive. It is reasonable to conclude that abstract explanation is superior to

1In such a tool, SSA would be applied to the abstracted program, A(P) to generate a BMC

instance, in place of the current direct unwinding of the transition relation.
2CBMC is used for predicate abstraction, but only to produce a transition relation for non-BMC

model checking.

181

(and subsumes) concrete explanation, but that the choice of a distance metric can

negate this theoretical superiority.

The choice of which explanation approach to use is, in practice, not something

that a user will typically be forced to think about. Error explanation is an “af-

terthought” in the sense that the choice of explanation method will be driven by

the choice of a model checking tool. If a program is more suitable for CBMC than

for MAGIC, concrete explanation is likely to be used — cases where bounding the

search depth is easy, or the exact semantics of ANSI C overflow or pointer behavior

is crucial will typically fall into this category. On the other hand, errors in programs

requiring substantial abstraction or requiring modular specification and verification

(or specified with LTL properties) will naturally be explained using MAGIC’s ab-

stract explanation features. The search for errors or verification is primary; the need

for explanation is a secondary concern that will seldom be the determining factor in

choosing which model checker to use.

182

Chapter 10

Conclusions

My pen halts, though I do not. Reader, you will walk no more with me.

It is time we both take up our lives.

- Gene Wolfe, The Citadel of the Autarch

10.1 Conclusions

Any final conclusion about the supremacy of explanation based on distance metrics,

beyond the existential claim that for some programs and some errors it works very

well, would be premature. The scoring method proposed by Renieris and Reiss

provides a quantitative means for comparing fault localizations; unfortunately, in

the absence of competing tools and methods that apply to the same programs and

errors, the raw scores are difficult to assess, other than as a marked improvement on

raw counterexamples. Improvement over counterexamples demonstrates that in the

cases considered, explanation was (almost always) of considerable value, given the

183

(reasonable) assumption that a localization to the precise neighborhood of the error

is valuable.

It is unlikely, explanation being at heart, perhaps, a psychological notion, that

any one approach to error explanation can ever be proven to be optimal or even

“correct” in a purely logical sense. The best demonstration of superiority would lie

in user testing to empirically demonstrate that programmers’ efficiency in debugging

is improved by an explanation technique. That said, the approach to explanation

presented in here is

• based on David Lewis’ widely used [Galles and Pearl, 1997; Sosa and Tooley,

1993] notion of causality [Lewis, 1973a] and

• provides an effectively computable notion of explanation.

Experimental results do indicate that the method often produces very effective

fault localization information, and that this localization is, in the examples con-

sidered, (on average) much better than that provided by testing-based localization

methods or other model checking localizations. Again, as suggested in the introduc-

tion, if we accept the claim that localization/isolation is the most difficult part of the

debugging task [Vesey, 1985], this quantitative demonstration of effective localiza-

tion provides a strong expectation that the technique provides effective explanation

as well.

The method has been successfully applied to concrete executions of programs, us-

ing a somewhat counter-intuitive distance metric influenced by hypothetical values

184

computed by un-executed code. The novel ∆-slicing algorithm improves explana-

tions, and introduces a notion of slicing that is based on causality and works directly

with a pair of executions to determine why certain predicates are true in one execu-

tion and false in another.

The basic approach can be generalized to apply to abstract executions, use a

more intuitive distance metric, and explain Linear Temporal Logic property viola-

tions. Experimental results demonstrate the utility of abstract explanation, but also

indicate that the original SSA-based metric and tool have some advantages over the

implementation of abstract explanation for MAGIC.

The most interesting lesson to be drawn from abstract explanation is that the

predicate abstractions introduced to model checking in order to combat the state-

space explosion problem are also useful for improving program understanding. The

fact that each abstract execution potentially represents many counterexamples or

successful executions provides an automatic generalization to the logical causes of an

error. It should be possible to exploit this generalization of program behaviors (or

the production of a set of predicates that are relevant to a given property, etc.) for

other program understanding goals, such as program exploration, reverse engineering,

specification mining, etc. — e.g., in cases where a type-inference based static analysis

[O’Callahan and Jackson, 1997] or (dynamically discovered) invariants [Ernst et al.,

1999] might be used. Rather than viewing the abstract state-spaces automatically

produced by software model checkers as disposable artifacts of verification, we must

at least consider the possibility that the abstractions themselves are valuable by-

products that can be mined for information.

185

10.2 Future Work

10.2.1 SSA and Abstract Explanation

The TCAS and µC/OS-II results indicate that predicate abstraction plus SSA-form

BMC might be a fruitful combination for error explanation. The high overhead

of introducing alignment variables into the distance metric is the most important

motivation for this combination: the occasional production of metric problems that

PBS cannot solve is a large drawback to the abstract explanation approach. The

cases in which SSA form simply produces a better explanation (e.g., µC/OS-II) also

motivate a combination of techniques. While it is reasonable to expect cases in which

non-SSA form based metrics produce better results, the one large program for which

both methods have been tried receives a (much) better explanation under the SSA

form metric. Preliminary experiments with hand-encodings of SSA form versions of

abstract programs do suggest that the counter-intuitive metrics may combine poorly

in some cases with SSA form. One hypothesis is that the metric must be altered

to take into account both the predicates that are relevant at different locations (not

natural to SSA form) and the difference between abstraction-based nondeterminism1

and nondeterminism based on program inputs.

Abstraction makes the presence of irrelevant ∆s in an explanation less likely

but does not fully eliminate the need for causally-aware slicing. Adapting the ∆-

1A completely deterministic program transition in the concrete program may become nondeter-

ministic under an abstraction that is too coarse to, for example, determine if a given branch should

be taken.

186

slicing method [Groce, 2004] used with concrete explanations to an alignment-based

distance metric is not obviously sensible; for these reasons, an SSA-based abstract

explanation method would appear to be the most practically important advance on

the current methods.

10.2.2 Slicing

An appealing compromise between two-phase and one-step slicing would be to com-

pute the original distance metric only over SSA form values and guards present in a

static slice with respect to the error detected in the original counterexample.

All that would be required is to modify the SSA form distance metric to reflect a

static slice of the program and error. Using a dynamic slice based on the counterex-

ample would potentially introduce the “relativity” problems presented by one-step

slicing, but a static slice would provide a completely conservative notion of relevance:

differences removed by static slicing simply could not be important for understanding

the failure in question.

A less concrete area for future research would be an investigation of the conditions

under which ∆-slicing differs from some dynamic slice or combination of dynamic

slices. The interaction between slicing and the full-execution distance metric remains

somewhat unclear: it is possible that some restriction on slicing or change in the

metric might eliminate the “relativity of relevance” issue that makes one-step slicing

perform badly.

187

10.2.3 Concurrency

The current MAGIC and explain implementations of error explanation do not ap-

ply to concurrent programs. CBMC does not support concurrency, and the MAGIC

facilities apply only to executions of a single thread (MAGIC does support message-

passing concurrency, with reduction of counterexamples to traces in the individ-

ual threads). In principle, a technique such as Qadeer’s context-bounded approach

[Qadeer and Wu, 2004] to concurrency could be used to explain errors by trans-

forming a concurrent example into a sequential model checking problem. Of course,

there is no particular difficulty in formulating distance metrics that allow for an

interleaving semantics, although it might well be very desirable to include transpo-

sition of steps as an atomic operation in order to encode the fundamental semantics

of interleaving. The primary difficulty with adding concurrency to explanation lies

in the poor performance of bounded model checking for concurrent software (and

a lack of BMC tools that support concurrency). Recent work has addressed this

problem to some degree [Grumberg et al., 2005], but the effectiveness of Bounded

Model Checking for concurrent software remains largely unproven.

The JPF implementation of error explanation [Groce and Visser, 2003] supports

concurrency, and within the limits of JPF’s selection of executions to examine, can

produce explanations based on minimal thread scheduling changes. It may be that

a similar technique for BMC, based on a more principled technique, such as context-

bounding [Qadeer and Wu, 2004] may prove most suitable for explaining concurrency

errors. An important question to investigate here is whether an execution with the

188

same (or fewer) context-switches is usually capable of avoiding an error: it seems

at least highly plausible that this will be the case, which suggests context-bounding

might work well even when the error is produced by a different approach, if the

counterexample has few context-switches.

Another possibility, suggested by the most useful results produced by the JPF

implementation and the work of Zeller [Choi and Zeller, 2002] would be to consider

only changes in thread scheduling : base a distance metric on scheduling alone, hold

the program inputs constant, and search for a most-similar schedule that avoids an

error. Whether this would constrain the search space sufficiently to allow for efficient

bounded model checking or complete explicit-state model checking is unclear.

A final concern raised by some approached to concurrency is that there might

be interference between partial order reduction [Peled, 1998] and the search for a

most similar execution: it seems possible that the most similar path might not be

considered because it is equivalent under the partial order reduction to another, more

distant from the counterexample, path.

10.2.4 Explicit-State Approaches

The JPF implementation of error explanation [Groce and Visser, 2003] demon-

strates that explanation can be incorporated into an explicit-state model checker.

At present, explicit-state model checkers such as Java PathFinder 2 [Visser et al.,

2003], Bogor [Robby et al., 2004], and SPIN [Holzmann, 2003] (or dSPIN [Demartini

et al., 1999]) are more popular for exploring the behavior of certain kinds of programs

189

than abstraction-based, bounded, or symbolic model checkers. The reasons for this

preference include the success of partial-order reductions, close modeling of actual

execution semantics, handling of dynamic object and thread creation, and other

related factors. Efficient (possibly heuristic) methods for applying distance metric

based explanation in the context of explicit-state checkers would provide an alterna-

tive to the BMC (and SAT/PBS) dependent approach presented here. Explicit-state

model checkers are currently perhaps the best choice for verifying/debugging con-

current software: research into explicit-state techniques is therefore also an alternate

approach to those suggested above for addressing concurrency.

10.2.5 Explanation and Symbolic Execution

The generalization achieved by predicate abstraction should also be obtainable through

model checking techniques based on symbolic execution of programs. The techniques

proposed by Khurshid, Păsăreanu, and Visser [Khurshid et al., 2003; Păsăreanu and

Visser, 2004] provide an alternative means to (something like) the same ends as pred-

icate abstraction. The use of explicit-state model checking to handle concurrency in

these cases might address some of the difficulties of concurrency. A possible draw-

back is that infeasible paths might be harder to avoid in this case, and that in an

explicit-state context, only an approximation of the closest execution might be ob-

tainable. The second objection depends on the distance metric used: the formulation

of a distance metric for this approach does not appear to pose any fundamental diffi-

culties beyond those encountered in the abstract case, though including concurrency

190

does require some attention, as noted above.

10.2.6 Metrics for More Complex Counterexample Forms

The metrics considered in this work address executions of programs, either finite or

stem and cycle infinite executions (for LTL properties). Counterexamples to proper-

ties cannot always be given as executions, however [Clarke and Veith, 2003]. For CTL

properties, a branching structure in the counterexample [Clarke et al., 2002] may be

necessary. To demonstrate that a program cannot simulate a specification, a game

strategy involving branching on system and specification moves may be produced,

as in the MAGIC tool [Chaki et al., 2004a].

