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ABSTRACT
A key trait of modern cyber-physical systems (CPS) is complexity
due to the number of components and layers in these systems. Un-
like in traditional so�ware development, where the device layer
is essentially completely abstracted away by an operating system,
CPS components include low-power edge nodes, gateways, and
servers that together provide sensing, actuation, communication,
model and state inference, and autonomous or user-driven control.
Moreover, the CPS design process involves implementation of these
functions at di�erent levels of abstraction, from high-level compu-
tational models to bare-mental implementations. Unfortunately,
even when advanced testing or veri�cation methods are applied
only to low level system aspects, those e�orts are separated from
high-level tests of a CPS, which are o�en produced by a di�erent
team, and do not stress the low-level system. E�ective automated
test composition would make it possible to automatically produce
integration/system tests for CPS, even with extremely heteroge-
neous aspects, where individual elements have e�ective tests but
the interactions between the sub-systems are untested. Because of
the size of the search space involved and the complexity of model-
ing and designing CPS, we also propose in the long term a move
towards system architectures to support testing across both system
layers and levels of abstraction.

CCS CONCEPTS
•So�ware and its engineering →So�ware testing and debug-
ging; •Computer systems organization→Embedded systems;
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1 INTRODUCTION
Cyber-physical systems (CPS) exhibit a number of characteristics
that challenge current design paradigms and testing methods. Key
characteristics inherent to deployed systems include the need for
reactive or real time processing; networks that inject stochastic de-
lays and loss of reliability in communication; nodes with strongly
heterogeneous processing platforms; and bri�le user interfaces.
Growing demand for distributed intelligence and security will in-
crease the complexity of CPS so�ware. �ese characteristics in turn
in�uence the CPS design and design processes through layering
and the re�nement of abstractions. To manage design complexity,
CPS design employs layering in multiple domains, e.g., compu-
tation, networking, and the modeling of the embedding physical
system and the system’s sensors and actuators. However, current
layering approaches do not capture non-functional system prop-
erties essential to CPS, e.g., timing and energy use, that emerge
via testing. To manage design process complexity, iterative devel-
opment is commonplace: while the long-term trend is re�nement
of abstract models, engineers o�en need to shi� back and forth
between implementation-level models and more abstract models to
gather new data, gain knowledge and insight, and optimize system
performance. �e integration of e�ective testing into the design
process will be central to the success of CPS in critical applications,
but the question is how to do this.

�e same multiplicity of layers also o�en applies to existing
tests for CPS (and other embedded systems): o�en components of
a system, such as a �le system or actuators, are tested by one set of
engineers, and using completely di�erent methods than are used
to produce tests at the high level of either control so�ware with
humans-in-the-loop or autonomous control systems. �e core func-
tionality of a CPS is usually wri�en in low-level, embedded systems
languages, such as C. In the ideal case, such systems are developed
using both formal speci�cation and veri�cation and sophisticated
automated testing. In some cases the formal speci�cation is used
to generate executable tests to ensure the real system matches the
formal models; in other cases there is at least a very determined test
generation e�ort, including e�orts to produce very high-coverage
tests. In contrast, the user-centric or high-level autonomy aspects
of a CPS are o�en developed in higher-level languages, such as Java,
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and with a much more informal approach to testing and veri�cation.
Increasingly, mission- and safety-critical low-level CPS elements
interact with user-centric systems, in order to allow users more con-
trol. Even when the behavior of each system, in isolation, is valid,
their composition may compromise performance, user experience
or (in the worst case) safety.

We propose a two-part solution to the problems of using testing
to guide CPS design, and ensuring that completed CPS implemen-
tations have e�ectives tests that validate a system not only at each
layer, but in terms of unexpected interactions between layers. First,
we propose the problem of automatically composing tests, including
heterogeneous tests targeting di�erent layers of a system. O�en
there exist tests for behaviors at di�erent levels, and these have con-
siderable value — but the combined behaviors are not well tested,
and the tests cannot be combined. Second, we propose the devel-
opment of architectural methods that facilitate such automated
composition and explicitly represent the domain of a design, and
the level of abstraction in that domain. �e key point is to construct
test architectures that enable CPS models for di�erent domains at
diverse levels of abstraction in a plug-and-play manner.