Extending the distance-metric based approaches to these kinds of counterexample

requires producing metrics for distances between tree-like structures, and an efficient

method for computing these distances. Simulation in particular offers a number of

potentially interesting questions to address. Is a distance metric based on distance

in the simulation lattice the best method? If a Levenshtein distance is to be used,

what basic operations reflect the underlying reasons why one system fails to simulate

another?

10.2.7 Further Empirical Evaluation and User Studies

A more extensive empirical study of explanation approaches and distance metrics is

in order, as are user studies to discover how genuinely useful explanations are for

debugging.

191

An empirical justification of the evaluation method proposed by Renieris and

Reiss would serve to improve confidence in any fault localization techniques that

provide evidence of good results by their measure. The intuition behind the hypo-

thetical notion of a perfect debugger (used to justify the breadth-first search with

termination as soon as a faulty node is encountered — see Section 5.2) seems reason-

able, as does the notion of measuring a distance in the Program Dependency Graph

to the actual error from the reported location. Nonetheless, it would be highly desir-

able to show a direct correlation between better scores under the evaluation method

and actual user debugging experience.

10.2.8 Automated Program Correction

Using distance metrics to generate maximally similar executions that avoid an error

naturally introduces the possibility of using a distance metric to generate the closest

program that avoids an error. That is, rather than localizing a fault in the indirect

manner, a distance metric could be used to discover a correction for an error, making

localization merely a side effect of the real goal of the debugging task.

A general outline of such an approach might work as follows:

1. Use the explain engine to encode a BMC query to determine, under a fixed

set of possible program mutations [Budd, 1980], a mutation that:

• Minimizes the distance to the original program.

• Satisfies all properties for the inputs in the counterexample.

192

2. Model check the proposed fix to see if it introduces any new counterexamples.

3. If the new program is error-free (or error-free up to some bounded length, at

least), present it to the user as a correction for the original error.

4. If the proposed fix introduces other errors, add a blocking clause to remove

this solution and return to the first step of the process.

The iterative refinement is required because the first pseudo-Boolean query can

check only whether the new program works correctly for a fixed set of inputs (e.g.,

the inputs used in the counterexample); finding a program that works for all inputs

would require quantifier alternation.

The encoding required for the first step depends on the set of program mutations

allowed. For many possible mutations, this encoding is no more difficult than that re-

quired to allow for the current approach: the program counter for a particular source

line is available to the conversion routines, and a case split on possible alternatives

could be introduced into the transition relation.

Experiments with small examples, however, indicate that a very general set of

allowed mutations produces numerous “corrections” that apply only to one set of

inputs. For practical purposes, to avoid a long sequence of iterations, only mutations

corresponding to very common program errors might be allowed: off by one errors,

bad conditional choices, and common loop and pointer mistakes. Unfortunately, in

the case of simple, common errors it is unclear that the time to produce and verify

(by hand) an automatically produced correction would be an improvement over hand

debugging with a good localization. The preliminary results of Jobstmann, Staber,

193

Griesmayer, and Bloem indicate that the possibility of automated correction at least

merits investigation [Jobstmann et al., 2005; Staber et al., 2005].

10.3 Summary

We have presented a novel approach to error explanation and fault localization, based

on distance metrics for program executions. The use of distance metrics is suggested

by common intuition [Groce and Visser, 2003; Renieris and Reiss, 2003; Zeller and

Hildebrandt, 2002] and an important theory of causality [Lewis, 1973a]. More im-

portantly, the use of distance metrics is justified by empirical evidence of generally

high quality fault localizations for a number of case studies, as reported in Chapters

5 and 9. The utility of automatically discovered predicates in abstract explanation

suggests that tool-generated abstractions used in verification are potentially valuable

artifacts for the purpose of program understanding.

Numerous directions for future error explanation research are presented above;

the topic of error explanation has recently attracted a considerable amount of at-

tention (an entire session of the 2004 SIGSOFT Symposium on the Foundations of

Software Engineering was devoted to the topic “Error Explanation” [Dwyer, 2004]).

We expect that the work presented here is a promising beginning, rather than a con-

clusion, in the field of model checking for error explanation and fault localization.

194

Bibliography

Note: Chapters 3, 4, and 5 of this document are partly based on the text of a
TACAS 2004 paper [Groce, 2004]; Chapter 6 is partly based on a BMC 2004 paper
[Groce and Kroening, 2004]; Chapters 7, 8, and 9 are partly based on an FSE 2004
paper [Chaki et al., 2004c].

Hira Agrawal, Joseph Horgan, Saul London, and W. Eric Wong. Fault localization
using execution slices and dataflow tests. In International Symposium on Software
Reliability Engineering, pages 143–151, Toulouse, France, October 1995.

Fadi Aloul, Arathi Ramani, Igor Markov, and Karem Sakallah. PBS: A backtrack
search pseudo Boolean solver. In Symposium on the theory and applications of
satisfiability testing (SAT), pages 346–353, Cincinnati, OH, May 2002.

Bowen Alpern, Mark Wegman, and F. Kenneth Zadeck. Detecting equality of vari-
ables in programs. In Principles of Programming Languages, pages 1–11, San
Diego, CA, January 1988.

Maŕıa Alpuente, Marco Comini, Santiago Escobar, Moreno Falaschi, and Salvador
Lucas. Abstract diagnosis of functional programs. In Logic Based Program Synthe-
sis and Tranformation, 12th International Workshop, Madrid, Spain, September
2002.

Paul Anderson and Tim Teitelbaum. Software inspection using codesurfer. In Work-
shop on Inspection in Software Engineering, Paris, France, July 2001.

AskIgor Website. http://www.askigor.com.

Thomas Ball and Stephen Eick. Software visualization in the large. Computer, 29
(4):33–43, April 1996.

195

Thomas Ball, Mayur Naik, and Sriram Rajamani. From symptom to cause: Local-
izing errors in counterexample traces. In Principles of Programming Languages,
pages 97–105, New Orleans, LA, January 2003.

Thomas Ball and Sriram Rajamani. Boolean programs: A model and process for
software analysis. Technical Report 2000-14, Microsoft Research, February 2000.

Thomas Ball and Sriram Rajamani. Automatically validating temporal safety prop-
erties of interfaces. In Proceedings of the 8th International SPIN Workshop Model
Checking of Software, pages 103–122, Toronto, Canada, May 2001.

Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-
Boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut Fur
Informatik, 1995.

Jonathan Bennett. Counterfactuals and temporal direction. Philosophical Review,
93:57–91, 1984.

Jonathan Bennett. Event causation: The counterfactual analysis. In James E.
Tomberlin, editor, Philosophical Perspectives, 1, Metaphysics. Ridgeview Publish-
ing Company, 1987.

Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety check-
ing. In ERCIM Workshop in Formal Methods for Industrial Critical Systems, vol-
ume 66 of Electronic Notes in Theoretical Computer Science, University of Malaga,
Spain, July 2002.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Proceedings of the International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 193–
207, Amsterdam, The Netherlands, March 1999.

Timothy Alan Budd. Mutation Analysis of Program Test Data. 1980. PhD thesis,
Yale University.

CBMC Website. http://www.cs.cmu.edu/~modelcheck/cbmc/.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-
ular verification of software components in C. In International Conference on
Software Engineering, pages 385–395, Portland, OR, May 2003a.

196

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-
ular verification of software components in C. IEEE Transactions on Software
Engineering, 30(6):388–402, June 2004a.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Joel Ouaknine, Ofer Strichman, and
Karen Yorav. Efficient verification of sequential and concurrent C programs. For-
mal Methods in System Design, 25(2-3):129–166, September-November 2004b. Spe-
cial issue on software model checking.

Sagar Chaki, Edmund M. Clarke, Alex Groce, and Ofer Strichman. Predicate ab-
straction with minimum predicates. In Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME), pages 19–34,
L’Aquila, Italy, October 2003b.

Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining abstract counterexamples.
In ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
73–82, Newport Beach, CA, November 2004c.

William Chan. Temporal-logic queries. In Proceedings of the 12th International
Conference on Computer Aided Verification, pages 450–463, Chicago, IL, July
2000.

Marsha Chechik and Arie Gurfinkel. Proof-like counter-examples. In Proceedings of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 160–175, Warsaw, Poland, April 2003.

Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules. In
International Symposium on Software Testing and Analysis, pages 210–220, Rome,
Italy, July 2002.

Edmund M. Clarke and E. Emerson. The design and synthesis of synchronization
skeletons using temporal logic. In Workshop on Logics of Programs, pages 52–71,
Yorktown Heights, NY, May 1981.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of the 12th Inter-
national Conference on Computer Aided Verification, pages 154–169, Chicago, IL,
July 2000a.

Edmund M. Clarke, Orna Grumberg, Ken McMillan, and Xudong Zhao. Efficient
generation of counterexamples and witnesses in symbolic model checking. In De-
sign Automation Conference, pages 427–432, San Francisco, CA, June 1995.

197

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
2000b.

Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterex-
amples in model checking. In IEEE Symposium on Logic in Computer Science,
pages 19–29, Copenhagen, Denmark, July 2002.

Edmund M. Clarke, Somesh Jha, and Will Marrero. Verifying security protocols
with Brutus. ACM Transactions of Software Engineering and Methodology, 9(4):
443–487, October 2000c.

Edmund M. Clarke and Helmut Veith. Counterexamples revisited: Principles, algo-
rithms, applications. In Verification: Theory and Practice, Essays Dedicated to
Zohar Manna on the Occasion of His 64th Birthday, pages 208–224, 2003.

Holger Cleve and Andreas Zeller. Locating causes of program failures. In Interna-
tional Conference on Software Engineering, St. Louis, MO, May 2005. To appear.

Jamie Cobleigh, Dimitra Giannakopoulou, and Corina Păsăreanu. Learning assump-
tions for compositional verification. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 331–
346, Warsaw, Poland, April 2003.

Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezze. Using sym-
bolic execution for verifying safety-critical systems. In European Software Engi-
neering Conference/Foundations of Software Engineering, pages 142–151, Vienna,
Austria, September 2001.

Claudio Demartini, Radu Iosif, and Riccardo Sisto. dSPIN: A dynamic extension of
SPIN. In Proceedings of the 6th International SPIN Workshop Model Checking of
Software, pages 261–276, Toulouse, France, September 1999.

Edsger W. Dijkstra. A simple axiomatic basis for programming language constructs.
Lecture notes from the International Summer School on Structured Programming
and Programmed Structures, 1973.

Nii Dodoo, Alan Donovan, Lee Lin, and Michael Ernst. Selecting predicates
for implications in program analysis. URL http://pag.lcs.mit.edu/~mernst/

pubs/invariants-implications-abstract.ht%ml. http://pag.lcs.mit.edu/

~mernst/pubs/invariants-implications.ps, 2000.

198

Richard Durbin, Sean Eddy, Aanders Krogh, and Graeme Mitchison. Biological
sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge
University Press, 1998.

Matthew Dwyer, editor. ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Newport Beach, CA, November 2004.

Michael Ernst, Jake Cockrell, William Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. In Interna-
tional Conference on Software Engineering, pages 213–224, Los Angeles, CA, May
1999.

David Galles and Judea Pearl. Axioms of causal relevance. Artificial Intelligence, 97
(1-2):9–43, 1997.

Robert Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Protocol Specification Testing
and Verification, pages 3–18, 1995.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Proceedings of the 9th International Conference on Computer Aided Verification,
pages 72–83, Haifa, Israel, June 1997.

Alex Groce. Error explanation with distance metrics. In Proceedings of the Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 108–122, Barcelona, Spain, March-April 2004.

Alex Groce and Daniel Kroening. Making the most of BMC counterexamples. In
Workshop on Bounded Model Checking, pages 71–84, Boston, MA, July 2004.

Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples
with explain. In Proceedings of the 16th International Conference on Computer
Aided Verification, pages 453–456, Boston, MA, July 2004.

Alex Groce and Willem Visser. Model checking Java programs using structural
heuristics. In International Symposium on Software Testing and Analysis, pages
12–21, Rome, Italy, July 2002.

Alex Groce and Willem Visser. What went wrong: Explaining counterexamples. In
Proceedings of the 10th International SPIN Workshop Model Checking of Software,
pages 121–135, Portland, OR, May 2003.

199

Alex Groce and Willem Visser. Heuristics for model checking Java programs. Inter-
national Journal on Software Tools for Technology Transfer, 2004. Online first.

Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Principles of Program-
ming Languages, pages 122–131, Long Beach, CA, January 2005.

Arie Gurfinkel, Benet Devereux, and Marsha Chechik. Model exploration with tem-
poral logic query checking. In ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 139–148, Charleston, SC, November 2002.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In International Conference on Software Engineering,
pages 291–301, Orland, FL, May 2002.

Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. An empirical
investigation of the relationship between spectra differences and regression faults.
Software Testing, Verification and Reliability, 10(3):171–194, 2000.

Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy ab-
straction. In Principles of Programming Languages, pages 58–70, Portland, OR,
January 2002.

C. A. R. Hoare. An axiomatic basis for computer programming (reprint). Commu-
nications of the ACM, 26(1):53–56, 1983.

Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

Nicholas J. Hopper, Sanjit A. Seshia, and Jeannette M. Wing. A comparison and
combination of theory generation and model checking for security protocol analysis.
In Workshop on Formal Methods in Computer Security, Chicago, IL, July 2000.

Paul Horwich. Asymmetries in Time, pages 167–176. MIT Press, 1987.

Susan Horwitz and Thomas Reps. The use of program dependence graphs in software
engineering. In International Conference on Software Engineering, pages 392–411,
Melbourne, Australia, May 1992.

200

David Hume. A Treatise of Human Nature. London, 1739.

David Hume. An Enquiry Concerning Human Understanding. London, 1748.

HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and free will in error traces.
In Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 445–458, Grenoble, France, April
2002.

Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program re-
pair as a game. URL http://www.ist.tugraz.at/verify/pub/Projects/

ProgramRepair/repair.ps. Unpublished manuscript, 2005.

James Jones, Mary Jean Harrold, and John Stasko. Visualization of test information
to assist fault localization. In International Conference on Software Engineering,
pages 467–477, Orlando, FL, May 2002.

Sarfraz Khurshid, Corina Păsăreanu, and Willem Visser. Generalized symbolic exe-
cution for model checking and testing. In Proceedings of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, pages
553–568, Warsaw, Poland, April 2003.

Jaegwon Kim. Causes and counterfactuals. Journal of Philosophy, 70:570–572, 1973.

Darrell Kindred and Jeannette Wing. Fast, automatic checking of security proto-
cols. In USENIX Workshop on Electronic Commerce, pages 41–52, Oakland, CA,
November 1996.

Gabriella Kókai, László Harmath, and Tibor Gyimóthy. Algorithmic debugging and
testing of Prolog programs. In Workshop on Logic Programming Environments,
pages 14–21, Leuven, Belgium, July 1997.

Daniel Kroening, Edmund M. Clarke, and Flavio Lerda. A tool for checking ANSI-C
programs. In Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 168–176, Barcelona, Spain,
March-April 2004.

Nirman Kumar, Viraj Kumar, and Mahesh Viswanathan. On the complexity of error
explanation. In Verification, Model Checking and Abstract Interpretation, pages
448–464, Paris, France, January 2005.

201

Robert Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata- Theoretic Approach. Princeton University Press, 1995.

K. Rustan Leino, Todd Millstein, and James B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 2004.
To appear.

David Lewis. Causation. Journal of Philosophy, 70:556–567, 1973a.

David Lewis. Counterfactuals. Harvard University Press, 1973b. [revised printing
1986].

Peter Lucas. Analysis of notions of diagnosis. Artificial Intelligence, 105(1-2):295–
343, 1998.

J. L. Mackie. Causes and conditions. American Philosophical Quarterly, 2:245–264,
1965.

Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs. John
Wiley and Sons, 1999.

Cristinel Mateis, Markus Stumptner, Dominik Wieland, and Franz Wotawa. Model-
based debugging of Java programs. In Workshop on Automatic Debugging, Munich,
Germany, August 2000.

Wolfgang Mayer and Markus Stumptner. Model-based debugging using multiple
abstract models. In International Workshop on Automated and Algorithmic De-
bugging, Ghent, Belgium, September 2003.

Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Design Automation Conference,
pages 530–535, Las Vegas, NV, June 2001.

Edjard Mota, Edmund M. Clarke, W. de Oliveira, Alex Groce, J. Kanda, and M. Fal-
cao. VeriAgent: an approach to integrating UML and formal verification tools. In
Sixth Brazilian Workshop on Formal Methods, pages 111–129, Universidade Fed-
eral de Campina Grande, Brazil, October 2003. Electronic Notes in Theoretical
Computer Science 95 (May 2004).

µC/OS-II Website. http://www.ucos-ii.com/.

Kedar Namjoshi. Certifying model checkers. In Proceedings of the 13th International
Conference on Computer Aided Verification, pages 2–13, Paris, France, July 2001.

202

Kedar Namjoshi and Robert P. Kurshan. Syntactic program transformations for
automatic abstraction. In Proceedings of the 12th International Conference on
Computer Aided Verification, pages 435–449, Chicago, IL, July 2000.

P. Pandurang Nayak and Brian Williams. Fast context switching in real-time propo-
sitional reasoning. In National Conference on Artificial Intelligence, pages 50–56,
Providence, RI, July 1997.

Robert O’Callahan and Daniel Jackson. Lackwit: A program understanding tool
based on type inference. In International Conference on Software Engineering,
pages 338–348, Boston, MA, May 1997.

Doron Peled. Ten years of partial order reduction. In Proceedings of the 10th In-
ternational Conference on Computer Aided Verification, pages 17–28, Vancouver,
BC, Canada, June-July 1998.

Doron Peled, Amir Pnueli, and Lenore D. Zuck. From falsification to verification.
In Foundations of Software Technology and Theoretical Computer Science, pages
292–304, Bangalore, India, December 2001.

Corina Păsăreanu and Willem Visser. Verification of Java programs using symbolic
execution and invariant generation. In Proceedings of the 11th International SPIN
Workshop Model Checking of Software, pages 164–181, Barcelona, Spain, April
2004.

Brock Pytlik, Manos Renieris, Shriram Krishnamurthi, and Steven P. Reiss. Auto-
mated fault localization using potential invariants. In International Workshop on
Automated and Algorithmic Debugging, Ghent, Belgium, September 2003.

Shaz Qadeer and Dinghao Wu. KISS: Keep it simple and sequential. In Conference
on Programming Language Design and Implementation, pages 14–24, Washington,
DC, June 2004.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In International Symposium on Programming, pages 337–351,
Torino, Italy, April 1982.

Kavita Ravi and Fabio Somenzi. Minimal assignments for bounded model checking.
In Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 31–45, Barcelona, Spain, March-
April 2004.

203

Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

Manos Renieris and Steven Reiss. Fault localization with nearest neighbor queries. In
Automated Software Engineering, pages 30–39, Montreal, Canada, October 2003.

Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program
profiling for software maintenance with applications to the year 2000 problem. In
European Software Engineering Conference, pages 432–449, Zurich, Switzerland,
September 1997.

Robby, Edwin Rodŕıguez, Matthew B. Dwyer, and John Hatcliff. Checking strong
specifications using an extensible software model checking framework. In Proceed-
ings of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 404–420, Barcelona, Spain, 2004.

Gregg Rothermel and Mary Jean Harrold. Empirical studies of a safe regression test
selection technique. Software Engineering, 24(6):401–419, 1999.

Wesley Salmon. Probabilistic causality. Pacific Philosophical Quarterly, 61:50–74,
1980.

David Sankoff and Joseph Kruskal, editors. Time Warps, String Edits, and Macro-
molecules: the Theory and Practice of Sequence Comparison. Addison Wesley,
1983.

Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Natasha Sharygina and Doron Peled. A combined testing and verification approach
for software reliability. In Formal Methods Europe, pages 611–628, Berlin, Ger-
many, March 2001.

ShengYu Shen, Ying Qin, and Sikun Li. Bug localization of hardware system with
control flow distance minimization. In International Workshop on Logic and Syn-
thesis, Temecula, CA, June 2004a.

ShengYu Shen, Ying Qin, and Sikun Li. Debugging complex counterexample of
hardware system using control flow distance metrics. In IEEE Midwest Symposium
on Circuits and Systems, pages 501–504, Hiroshima, Japan, July 2004b.

ShengYu Shen, Ying Qin, and Sikun Li. Localizing errors in counterexample with
iteratively witness searching. In Automated Technology for Verification and Anal-
ysis, pages 456–469, Taipei, Taiwan, October-November 2004c.

204

ShengYu Shen, Ying Qin, and Sikun Li. Minimizing counterexample with unit core
extraction and incremental SAT. In Verification, Model Checking, and Abstract
Interpretation, pages 298–312, Paris, France, January 2005.

Reid Simmons and Charles Pecheur. Automating model checking for autonomous
systems. In AAAI Spring Symposium on Real-Time Autonomous Systems, 2000.

Ernest Sosa and Michael Tooley, editors. Causation. Oxford University Press, 1993.

Stefan Staber, Barbara Jobstmann, and Roderick Bloem. Diagnosis is repair. Un-
published manuscript, 2005.

Robert Stalnaker. A theory of conditionals. In N. Rescher, editor, Studies in Logical
Theory. Oxford University Press, 1968.

Perdita Stevens and Colin Stirling. Practical model-checking using games. In Proceed-
ings of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 85–101, Lisbon, Portugal, March-April 1998.

Li Tan and Rance Cleaveland. Evidence-based model checking. In Proceedings of
the 14th International Conference on Computer Aided Verification, pages 455–470,
Copenhagen, Denmark, July 2002.

Frank Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

I. Vesey. Expertise in debugging computer programs. International Journal of Man-
Machine Studies, 23(5):459–494, 1985.

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda.
Model checking programs. Automated Software Engineering, 10(2):203–232, April
2003.

Mark David Weiser. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. 1979. PhD thesis, University
of Michigan.

Franz Wotawa. On the relationship between model-based debugging and programm
mutation. In International Workshop on Principles of Diagnosis, Sansicario, Italy,
March 2001.

Franz Wotawa. On the relationship between model-based debugging and program
slicing. Artificial Intelligence, 135(1-2):125–143, 2002.

205

Andreas Zeller. Isolating cause-effect chains from computer programs. In ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 1–10,
Charleston, SC, November 2002.

Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing in-
put. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing algorithms.
In International Conference on Software Engineering, pages 319–329, Portland,
OR, May 2003.