As an example of the practical aims of our proposed approach,
it would be helpful to run the low-level tests in one domain in the
context of other domains expressed using high-level models. For ex-
ample, consider the following closed-loop scenario: a unit-level test
of implementation-level code running on a target sensor/actuator
(S/A) node connected to a meteorological model running in the
cloud that drives an emulated transducer at the S/A node, and,
through a packet-layer communication link model, to a high-level
control system model running in real-time on an engineer’s work-
station; this model in turn drives an S/A node actuator via com-
mands sent through the communication link model. As another
example, existing production-level, server-based control code may
need to be integrated with a new actuating subsystem. Here, func-
tional tests could be performed using a sequence of models (of
increasing re�nement) prior to integration of the target actuating
hardware. Finally, in our running example in the paper, even the
“same” component of a CPS may have multiple levels: we consider
the case of a �le system on a remotely controlled robot exploring
another planet, which has both a NAND �ash �le system and a
high-level interface that is commanded by humans. While the prob-
lem of composing tests across system layers is not unique to CPS
or embedded systems, their tendency to combine human-facing
interfaces with critical components that are more thoroughly tested
makes them a primary target for such e�orts.

2 AUTOMATED COMPOSITION OF TESTS
Even without a be�er system architecture, some of the problems
of CPS design could be mitigated by making use of existing tests
for layers of a system. �ese tests are o�en, particularly for the
safety-critical system, extensive and useful; however, they typically
fail to cover the interaction of the systems in any way. In addition to
the basic problem that the interactions are not explored in existing
tests, however, is a deeper problem: tests do not compose. Even
within a single system, executing test A followed by test B seldom
produces the desired union of behaviors (e.g., even covering all
code covered by A or B). �e actions of A o�en interfere with those

of B (or vice versa): that is, some action in A is either illegal in a
composed context, causing B (and thus the entire test) to become
invalid, or disables some behavior of B, lowering test e�ectiveness.
�e ordering of test operations also ma�ers: e.g., some actions in
A must be before some actions in B to produce interaction, while
other actions must be a�er some B action. For compositions of
safety-critical and user-centric systems, and heterogeneous systems
in general, it would be highly desirable to be able to automatically
produce tests that are valid, have as li�le interference as possible,
and maximize the sum of behaviors from the composed tests. �e
inability to compose tests results in poorer testing, and thus more
fault-prone and bri�le systems.

While complete automation of test composition, in general, is
impossible, we believe existing so�ware testing algorithms, used
in a novel way, could increase the composability of tests, even
for heterogeneous systems. �e widely known delta-debugging
algorithms can be used to manipulate tests for producing “quick
tests” for embedded systems [6]. In this proposal, we suggest that
further generalizing delta-debugging can e�ectively automatically
compose some (even quite heterogeneous) tests. �e key concept
is to let the delta-debugging algorithm remove portions of a con-
structed hypothesis composition to produce a test that has more
behavior than the naı̈ve composition, and ideally detects a fault in
the composition of the systems.

As an example of the problem, consider the following situation, a
simpli�ed generalization of testing e�orts at NASA’s Jet Propulsion
Laboratory, during the development of the Curiosity Mars Rover
(Mars Science Laboratory project) [7, 9, 10]. �e �le system for the
Curiosity Rover can be considered from two points of view. �ere
is the low-level, embedded �ash �le system, implemented as (essen-
tially) a library in C. �ere is also a higher-level process, essentially
a �le catalog, through which other components of the Curiosity
so�ware interact with the �le system, and which is directly accessed
by ground operations teams controlling the rover. �e low-level �le
system, which interacts with the �ash hardware, was extensively
tested using both model checking and random testing, by a team of
formal veri�cation and so�ware engineering researchers, who also
developed the �le system so�ware. �e high-level catalog process
was also tested extensively. However, in this case the testing was
primarily performed manually by systems engineers and the Cu-
riosity QA team, using less formal and intensive approaches, due
in part to a much more complex but more limited speci�cation of
correctness. Every catalog test also tests the underlying �le system,
of course, but �le system tests do not test the catalog. In practice,
the two sets of tests exist completely separately: the catalog tests
as Python scripts to issue commands, and the �le-system tests as
C programs or tools to generate tests. �is separation means that
the catalog cannot bene�t from the more extensive tests produced
for the low-level �le system. In operation, some faults related to
interaction of the catalog and the �le system were discovered. We
hypothesize that being able to compose high-level catalog tests and
low-level �le system tests might have detected some of these faults.