206

Appendix A

Command Line Options for the
explain Tool

Usage: Purpose:

explain [-?] [-h] [--help] show help

explain file.c ... source file names

Additonal options:

--program-only only show program expression

--function name set main function name

--no-simplify do not simplify

--all-claims keep all claims

--unwind nr unwind nr times

--unwindset nr unwind given loop nr times

--claims-only only show claims

--decide run decision procedure

--dimacs generate CNF in DIMACS format

--document-subgoals generate subgoals documentation

--no-remove-equations do not remove obsolete equations

--no-substitution do not perform substitution

--no-simplify-if do not simplify ?:

--no-assertions ignore assertions

--no-bounds-check do not do array bounds check

--no-div-by-zero-check do not do division by zero check

--no-pointer-check do not do pointer check

--bound nr number of transitions

207

--module name module to unwind

--counterexample file counterexample file to write

--explain-error file counterexample file to explain

--slice-now slice as you explain

--minimize-deltas attempt to remove unneeded deltas

--deltas-past-error use counterexample values past the error

--interventions use metric based on arbitrary interventions

--inputs-only only generate deltas for inputs

--inputs-guards-only only generate deltas for inputs and guards

--guard-weight changes the weight for guard deltas

--input-weight changes the weight for input deltas

--write-deltas file write changes to a file

--write-delta-values file write changes and actual values to a file

--find-error try to find a different error path

--maximize maximize distance to path

--assume file restrict to satisfy predicates in file

--assume-not use negation of assumptions

--assume-or use OR, not AND for assumptions

--find-causes check delta for causal dependence

--closest-causes check deltas in closest positive for c.d.

--no-prior-changes do not allow changes prior to cause delta

--inputs-beginning treat all inputs as occuring initially

--check-cause file check for causal dependence on predicates in file

--check-not use negations of causes to check

--check-or use OR on causes, not AND

--write-causes file write causes as predicates to a file

--effect file check effect, not error

--effect-not use negations of effects to check

--effect-or use OR on effects, not AND

--pbs-path path at which pbs executable resides

208

Appendix B

TCAS Version #1 Counterexample

file tcasv1.c: Parsing

Converting

Starting Bounded Model Checking

Unwinding recursion iteration 0 (c::main)

...

size of program expression: 165 assignments

Generated 41 claims, 30 remaining

Passing to decision procedure

...

Running decision procedure

Solving with ZChaff version ZChaff 2003.6.16

7317 variables, 23483 clauses

SAT checker: negated claim is SATISFIABLE, i.e., does not hold

Counterexample:

Initial State

--

ASTBeg=FALSE

ASTDownRA=FALSE

ASTEn=FALSE

ASTUnresRA=FALSE

ASTUpRA=FALSE

Alt Layer Value=0

Climb Inhibit=FALSE

Cur Vertical Sep=0

209

Down Separation=0

High Confidence=FALSE

Other Capability=0

Other RAC=0

Other Tracked Alt=0

Own Tracked Alt=0

Own Tracked Alt Rate=0

P1 ACond=FALSE

P1 BCond=FALSE

P2 ACond=FALSE

P3 BCond=FALSE

P5 ACond=FALSE

Positive RA Alt Thresh= 0, 0, 0, 0

PrA=FALSE

PrB=FALSE

Two of Three Reports Valid=FALSE

Up Separation=0

State 1

--

r=(assignment removed)

State 2

--

Input Cur Vertical Sep=2061

State 3

--

Input High Confidence=TRUE

State 4

--

Input Two of Three Reports Valid=FALSE

State 5

--

Input Own Tracked Alt=25350

State 6

--

Input Own Tracked Alt Rate=-31071 (11111111111111111000011010100001)

State 7

--

Input Other Tracked Alt=98557

210

State 8

--

Input Alt Layer Value=2

State 9

--

Input Up Separation=65089

State 10

--

Input Down Separation=640

State 11

--

Input Other RAC=2

State 12

--

Input Other Capability=2

State 13

--

Input Climb Inhibit=FALSE

State 14

--

Layer Positive RA Alt Thresh=(assignment removed)

State 30 file tcasv1.c line 207 function c::main

--

Cur Vertical Sep=2061

State 31 file tcasv1.c line 208 function c::main

--

High Confidence=TRUE

State 32 file tcasv1.c line 209 function c::main

--

Two of Three Reports Valid=FALSE

State 33 file tcasv1.c line 210 function c::main

--

Own Tracked Alt=25350

State 34 file tcasv1.c line 211 function c::main

--

Own Tracked Alt Rate=0

State 35 file tcasv1.c line 212 function c::main

--

211

Other Tracked Alt=98557

State 36 file tcasv1.c line 213 function c::main

--

Alt Layer Value=2

State 37 file tcasv1.c line 214 function c::main

--

Up Separation=65089

State 38 file tcasv1.c line 215 function c::main

--

Down Separation=640

State 39 file tcasv1.c line 216 function c::main

--

Other RAC=2

State 40 file tcasv1.c line 217 function c::main

--

Other Capability=2

State 41 file tcasv1.c line 218 function c::main

--

Climb Inhibit=FALSE

State 43 file tcasv1.c line 65 function c::initialize

--

Positive RA Alt Thresh= 400, 0, 0, 0

State 44 file tcasv1.c line 66 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 0, 0

State 45 file tcasv1.c line 67 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 0

State 46 file tcasv1.c line 68 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 740

State 47

--

enabled=(assignment removed)

State 48

--

tcas equipped=(assignment removed)

State 49

212

--

intent not known=(assignment removed)

State 50

--

need upward RA=FALSE

State 51

--

need downward RA=FALSE

State 52

--

alt sep=(assignment removed)

State 53 file tcasv1.c line 133 function c::alt sep test

--

ASTBeg=TRUE

State 54 file tcasv1.c line 135 function c::alt sep test

--

enabled=TRUE

State 55 file tcasv1.c line 136 function c::alt sep test

--

tcas equipped=FALSE

State 56 file tcasv1.c line 137 function c::alt sep test

--

intent not known=FALSE

State 57 file tcasv1.c line 139 function c::alt sep test

--

alt sep=0

State 59 file tcasv1.c line 143 function c::alt sep test

--

ASTEn=TRUE

State 60

--

Non Crossing Biased Climb::0::upward preferred 1=0

State 61

--

c::Non Crossing Biased Climb::0::upward crossing situation 1=(assignment re-

moved)

State 62

--

213

Non Crossing Biased Climb::0::result 1=FALSE

State 63 file tcasv1.c line 88 function c::Inhibit Biased Climb

--

tmp 1=65089

State 65 file tcasv1.c line 97 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::upward preferred 1=1

State 67 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 2=TRUE

State 70 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 3=TRUE

State 73 file tcasv1.c line 73 function c::ALIM

--

tmp 4=640

State 75 file tcasv1.c line 100 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::result 1=TRUE

State 82 file tcasv1.c line 106 function c::Non Crossing Biased Climb

--

tmp=TRUE

State 85 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 7=TRUE

State 87 file tcasv1.c line 144 function c::alt sep test

--

need upward RA=TRUE

State 88

--

Non Crossing Biased Descend::0::upward preferred 1=0

State 89

--

c::Non Crossing Biased Descend::0::upward crossing situation 1=(assignment re-

moved)

State 90

--

Non Crossing Biased Descend::0::result 1=FALSE

214

State 91 file tcasv1.c line 88 function c::Inhibit Biased Climb

--

tmp 9=65089

State 93 file tcasv1.c line 115 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::upward preferred 1=0

State 101 file tcasv1.c line 83 function c::Own Above Threat

--

tmp 12=FALSE

State 109 file tcasv1.c line 122 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::result 1=TRUE

State 110 file tcasv1.c line 124 function c::Non Crossing Biased Descend

--

tmp 8=TRUE

State 113 file tcasv1.c line 83 function c::Own Above Threat

--

tmp 15=FALSE

State 115 file tcasv1.c line 145 function c::alt sep test

--

need downward RA=FALSE

State 120 file tcasv1.c line 153 function c::alt sep test

--

ASTUpRA=TRUE

State 121 file tcasv1.c line 154 function c::alt sep test

--

alt sep=1

State 127 file tcasv1.c line 166 function c::alt sep test

--

r=1

State 129 file tcasv1.c line 229 function c::main

--

PrA=FALSE

State 130 file tcasv1.c line 230 function c::main

--

PrB=TRUE

State 131 file tcasv1.c line 232 function c::main

--

215

Layer Positive RA Alt Thresh=640

State 132 file tcasv1.c line 236 function c::main

--

P1 ACond=FALSE

State 133 file tcasv1.c line 239 function c::main

--

P1 BCond=FALSE

State 136 file tcasv1.c line 248 function c::main

--

P2 ACond=FALSE

State 138 file tcasv1.c line 255 function c::main

--

P3 BCond=TRUE

Failed assertion: assertion file tcasv1.c line 257 function c::main

Symbols used in assertion:

P3 BCond=TRUE

PrB=TRUE

Total number of steps: 74

Sum of values: 551058

Writing counterexample file tcasv1.ce...

VERIFICATION FAILED

Runtime SAT: 0.658s

1.180u 0.030s 0:01.20 100.8% 0+0k 0+0io 1142pf+0w

216

Appendix C

TCAS Version #1 First
Explanation

Parsing tcasv1.c

Converting

Checking tcasv1

Starting Bounded Model Checking

Reading counterexample from file tcasv1.ce...

...

size of program expression: 165 assignments

Generated 41 claims, 38 remaining

Passing to decision procedure

Running decision procedure

Solving with PBS - Pseudo Boolean/CNF Solver and Optimizer

8267 variables, 26529 clauses

PBS checker: system is SATISFIABLE (distance 10)

Counterexample:

Initial State

--

ASTBeg=FALSE

ASTDownRA=FALSE

ASTEn=FALSE

ASTUnresRA=FALSE

ASTUpRA=FALSE

Alt Layer Value=0

217

Climb Inhibit=FALSE

Cur Vertical Sep=0

Down Separation=0

High Confidence=FALSE

Non Crossing Biased Climb::0::result 1=FALSE

Non Crossing Biased Climb::0::upward preferred 1=0

Non Crossing Biased Descend::0::result 1=FALSE

Non Crossing Biased Descend::0::upward preferred 1=0

Other Capability=0

Other RAC=0

Other Tracked Alt=0

Own Tracked Alt=0

Own Tracked Alt Rate=0

P1 ACond=FALSE

P1 BCond=FALSE

P2 ACond=FALSE

P3 BCond=FALSE

P5 ACond=FALSE

Positive RA Alt Thresh= 0, 0, 0, 0

PrA=FALSE

PrB=FALSE

Two of Three Reports Valid=FALSE

Up Separation=0

need downward RA=FALSE

need upward RA=FALSE

Input Alt Layer Value=0

Input Climb Inhibit=TRUE

Input Cur Vertical Sep=65841

Input Down Separation=159

Input High Confidence=TRUE

Input Other Capability=2

Input Other RAC=0

Input Other Tracked Alt=69497

Input Own Tracked Alt=27606

Input Own Tracked Alt Rate=-31071 (11111111111111111000011010100001)

Input Two of Three Reports Valid=FALSE

Input Up Separation=81309

tmp=FALSE

218

tmp 1=0

tmp 10=FALSE

tmp 11=0

tmp 12=FALSE

tmp 13=FALSE

tmp 14=1073741824

tmp 15=FALSE

tmp 2=FALSE

tmp 3=FALSE

tmp 4=0

tmp 5=FALSE

tmp 6=1073741824

tmp 7=FALSE

tmp 8=FALSE

tmp 9=0

State 16 file tcasv1.c line 207 function c::main

--

Cur Vertical Sep=65841

State 17 file tcasv1.c line 208 function c::main

--

High Confidence=TRUE

State 18 file tcasv1.c line 209 function c::main

--

Two of Three Reports Valid=FALSE

State 19 file tcasv1.c line 210 function c::main

--

Own Tracked Alt=27606

State 20 file tcasv1.c line 211 function c::main

--

Own Tracked Alt Rate=0

State 21 file tcasv1.c line 212 function c::main

--

Other Tracked Alt=69497

State 22 file tcasv1.c line 213 function c::main

--

Alt Layer Value=0

State 23 file tcasv1.c line 214 function c::main

--

219

Up Separation=81309

State 24 file tcasv1.c line 215 function c::main

--

Down Separation=159

State 25 file tcasv1.c line 216 function c::main

--

Other RAC=0

State 26 file tcasv1.c line 217 function c::main

--

Other Capability=2

State 27 file tcasv1.c line 218 function c::main

--

Climb Inhibit=TRUE

State 29 file tcasv1.c line 65 function c::initialize

--

Positive RA Alt Thresh= 400, 0, 0, 0

State 30 file tcasv1.c line 66 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 0, 0

State 31 file tcasv1.c line 67 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 0

State 32 file tcasv1.c line 68 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 740

State 33 file tcasv1.c line 133 function c::alt sep test

--

ASTBeg=TRUE

State 34 file tcasv1.c line 135 function c::alt sep test

--

enabled=TRUE

State 35 file tcasv1.c line 136 function c::alt sep test

--

tcas equipped=FALSE

State 36 file tcasv1.c line 137 function c::alt sep test

--

intent not known=FALSE

State 37 file tcasv1.c line 139 function c::alt sep test

220

--

alt sep=0

State 39 file tcasv1.c line 143 function c::alt sep test

--

ASTEn=TRUE

State 40 file tcasv1.c line 88 function c::Inhibit Biased Climb

--

tmp 1=81409

State 42 file tcasv1.c line 97 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::upward preferred 1=1

State 44 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 2=TRUE

State 47 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 3=TRUE

State 50 file tcasv1.c line 73 function c::ALIM

--

tmp 4=400

State 52 file tcasv1.c line 100 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::result 1=TRUE

State 59 file tcasv1.c line 106 function c::Non Crossing Biased Climb

--

tmp=TRUE

State 62 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 7=TRUE

State 64 file tcasv1.c line 144 function c::alt sep test

--

need upward RA=TRUE

State 65 file tcasv1.c line 88 function c::Inhibit Biased Climb

--

tmp 9=81409

State 67 file tcasv1.c line 115 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::upward preferred 1=1

221

State 69 file tcasv1.c line 78 function c::Own Below Threat

--

tmp 10=TRUE

State 72 file tcasv1.c line 73 function c::ALIM

--

tmp 11=400

State 74 file tcasv1.c line 118 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::result 1=FALSE

State 84 file tcasv1.c line 124 function c::Non Crossing Biased Descend

--

tmp 8=FALSE

State 89 file tcasv1.c line 145 function c::alt sep test

--

need downward RA=FALSE

State 94 file tcasv1.c line 153 function c::alt sep test

--

ASTUpRA=TRUE

State 95 file tcasv1.c line 154 function c::alt sep test

--

alt sep=1

State 101 file tcasv1.c line 166 function c::alt sep test

--

r=1

State 103 file tcasv1.c line 229 function c::main

--

PrA=FALSE

State 104 file tcasv1.c line 230 function c::main

--

PrB=TRUE

State 105 file tcasv1.c line 232 function c::main

--

Layer Positive RA Alt Thresh=400

State 106 file tcasv1.c line 236 function c::main

--

P1 ACond=TRUE

State 107 file tcasv1.c line 239 function c::main

--

222

P1 BCond=FALSE

State 110 file tcasv1.c line 248 function c::main

--

P2 ACond=FALSE

State 112 file tcasv1.c line 255 function c::main

--

P3 BCond=FALSE

State 114 file tcasv1.c line 260 function c::main

--

P5 ACond=TRUE

Error explanation deltas:

Value changed: Input Down Separation 1#0 from 400 to 159

Value changed: Down Separation#1 from 400 to 159

file tcasv1.c line 215 function c::main

Value changed: result 1#1 from TRUE to FALSE

file tcasv1.c line 118 function c::Non Crossing Biased Descend

Value changed: result 1#3 from TRUE to FALSE

Value changed: tmp 8#1 from TRUE to FALSE

file tcasv1.c line 124 function c::Non Crossing Biased Descend

Guard changed: \guard#1 && tmp 8#1 (\guard#13) was TRUE

file tcasv1.c line 145 function c::alt sep test

Value changed: result 1#4 from TRUE to FALSE

Value changed: tmp 8#2 from TRUE to FALSE

Value changed: P1 ACond#1 from FALSE to TRUE

file tcasv1.c line 236 function c::main

Value changed: P3 BCond#1 from TRUE to FALSE

file tcasv1.c line 255 function c::main

Minimizing deltas

Running decision procedure

Solving with PBS - Pseudo Boolean/CNF Solver and Optimizer

3613 variables, 10831 clauses

PBS checker: system is SATISFIABLE (distance 2)

Deltas after minimization:

Value changed: Input Down Separation 1#0 from 400 to 159

Value changed: P3 BCond#1 from TRUE to FALSE

file tcasv1.c line 255 function c::main

CLOSEST SUCCESSFUL PATH FOUND

4.270u 0.120s 0:04.38 100.2% 0+0k 0+0io 1831pf+0w

223

224

Appendix D

TCAS Version #1 Counterexample
(Post-Assumption)

file tcasv1a.c: Parsing

Converting

Starting Bounded Model Checking

Unwinding recursion iteration 0 (c::main)

...

size of program expression: 165 assignments

Generated 41 claims, 30 remaining

Passing to decision procedure

...

Running decision procedure

Solving with ZChaff version ZChaff 2003.6.16

7317 variables, 23488 clauses

SAT checker: negated claim is SATISFIABLE, i.e., does not hold

Counterexample:

Initial State

--

ASTBeg=FALSE

ASTDownRA=FALSE

ASTEn=FALSE

ASTUnresRA=FALSE

ASTUpRA=FALSE

Alt Layer Value=0

225

Climb Inhibit=FALSE

Cur Vertical Sep=0

Down Separation=0

High Confidence=FALSE

Other Capability=0

Other RAC=0

Other Tracked Alt=0

Own Tracked Alt=0

Own Tracked Alt Rate=0

P1 ACond=FALSE

P1 BCond=FALSE

P2 ACond=FALSE

P3 BCond=FALSE

P5 ACond=FALSE

Positive RA Alt Thresh= 0, 0, 0, 0

PrA=FALSE

PrB=FALSE

Two of Three Reports Valid=FALSE

Up Separation=0

State 1

--

r=(assignment removed)

State 2

--

Input Cur Vertical Sep=686

State 3

--

Input High Confidence=TRUE

State 4

--

Input Two of Three Reports Valid=FALSE

State 5

--

Input Own Tracked Alt=32759

State 6

--

Input Own Tracked Alt Rate=-31071 (11111111111111111000011010100001)

State 7

226

--

Input Other Tracked Alt=32776

State 8

--

Input Alt Layer Value=3

State 9

--

Input Up Separation=4

State 10

--

Input Down Separation=740

State 11

--

Input Other RAC=2

State 12

--

Input Other Capability=2

State 13

--

Input Climb Inhibit=FALSE

State 14

--

Layer Positive RA Alt Thresh=(assignment removed)

State 30 file tcasv1a.c line 207 function c::main

--

Cur Vertical Sep=686

State 31 file tcasv1a.c line 208 function c::main

--

High Confidence=TRUE

State 32 file tcasv1a.c line 209 function c::main

--

Two of Three Reports Valid=FALSE

State 33 file tcasv1a.c line 210 function c::main

--

Own Tracked Alt=32759

State 34 file tcasv1a.c line 211 function c::main

--

Own Tracked Alt Rate=0

227

State 35 file tcasv1a.c line 212 function c::main

--

Other Tracked Alt=32776

State 36 file tcasv1a.c line 213 function c::main

--

Alt Layer Value=3

State 37 file tcasv1a.c line 214 function c::main

--

Up Separation=4

State 38 file tcasv1a.c line 215 function c::main

--

Down Separation=740

State 39 file tcasv1a.c line 216 function c::main

--

Other RAC=2

State 40 file tcasv1a.c line 217 function c::main

--

Other Capability=2

State 41 file tcasv1a.c line 218 function c::main

--

Climb Inhibit=FALSE

State 43 file tcasv1a.c line 65 function c::initialize

--

Positive RA Alt Thresh= 400, 0, 0, 0

State 44 file tcasv1a.c line 66 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 0, 0

State 45 file tcasv1a.c line 67 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 0

State 46 file tcasv1a.c line 68 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 740

State 47

--

enabled=(assignment removed)

State 48

--

228

tcas equipped=(assignment removed)

State 49

--

intent not known=(assignment removed)

State 50

--

need upward RA=FALSE

State 51

--

need downward RA=FALSE

State 52

--

alt sep=(assignment removed)

State 53 file tcasv1a.c line 133 function c::alt sep test

--

ASTBeg=TRUE

State 54 file tcasv1a.c line 135 function c::alt sep test

--

enabled=TRUE

State 55 file tcasv1a.c line 136 function c::alt sep test

--

tcas equipped=FALSE

State 56 file tcasv1a.c line 137 function c::alt sep test

--

intent not known=FALSE

State 57 file tcasv1a.c line 139 function c::alt sep test

--

alt sep=0

State 59 file tcasv1a.c line 143 function c::alt sep test

--

ASTEn=TRUE

State 60

--

Non Crossing Biased Climb::0::upward preferred 1=0

State 61

--

c::Non Crossing Biased Climb::0::upward crossing situation 1=(assignment re-

moved)

229

State 62

--

Non Crossing Biased Climb::0::result 1=FALSE

State 63 file tcasv1a.c line 88 function c::Inhibit Biased Climb

--

tmp 1=4

State 65 file tcasv1a.c line 97 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::upward preferred 1=1

State 67 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 2=TRUE

State 70 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 3=TRUE

State 73 file tcasv1a.c line 73 function c::ALIM

--

tmp 4=740

State 75 file tcasv1a.c line 100 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::result 1=TRUE

State 82 file tcasv1a.c line 106 function c::Non Crossing Biased Climb

--

tmp=TRUE

State 85 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 7=TRUE

State 87 file tcasv1a.c line 144 function c::alt sep test

--

need upward RA=TRUE

State 88

--

Non Crossing Biased Descend::0::upward preferred 1=0

State 89

--

c::Non Crossing Biased Descend::0::upward crossing situation 1=(assignment re-

moved)

State 90

230

--

Non Crossing Biased Descend::0::result 1=FALSE

State 91 file tcasv1a.c line 88 function c::Inhibit Biased Climb

--

tmp 9=4

State 93 file tcasv1a.c line 115 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::upward preferred 1=0

State 101 file tcasv1a.c line 83 function c::Own Above Threat

--

tmp 12=FALSE

State 109 file tcasv1a.c line 122 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::result 1=TRUE

State 110 file tcasv1a.c line 124 function c::Non Crossing Biased Descend

--

tmp 8=TRUE

State 113 file tcasv1a.c line 83 function c::Own Above Threat

--

tmp 15=FALSE

State 115 file tcasv1a.c line 145 function c::alt sep test

--

need downward RA=FALSE

State 120 file tcasv1a.c line 153 function c::alt sep test

--

ASTUpRA=TRUE

State 121 file tcasv1a.c line 154 function c::alt sep test

--

alt sep=1

State 127 file tcasv1a.c line 166 function c::alt sep test

--

r=1

State 129 file tcasv1a.c line 229 function c::main

--

PrA=FALSE

State 130 file tcasv1a.c line 230 function c::main

--

PrB=TRUE

231

State 131 file tcasv1a.c line 232 function c::main

--

Layer Positive RA Alt Thresh=740

State 132 file tcasv1a.c line 236 function c::main

--

P1 ACond=FALSE

State 133 file tcasv1a.c line 239 function c::main

--

P1 BCond=TRUE

Failed assertion: assertion file tcasv1a.c line 244 function c::main

Symbols used in assertion:

P1 BCond=TRUE

PrB=TRUE

Total number of steps: 72

Sum of values: 171626

Writing counterexample file tcasv1.ce...