�e basic technical approach is best explained using a variation
of the motivating Mars Rover testing scenario. Naı̈ve composition
of tests for the �le system and the catalog will not work. Low-level
�le system tests may include operations that change the �le system
state in a way that the catalog, which has sole control of the contents
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of the �le system in most directories during normal rover operation,
cannot handle. Consider the composition of test A, for the �le
system, and test B for the catalog. Neither A+B (composition with A
followed by B) nor B+A will provide the desired testing functionality.
If we execute A then B, there may be li�le interaction between
systems, and A may produce an initial state that the catalog cannot
handle. If we execute B then A, the much more extensive testing of
the underlying �ash �le system provided by A will not impact the
catalog behavior at all, resulting in even less interaction. How to
interleave the behaviors, while avoiding actions in A that violate
catalog constraints, is a challenge even for engineers well-versed
in both systems. However, imagine that we construct a new test,
(A+B)×k , consisting of A followed by B, repeated k times. �is test
will also, due to interference (let us assume A violates a catalog
constraint) tend to fail immediately without exposing a real fault.
How can we avoid these problems?

Delta-debugging works due to the high probability that con-
tiguous parts of a test are related: removing chunks of a test can
eliminate many behaviors that are irrelevant or interfering. Given a
test a1.a2.a3.a4.a5.a6.a7.a8 that fails, delta-debugging might
�rst determine if either of a1.a2.a3.a4 or a5.a6.a7.a8 fails;
if so, it proceeds from either. If not, it increases the granular-
ity of reduction, and considers candidates a3.a4.a5.a6.a7.a8,
a1.a2.a5.a6.a7.a8, a1.a2.a3.a4.a7.a8, and a1.a2.a3.a4.a5.
a6, until no single component of the test can be removed without
the test no longer failing.

Cause reduction [5, 6] modi�es delta-debugging to reduce tests
with respect to an arbitrary property of the test, not just failure. For
example to produce very fast regression tests (called “quick tests”),
automated tests can be minimized to �nd smaller tests that retain
full code coverage. In past work, this approach produced highly ef-
�cient tests for real-world systems such as Mozilla’s SpiderMonkey
JavaScript engine and the YAFFS2 �ash �le system used in Android.

Both cause reduction and delta-debugging traditionally require
as input a test that satis�es the property of interest, e.g., a failing
test or one with certain coverage. However, this is not necessary.
Given a test that does not fail (or provide some other useful property
of a test), cause reduction/delta-debugging de�nes a search, based
on removal of components, for a test that does meet the criteria.
We propose to construct “base” compositions of tests (that do not
provide useful testing), and then use cause reduction to search
for a test that does provide useful composition of the tests. �e
search has a potential to succeed because in most cases the reason
composition fails is interference, which can be avoided by removing
the interfering parts of a test, leaving a good interleaving of test
actions, made possible by the k repetitions in the base.

A concrete application of our approach to the NASA Mars rover
�le system testing would work as follows. First, construct the test
(A+B)×k (where k is at least 2, and may need to be larger). We can
start with small k and increase k if the search for a useful test fails,
since the length of the initial composed test determines the cost
of cause reduction. �e multiple copies of (A+B) handle the need
to interleave actions from A and B, when combined with cause
reduction. If k is at least one more than the max of the lengths of A
and B, then there is a possibility (though not a guarantee) for cause
reduction to produce any needed interleaving of actions: removing
all but the needed actions from each copy yields all interleavings

a1	  

Cri'cal	  System	  Test	  

a2	   a3	   a4	   b1	   b2	   b3	   b4	  

User-‐Centric	  System	  Test	  

a1	   a2	   a3	   a4	   b1	   b2	   b3	   b4	   a1	   a2	   a3	   a4	   b1	   b2	   b3	   b4	  

k	  =	  2	  Ini'al	  Composi'on	  

cause-‐reducer	  

Safety-‐cri'cal	  
System	  

User-‐Centric	  
System	  

a1	   a4	   b1	   b2	   b4	   a1	   a2	   a4	   b1	   b2	   b3	   b4	  

Composi'on	  with	  Maximal	  Coverage	  and	  Interac'on	  

Due	  to	  interference	  (ac'ons	  a2	  and	  a3	  
interfere	  with	  b1	  and	  b3	  interferes	  
with	  a1,	  etc.)	  this	  is	  a	  weak	  test	  