VERIFICATION FAILED

Runtime SAT: 0.538s

1.080u 0.000s 0:01.08 100.0% 0+0k 0+0io 1142pf+0w

232

Appendix E

TCAS Version #1 Second
Explanation

Parsing tcasv1a.c

Converting

Checking tcasv1a

Starting Bounded Model Checking

Reading counterexample from file tcasv1a.ce...

...

size of program expression: 165 assignments

Generated 41 claims, 38 remaining

Passing to decision procedure

Running decision procedure

Solving with PBS - Pseudo Boolean/CNF Solver and Optimizer

8267 variables, 26535 clauses

PBS checker: system is SATISFIABLE (distance 25)

Counterexample:

Initial State

--

ASTBeg=FALSE

ASTDownRA=FALSE

ASTEn=FALSE

ASTUnresRA=FALSE

ASTUpRA=FALSE

Alt Layer Value=0

233

Climb Inhibit=FALSE

Cur Vertical Sep=0

Down Separation=0

High Confidence=FALSE

Non Crossing Biased Climb::0::result 1=FALSE

Non Crossing Biased Climb::0::upward preferred 1=0

Non Crossing Biased Descend::0::result 1=FALSE

Non Crossing Biased Descend::0::upward preferred 1=0

Other Capability=0

Other RAC=0

Other Tracked Alt=0

Own Tracked Alt=0

Own Tracked Alt Rate=0

P1 ACond=FALSE

P1 BCond=FALSE

P2 ACond=FALSE

P3 BCond=FALSE

P5 ACond=FALSE

Positive RA Alt Thresh= 0, 0, 0, 0

PrA=FALSE

PrB=FALSE

Two of Three Reports Valid=FALSE

Up Separation=0

need downward RA=FALSE

need upward RA=FALSE

Input Alt Layer Value=1

Input Climb Inhibit=TRUE

Input Cur Vertical Sep=30510

Input Down Separation=504

Input High Confidence=TRUE

Input Other Capability=2

Input Other RAC=0

Input Other Tracked Alt=59429

Input Own Tracked Alt=22708

Input Own Tracked Alt Rate=2209

Input Two of Three Reports Valid=FALSE

Input Up Separation=451

tmp=FALSE

234

tmp 1=0

tmp 10=FALSE

tmp 11=0

tmp 12=FALSE

tmp 13=FALSE

tmp 14=1073741824

tmp 15=FALSE

tmp 2=FALSE

tmp 3=FALSE

tmp 4=0

tmp 5=FALSE

tmp 6=0

tmp 7=TRUE

tmp 8=FALSE

tmp 9=0

State 16 file tcasv1a.c line 207 function c::main

--

Cur Vertical Sep=30510

State 17 file tcasv1a.c line 208 function c::main

--

High Confidence=TRUE

State 18 file tcasv1a.c line 209 function c::main

--

Two of Three Reports Valid=FALSE

State 19 file tcasv1a.c line 210 function c::main

--

Own Tracked Alt=22708

State 20 file tcasv1a.c line 211 function c::main

--

Own Tracked Alt Rate=0

State 21 file tcasv1a.c line 212 function c::main

--

Other Tracked Alt=59429

State 22 file tcasv1a.c line 213 function c::main

--

Alt Layer Value=1

State 23 file tcasv1a.c line 214 function c::main

--

235

Up Separation=451

State 24 file tcasv1a.c line 215 function c::main

--

Down Separation=504

State 25 file tcasv1a.c line 216 function c::main

--

Other RAC=0

State 26 file tcasv1a.c line 217 function c::main

--

Other Capability=2

State 27 file tcasv1a.c line 218 function c::main

--

Climb Inhibit=TRUE

State 29 file tcasv1a.c line 65 function c::initialize

--

Positive RA Alt Thresh= 400, 0, 0, 0

State 30 file tcasv1a.c line 66 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 0, 0

State 31 file tcasv1a.c line 67 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 0

State 32 file tcasv1a.c line 68 function c::initialize

--

Positive RA Alt Thresh= 400, 500, 640, 740

State 33 file tcasv1a.c line 133 function c::alt sep test

--

ASTBeg=TRUE

State 34 file tcasv1a.c line 135 function c::alt sep test

--

enabled=TRUE

State 35 file tcasv1a.c line 136 function c::alt sep test

--

tcas equipped=FALSE

State 36 file tcasv1a.c line 137 function c::alt sep test

--

intent not known=FALSE

State 37 file tcasv1a.c line 139 function c::alt sep test

236

--

alt sep=0

State 39 file tcasv1a.c line 143 function c::alt sep test

--

ASTEn=TRUE

State 40 file tcasv1a.c line 88 function c::Inhibit Biased Climb

--

tmp 1=551

State 42 file tcasv1a.c line 97 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::upward preferred 1=1

State 44 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 2=TRUE

State 47 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 3=TRUE

State 50 file tcasv1a.c line 73 function c::ALIM

--

tmp 4=500

State 52 file tcasv1a.c line 100 function c::Non Crossing Biased Climb

--

Non Crossing Biased Climb::0::result 1=FALSE

State 59 file tcasv1a.c line 106 function c::Non Crossing Biased Climb

--

tmp=FALSE

State 64 file tcasv1a.c line 144 function c::alt sep test

--

need upward RA=FALSE

State 65 file tcasv1a.c line 88 function c::Inhibit Biased Climb

--

tmp 9=551

State 67 file tcasv1a.c line 115 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::upward preferred 1=1

State 69 file tcasv1a.c line 78 function c::Own Below Threat

--

tmp 10=TRUE

237

State 72 file tcasv1a.c line 73 function c::ALIM

--

tmp 11=500

State 74 file tcasv1a.c line 118 function c::Non Crossing Biased Descend

--

Non Crossing Biased Descend::0::result 1=TRUE

State 84 file tcasv1a.c line 124 function c::Non Crossing Biased Descend

--

tmp 8=TRUE

State 87 file tcasv1a.c line 83 function c::Own Above Threat

--

tmp 15=FALSE

State 89 file tcasv1a.c line 145 function c::alt sep test

--

need downward RA=FALSE

State 99 file tcasv1a.c line 161 function c::alt sep test

--

ASTUnresRA=TRUE

State 100 file tcasv1a.c line 162 function c::alt sep test

--

alt sep=0

State 101 file tcasv1a.c line 166 function c::alt sep test

--

r=0

State 103 file tcasv1a.c line 229 function c::main

--

PrA=FALSE

State 104 file tcasv1a.c line 230 function c::main

--

PrB=FALSE

State 105 file tcasv1a.c line 232 function c::main

--

Layer Positive RA Alt Thresh=500

State 106 file tcasv1a.c line 236 function c::main

--

P1 ACond=FALSE

State 107 file tcasv1a.c line 239 function c::main

--

238

P1 BCond=TRUE

State 111 file tcasv1a.c line 250 function c::main

--

P2 ACond=FALSE

State 113 file tcasv1a.c line 257 function c::main

--

P3 BCond=FALSE

State 115 file tcasv1a.c line 262 function c::main

--

P5 ACond=FALSE

Error explanation deltas:

Value changed: Input Down Separation 1#0 from 500 to 504

Value changed: Down Separation#1 from 500 to 504

file tcasv1a.c line 215 function c::main

Value changed: result 1#1 from TRUE to FALSE

file tcasv1a.c line 100 function c::Non Crossing Biased Climb

Value changed: result 1#3 from TRUE to FALSE

Value changed: tmp#1 from TRUE to FALSE

file tcasv1a.c line 106 function c::Non Crossing Biased Climb

Guard changed: \guard#1 && tmp#1 (\guard#7) was TRUE

file tcasv1a.c line 144 function c::alt sep test

Value changed: tmp 7#0 from FALSE to TRUE

Value changed: need upward RA 1#1 from TRUE to FALSE

file tcasv1a.c line 144 function c::alt sep test

Guard changed: \guard#15 && need upward RA 1#1 (\guard#16) was TRUE

file tcasv1a.c line 152 function c::alt sep test

Guard changed: \guard#15 && !need upward RA 1#1 (\guard#17) was FALSE

file tcasv1a.c line 152 function c::alt sep test

Guard changed: \guard#17 && !need downward RA 1#1 (\guard#19) was FALSE

file tcasv1a.c line 156 function c::alt sep test

Value changed: ASTUnresRA#3 from FALSE to TRUE

Value changed: ASTUpRA#2 from TRUE to FALSE

Value changed: alt sep 1#7 from 1 to 0

Value changed: ASTUnresRA#4 from FALSE to TRUE

Value changed: ASTUpRA#3 from TRUE to FALSE

Value changed: alt sep 1#8 from 1 to 0

Value changed: ASTUnresRA#5 from FALSE to TRUE

Value changed: ASTUpRA#4 from TRUE to FALSE

239

Value changed: result 1#4 from TRUE to FALSE

Value changed: alt sep 1#9 from 1 to 0

Value changed: need upward RA 1#2 from TRUE to FALSE

Value changed: tmp#2 from TRUE to FALSE

Value changed: r 1#1 from 1 to 0

file tcasv1a.c line 166 function c::alt sep test

Value changed: PrB#1 from TRUE to FALSE

file tcasv1a.c line 230 function c::main

Minimizing deltas

Running decision procedure

Solving with PBS - Pseudo Boolean/CNF Solver and Optimizer

4694 variables, 14618 clauses

PBS checker: system is SATISFIABLE (distance 14)

Deltas after minimization:

Value changed: Input Down Separation 1#0 from 500 to 504

Value changed: Down Separation#1 from 500 to 504

file tcasv1a.c line 215 function c::main

Value changed: result 1#1 from TRUE to FALSE

file tcasv1a.c line 100 function c::Non Crossing Biased Climb

Value changed: result 1#3 from TRUE to FALSE

Value changed: tmp#1 from TRUE to FALSE

file tcasv1a.c line 106 function c::Non Crossing Biased Climb

Guard changed: \guard#1 && tmp#1 (\guard#7) was TRUE

file tcasv1a.c line 144 function c::alt sep test

Value changed: need upward RA 1#1 from TRUE to FALSE

file tcasv1a.c line 144 function c::alt sep test

Guard changed: \guard#15 && need upward RA 1#1 (\guard#16) was TRUE

file tcasv1a.c line 152 function c::alt sep test

Guard changed: \guard#15 && !need upward RA 1#1 (\guard#17) was FALSE

file tcasv1a.c line 152 function c::alt sep test

Guard changed: \guard#17 && !need downward RA 1#1 (\guard#19) was FALSE

file tcasv1a.c line 156 function c::alt sep test

Value changed: ASTUpRA#2 from TRUE to FALSE

Value changed: ASTUpRA#3 from TRUE to FALSE

Value changed: ASTUpRA#4 from TRUE to FALSE

Value changed: PrB#1 from TRUE to FALSE

file tcasv1a.c line 230 function c::main

CLOSEST SUCCESSFUL PATH FOUND

240

4.070u 0.100s 0:04.17 100.0% 0+0k 0+0io 1831pf+0w

241

242

Appendix F

µC/OS-II Counterexample

Parsing microcos.c

Converting

Checking microcos

Starting Bounded Model Checking

...

Unwinding loop iteration 1

size of program expression: 2578 assignments

Generated 95 claims, 33 remaining

Passing to decision procedure

...

Running decision procedure

Solving with ZChaff version ZChaff 2003.6.16

235263 variables, 566940 clauses

SAT checker: negated claim is SATISFIABLE, i.e., does not hold

Counterexample:

Initial State

--

LOCK=0

OSCPUUsage=0 (00000000)

OSCtxSwCtr=0

OSEventFreeList=NULL

OSEventTO::pevent 1=NULL

OSEventTO::pevent 2=NULL

OSEventTO::pevent 3=NULL

243

bitx 1=0 (00000000)

bitx 2=0 (00000000)

bitx 3=0 (00000000)

bitx 4=0 (00000000)

bity 1=0 (00000000)

bity 2=0 (00000000)

bity 3=0 (00000000)

bity 4=0 (00000000)

prio 1=0 (00000000)

prio 2=0 (00000000)

prio 3=0 (00000000)

prio 4=0 (00000000)

ptcb 1=NULL

ptcb 2=NULL

ptcb 3=NULL

ptcb 4=NULL

x 1=0 (00000000)

x 2=0 (00000000)

x 3=0 (00000000)

x 4=0 (00000000)

OSEventTaskRdy::0::y 1=0 (00000000)

OSEventTaskRdy::0::y 2=0 (00000000)

OSEventTaskRdy::0::y 3=0 (00000000)

OSEventTaskRdy::0::y 4=0 (00000000)

OSEventTaskRdy::msg 1=NULL

msg 2=NULL

msg 3=NULL

msg 4=NULL

msk 1=1 (00000001)

msk 2=2 (00000010)

msk 3=4 (00000100)

msk 4=4 (00000100)

OSEventTaskRdy::pevent 1=NULL

OSEventTaskRdy::pevent 2=NULL

OSEventTaskRdy::pevent 3=NULL

pevent 4=NULL

OSEventTaskWait::pevent 1=NULL

OSEventTaskWait::pevent 2=NULL

244

OSEventTaskWait::pevent 3=NULL

OSEventTbl= NULL, 0, 0 , 0, 0, 0 , NULL, 0, 0 , 0, 0, 0

OSIdleCtr=0

OSIdleCtrMax=0

OSIdleCtrRun=0

OSIntNesting=0 (00000000)

OSLockNesting=0 (00000000)

OSMapTbl= 1, 2, 4, 8, 16, 32, 64, 128

OSMboxAccept::0::msg 1=NULL

OSMboxAccept::pevent 1=NULL

OSMboxCreate::msg 1=NULL

OSMboxPend::0::msg 1=NULL

OSMboxPend::err 1=&error 1

OSMboxPend::pevent 1=NULL

OSMboxPend::timeout 1=10

OSMboxPost::msg 1=NULL

OSMboxPost::pevent 1=NULL

OSMboxQuery::0::i 1=0 (00000000)

OSMboxQuery::0::pdest 1=NULL

OSMboxQuery::0::psrc 1=NULL

OSMboxQuery::0::tmp 1=NULL

OSMboxQuery::0::tmp 0 1=NULL

OSMboxQuery::pdata 1=&mboxData 1

OSMboxQuery::pevent 1=NULL

OSPrioCur=0 (00000000)

OSPrioHighRdy=0 (00000000)

OSQAccept::0::msg 1=NULL

OSQAccept::0::pq 1=NULL

OSQAccept::0::tmp 1=NULL

OSQAccept::pevent 1=NULL

size=10

start=NULL

OSQFlush::0::pq 1=NULL

OSQFlush::pevent 1=NULL

OSQPend::0::msg 1=NULL

OSQPend::0::pq 1=NULL

OSQPend::0::tmp 1=NULL

OSQPend::0::tmp 0 1=NULL

245

OSQPend::err 1=&error 1

OSQPend::pevent 1=NULL

OSQPend::timeout 1=10

OSQPost::0::pq 1=NULL

OSQPost::0::tmp 1=NULL

OSQPost::msg 1=NULL

OSQPost::pevent 1=NULL

OSQPostFront::0::pq 1=NULL

OSQPostFront::msg 1=NULL

OSQPostFront::pevent 1=NULL

OSQQuery::0::i 1=0 (00000000)

OSQQuery::0::pdest 1=NULL

OSQQuery::0::pq 1=NULL

OSQQuery::0::psrc 1=NULL

OSQQuery::0::tmp 1=NULL

OSQQuery::0::tmp 0 1=NULL

OSQQuery::pdata 1=&qdata 1

OSQQuery::pevent 1=NULL

OSRdyGrp=0 (00000000)

OSRdyTbl= 0, 0

OSRunning=0 (00000000)

OSSched::0::y 1=0 (00000000)

OSSched::0::y 2=0 (00000000)

OSSched::0::y 3=0 (00000000)

OSSched::0::y 4=0 (00000000)

y 5=0 (00000000)

y 6=0 (00000000)

y 7=0 (00000000)

0::cnt 1=0

OSSemAccept::pevent 1=NULL

OSSemCreate::cnt 1=1

OSSemPend::err 1=&error 1

OSSemPend::pevent 1=NULL

OSSemPend::timeout 1=10

OSSemPost::pevent 1=NULL

OSSemQuery::0::i 1=0 (00000000)

OSSemQuery::0::pdest 1=NULL

OSSemQuery::0::psrc 1=NULL

246

OSSemQuery::0::tmp 1=NULL

OSSemQuery::0::tmp 0 1=NULL

OSSemQuery::pdata 1=&semData 1

OSSemQuery::pevent 1=NULL

OSStatRdy=0 (00000000)

OSTCBCur=NULL

OSTCBFreeList=NULL

OSTCBHighRdy=NULL

OSTCBList=NULL

OSTCBPrioTbl= NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL

OSTaskCtr=0 (00000000)

OSTime=0

OSUnMapTbl= 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0,

1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3,

0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1,

0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,

1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2,

0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,

2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1,

0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0,

1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0,

3, 0, 1, 0, 2, 0, 1, 0

mboxData= NULL, 0, 255 , 0

qdata= NULL, 0, 0, 0, 255 , 0

semData= 0, 0, 255 , 0

OSIntExitY=0 (00000000)

OSMemFreeList=NULL

OSMemTbl= NULL, NULL, 0, 0, 0 , NULL, NULL, 0, 0, 0

OSQFreeList=NULL

OSQTbl= NULL, NULL, NULL, NULL, NULL, 0, 0 , NULL, NULL, NULL,

NULL, NULL, 0, 0 OSTCBTbl= NULL, NULL, NULL, 0, 0, 0, NULL,

NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0,

0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL,

NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0

, NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0,

247

0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL,

0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL,

NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0,

NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL,

NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 ,

NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0,

0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0,

0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL,

NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL,

NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0,

0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0

OSTaskIdleStk= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

OSTaskStatStk= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

248

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

tmp=0

State 1 file microcos.c line 2940 function c::main

--

error=0 (00000000)

State 4 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 5 file microcos.c line 1898 function c::OSSemCreate

--

OSSemCreate::0::pevent 1=NULL

State 9 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 11 file microcos.c line 1916 function c::OSSemCreate

--

sem=NULL

State 15 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

249

State 16 file microcos.c line 1013 function c::OSMboxCreate

--

OSMboxCreate::0::pevent 1=NULL

State 20 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 22 file microcos.c line 1031 function c::OSMboxCreate

--

mbox=NULL

State 26 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 27 file microcos.c line 1471 function c::OSQCreate

--

OSQCreate::0::pevent 1=NULL

State 31 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 33 file microcos.c line 1526 function c::OSQCreate

--

queue=NULL

State 36 file microcos.c line 2946 function c::main

--

choice=0

State 41 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 45 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 46 file microcos.c line 1931 function c::OSSemPend

--

error=1 (00000001)

State 54 file microcos.c line 1954 function c::OSSemPend

--

invalid object 4= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, INVALID-255 + -1, INVALID-255 + -1, 4294967295, 1,

250

255, 255, 255, 255, 255, 255

State 55 file microcos.c line 1956 function c::OSSemPend

--

invalid object 6= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, INVALID-255 + -1, INVALID-255 + -1, 10, 255, 255,

255, 255, 255, 255, 255

State 57 file microcos.c line 419 function c::OSEventTaskWait

--

invalid object 7= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, NULL, INVALID-255 + -1, 4294967295, 255, 255, 255,

255, 255, 255, 255

State 58 file microcos.c line 422 function c::OSEventTaskWait

--

OSRdyTbl= 0, 0

State 61 file microcos.c line 430 function c::OSEventTaskWait

--

invalid object 13= INVALID-255 + -1, 0, 0 , 4294967295, 255, 255

State 62 file microcos.c line 432 function c::OSEventTaskWait

--

invalid object 18= INVALID-255 + -1, 255, 255 , 4294967295, 255, 0

Failed assertion: assertion file microcos.c line 582 function c::OS EXIT CRITICAL

Other Variables

--

(omitted in interests of space: invalid objects)

...

Writing counterexample file ucos.ce...

Runtime SAT: 10.79s

VERIFICATION FAILED

251

252

Appendix G

µC/OS-II Explanation

Parsing microcos.c

Converting

Checking microcos

Starting Bounded Model Checking

Reading counterexample from file ucos.ce...

...

Unwinding loop iteration 1

size of program expression: 2578 assignments

Generated 95 claims, 33 remaining

Passing to decision procedure

...

Running decision procedure

Solving with PBS - Pseudo Boolean/CNF Solver and Optimizer

236064 variables, 568886 clauses

PBS checker: system is SATISFIABLE (distance 3)

Counterexample:

Initial State

--

LOCK=0

OSCPUUsage=0 (00000000)

OSCtxSwCtr=0

OSEventFreeList=NULL

OSEventTO::pevent 1=NULL

OSEventTO::pevent 2=NULL

253

OSEventTO::pevent 3=NULL

bitx 1=255 (11111111)

bitx 2=14 (00001110)

bitx 3=176 (10110000)

bitx 4=97 (01100001)

bity 1=188 (10111100)

bity 2=53 (00110101)

bity 3=202 (11001010)

bity 4=188 (10111100)

prio 1=42 (00101010)

prio 2=11 (00001011)

prio 3=189 (10111101)

prio 4=252 (11111100)

ptcb 1=INVALID-66 + -514965513

ptcb 2=INVALID-246 + -141955093

ptcb 3=INVALID-79 + -526139393

ptcb 4=INVALID-31 + -741503359

x 1=3 (00000011)

x 2=121 (01111001)

x 3=64 (01000000)

x 4=53 (00110101)

OSEventTaskRdy::0::y 1=189 (10111101)

OSEventTaskRdy::0::y 2=131 (10000011)

OSEventTaskRdy::0::y 3=211 (11010011)

OSEventTaskRdy::0::y 4=184 (10111000)

OSEventTaskRdy::msg 1=NULL

msg 2=NULL

msg 3=NULL

msg 4=NULL

msk 1=1 (00000001)

msk 2=2 (00000010)

msk 3=4 (00000100)

msk 4=4 (00000100)

OSEventTaskRdy::pevent 1=NULL

OSEventTaskRdy::pevent 2=NULL

OSEventTaskRdy::pevent 3=NULL

pevent 4=NULL

OSEventTaskWait::pevent 1=NULL

254

OSEventTaskWait::pevent 2=NULL

OSEventTaskWait::pevent 3=NULL

OSEventTbl= NULL, 0, 0 , 0, 0, 0 , NULL, 0, 0 , 0, 0, 0

OSIdleCtr=0

OSIdleCtrMax=0

OSIdleCtrRun=0

OSIntNesting=0 (00000000)

OSLockNesting=0 (00000000)

OSMapTbl= 1, 2, 4, 8, 16, 32, 64, 128

OSMboxAccept::0::msg 1=INVALID-253 + -285382688

OSMboxAccept::pevent 1=NULL

OSMboxCreate::msg 1=NULL

OSMboxPend::0::msg 1=INVALID-98 + -215585008

OSMboxPend::err 1=&error 1

OSMboxPend::pevent 1=NULL

OSMboxPend::timeout 1=10

OSMboxPost::msg 1=NULL

OSMboxPost::pevent 1=NULL

OSMboxQuery::0::i 1=211 (11010011)

OSMboxQuery::0::pdest 1=INVALID-81 + -1308916935

OSMboxQuery::0::psrc 1=INVALID-225 + 383761919

OSMboxQuery::0::tmp 1=INVALID-147 + -139510865

OSMboxQuery::0::tmp 0 1=INVALID-246 + -572272207

OSMboxQuery::pdata 1=&mboxData 1

OSMboxQuery::pevent 1=NULL

OSPrioCur=0 (00000000)

OSPrioHighRdy=0 (00000000)

OSQAccept::0::msg 1=INVALID-138 + 1890745416

OSQAccept::0::pq 1=INVALID-111 + 171729768

OSQAccept::0::tmp 1=INVALID-176 + 2060098078

OSQAccept::pevent 1=NULL

size=10

start=NULL

OSQFlush::0::pq 1=INVALID-190 + -117380951

OSQFlush::pevent 1=NULL

OSQPend::0::msg 1=INVALID-230 + -73863301

OSQPend::0::pq 1=INVALID-239 + 2130176765

OSQPend::0::tmp 1=INVALID-58 + -804330987

255

OSQPend::0::tmp 0 1=INVALID-126 + 188701213

OSQPend::err 1=&error 1

OSQPend::pevent 1=NULL

OSQPend::timeout 1=10

OSQPost::0::pq 1=INVALID-243 + -676386849

OSQPost::0::tmp 1=INVALID-209 + -92675154

OSQPost::msg 1=NULL

OSQPost::pevent 1=NULL

OSQPostFront::0::pq 1=INVALID-240 + 1036066654

OSQPostFront::msg 1=NULL

OSQPostFront::pevent 1=NULL

OSQQuery::0::i 1=127 (01111111)

OSQQuery::0::pdest 1=INVALID-147 + 559185748

OSQQuery::0::pq 1=INVALID-80 + -1795095728

OSQQuery::0::psrc 1=INVALID-254 + -2130439717

OSQQuery::0::tmp 1=INVALID-64 + 166475285

OSQQuery::0::tmp 0 1=INVALID-159 + -1244365570

OSQQuery::pdata 1=&qdata 1

OSQQuery::pevent 1=NULL

OSRdyGrp=0 (00000000)

OSRdyTbl= 0, 0

OSRunning=0 (00000000)

OSSched::0::y 1=90 (01011010)

OSSched::0::y 2=243 (11110011)

OSSched::0::y 3=249 (11111001)

OSSched::0::y 4=178 (10110010)

y 5=233 (11101001)

y 6=30 (00011110)

y 7=166 (10100110)

0::cnt 1=18350168 (00000001000110000000000001011000)

OSSemAccept::pevent 1=NULL

OSSemCreate::cnt 1=1

OSSemPend::err 1=&error 1

OSSemPend::pevent 1=NULL

OSSemPend::timeout 1=10

OSSemPost::pevent 1=NULL

OSSemQuery::0::i 1=1 (00000001)

OSSemQuery::0::pdest 1=INVALID-135 + 29246984

256

OSSemQuery::0::psrc 1=INVALID-17 + 1990264193

OSSemQuery::0::tmp 1=INVALID-154 + 1447418904

OSSemQuery::0::tmp 0 1=INVALID-202 + -2098456782

OSSemQuery::pdata 1=&semData 1

OSSemQuery::pevent 1=NULL

OSStatRdy=0 (00000000)

OSTCBCur=NULL

OSTCBFreeList=NULL

OSTCBHighRdy=NULL

OSTCBList=NULL

OSTCBPrioTbl= NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL

OSTaskCtr=0 (00000000)

OSTime=0

OSUnMapTbl= 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0,

1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3,

0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,

6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1,

0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,

1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2,

0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,

2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1,

0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0,

1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0,

3, 0, 1, 0, 2, 0, 1, 0

mboxData= INVALID-249 + -929194441, 60, 255 , 75

qdata= INVALID-197 + -537327008, 936476665, 168413167, 43, 255 , 66

semData= 1094223367, 47, 255 , 129

OSIntExitY=0 (00000000)

OSMemFreeList=NULL

OSMemTbl= NULL, NULL, 0, 0, 0 , NULL, NULL, 0, 0, 0

OSQFreeList=NULL

OSQTbl= NULL, NULL, NULL, NULL, NULL, 0, 0 , NULL, NULL, NULL,

NULL, NULL, 0, 0

OSTCBTbl= NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0,

0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL,

NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0,

257

NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL,

NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 ,

NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0,

0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0,

0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL,

NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL,

NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0,

0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0 , NULL,

NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0

, NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, 0, 0, 0, 0,

0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL,

0, 0, 0, 0, 0, 0, 0, 0 , NULL, NULL, NULL, 0, 0, 0, NULL, NULL,

NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0

OSTaskIdleStk= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

OSTaskStatStk= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

258

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

tmp=820047884 (00110000111000001111000000001100)

State 1 file microcos.c line 2940 function c::main

--

error=0 (00000000)

State 4 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 5 file microcos.c line 1898 function c::OSSemCreate

--

OSSemCreate::0::pevent 1=NULL

State 9 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 11 file microcos.c line 1916 function c::OSSemCreate

--

sem=NULL

State 15 file microcos.c line 578 function c::OS ENTER CRITICAL

259

--

LOCK=1

State 16 file microcos.c line 1013 function c::OSMboxCreate

--

OSMboxCreate::0::pevent 1=NULL

State 20 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 22 file microcos.c line 1031 function c::OSMboxCreate

--

mbox=NULL

State 26 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 27 file microcos.c line 1471 function c::OSQCreate

--

OSQCreate::0::pevent 1=NULL

State 31 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 33 file microcos.c line 1526 function c::OSQCreate

--

queue=NULL

State 36 file microcos.c line 2946 function c::main

--

choice=0

State 41 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 54 file microcos.c line 1954 function c::OSSemPend

--

invalid object 4= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, INVALID-255 + -1, INVALID-255 + -1, 4294967295,

161, 255, 255, 255, 255, 255, 255

State 55 file microcos.c line 1956 function c::OSSemPend

--

invalid object 6= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

260

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, INVALID-255 + -1, INVALID-255 + -1, 10, 255, 255,

255, 255, 255, 255, 255

State 57 file microcos.c line 419 function c::OSEventTaskWait

--

invalid object 7= INVALID-255 + -1, INVALID-255 + -1, INVALID-255

+ -1, 4294967295, 4294967295, 4294967295, INVALID-255 + -1,

INVALID-255 + -1, NULL, INVALID-255 + -1, 4294967295, 255, 255, 255,

255, 255, 255, 255

State 58 file microcos.c line 422 function c::OSEventTaskWait

--

OSRdyTbl= 0, 0

State 61 file microcos.c line 430 function c::OSEventTaskWait

--

invalid object 13= INVALID-255 + -1, 8, 30 , 4294967295, 255, 255

State 62 file microcos.c line 432 function c::OSEventTaskWait

--

invalid object 18= INVALID-255 + -1, 255, 255 , 4294967295, 255, 166

State 65 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 69 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 71 file microcos.c line 644 function c::OSSched

--

OSSched::0::y 1=0 (00000000)

State 72 file microcos.c line 646 function c::OSSched

--

OSPrioHighRdy=0 (00000000)

State 79 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 82 file microcos.c line 578 function c::OS ENTER CRITICAL

--

LOCK=1

State 85 file microcos.c line 444 function c::OSEventTO

--

261

invalid object 22= INVALID-255 + -1, 153, 1 , 4294967295, 255, 255

State 87 file microcos.c line 448 function c::OSEventTO

--

invalid object 29= INVALID-255 + -1, 255, 255 , 4294967295, 255, 175

State 88 file microcos.c line 451 function c::OSEventTO

--

invalid object 32= INVALID-255 + -1, INVALID-255 + -1,

INVALID-255 + -1, 4294967295, 4294967295, 4294967295, INVALID-255 +

-1, INVALID-255 + -1, INVALID-255 + -1, INVALID-255 + -1,

4294967295, 0, 255, 255, 255, 255, 255, 255

State 89 file microcos.c line 453 function c::OSEventTO

--

invalid object 33= INVALID-255 + -1, INVALID-255 + -1,

INVALID-255 + -1, 4294967295, 4294967295, 4294967295, INVALID-255 +

-1, INVALID-255 + -1, NULL, INVALID-255 + -1, 4294967295, 255, 255,

255, 255, 255, 255, 255

State 92 file microcos.c line 583 function c::OS EXIT CRITICAL

--

LOCK=0

State 93 file microcos.c line 1972 function c::OSSemPend

--

error=10 (00001010)

Other Variables

--

(omitted in interests of space: invalid objects)

...

Error explanation deltas:

Guard changed: !(invalid object#0.OSEventType == 3) &&

\guard#1 (\guard#2) was TRUE

file microcos.c line 1927 function c::OSSemPend

Value changed: LOCK#9 from 0 to 1

Value changed: error 1#3 from 1 to 0

CLOSEST SUCCESSFUL PATH FOUND

262