Removing	  the	  interfering	  
ac'ons	  produces	  an	  
interleaving	  of	  ac'ons	  
with	  high	  test	  coverage	  

Cause-‐reducer	  relies	  on	  
con'guous	  ac'ons	  being	  
related,	  uses	  binary-‐search	  like	  
strategy	  (based	  on	  widely	  used	  
delta-‐debugging	  algorithm)	  

many	  interac'ons	  due	  to	  new	  test	  

validity	  
proper'es	  

Figure 1: Composition of heterogeneous system test cases.

of a single copy of A and B. �e extra copy is required so that
the interleaving can start with either of A or B. A�er constructing
the initial, but usually not successful, “composition” (A+B)×k , our
approach applies cause reduction to (A+B)×k , searching for a test
that: 1) does not violate catalog invariants, so is a valid test, since
a core problem of composition is the creation of invalid tests and
2) covers at least as much code as the union of code coverage for
test A and test B. Alternatively, the search can be for a test that fails
for any reason other than catalog invariant violation. However, in
some cases, both of these searches may fail.

To understand the concept, consider the simple case where A
= a1.a2.a3.a4 and B = b1.b2.b3.b4, with k = 3. If a1 in-
terferes with B, causing the catalog to fail with an invariant vi-
olated at action b3, then our approach can produce a test such
as: a2.a3.a4.b1.b2.b3.a1.a2.a3.a4.b1.b2.b3.b4.a1.a2.a3.
a4. Here, a1 is removed from the copy of A before any b3, but
remains in the �nal version, from which all B actions are removed,
because it adds new code coverage of the low-level �le system.
One b4 instance is removed, because it causes the low-level �le
system code to be in a state such that the second copy of B exer-
cises less code (it forces an early garbage collection of �ash blocks).
Notice that this test is not one that delta-debugging’s binary search
would have proposed from the initial test. Using gains in coverage
to change the base test, we can direct the reduction toward this
high-coverage, valid, composed test without human intervention.
Figure 1 graphically shows the work�ow of automated test case
composition for a di�erent set of tests.

We implemented a simple version of our approach in TSTL [12],
and applied it to tests (with complete code coverage) for a simple
data structure (an AVL tree). �ese tests were unable to detect a
subtle, realistic, injected fault, despite covering the code. �e naı̈ve
composition of all tests (A+B+C+. . .) was also unable to detect the
fault, and included many invalid operations, due to interference.
Our approach, with k = 2, was able to produce a test exposing the
fault in only a few seconds, by removing interfering operations.

Because this approach suggests that test composition is essen-
tially a search problem, an obvious question is why we use cause
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reduction/delta-debugging rather than a more traditional search-
based evolutionary or genetic algorithm approach [1, 4, 15]. First,
we believe that removal of operations is the only mutation of in-
terest in this context: crossover or random change in test actions
is likely to introduce invalid test behavior. Our assumption is that
tests to be composed are valid in isolation, and only nearby behav-
iors are of interest (or likely to maintain single-component validity).
Second, many search-based techniques expect access to branch
distances and other intrusive instrumentation. �is may not be
feasible for embedded systems; we can use cause reduction with
instrumentation only for user-centric code or, in the worst case, for
neither system. �is necessitates guidance by other means.

3 AN ARCHITECTURE FOR TESTABLE
CYBER-PHYSICAL SYSTEMS

One such means, though less well-de�ned at this point, is a means
for expressing, via so�ware architectural methods, the connections
between domains at varying levels of abstraction. In addition to
supporting test composition (by, e.g., making explicit constraints
such as those that the catalog imposes, mapped to a lower-level of
abstraction), this approach would ideally enable e�ective testing
of layers in combination with architectural models, in addition to
concrete implementations. Because complex CPS require thorough
testing, given their connection to the physical world, we also aim
to generally improve testability by architectural means. For exam-
ple, standardized interface descriptions could facilitate automated
generation of tests at the boundaries between subsystems.

4 RELATEDWORK
�ere has been previous work on architectures for cyber-physical
systems (e.g., that of Tan et al. [21]) but this has largely focused
on articulating the de�nition of a CPS and what distinguishes it
from a traditional embedded system, to some extent. �e work of
Sokolsky et. al does aim for increased reliability via modeling and
code generation [20], but to our knowledge no previous work has
focused on testing and testability concerns. We believe that while
synthesis from models is a worthy goal, in the short term much CPS
development will involve human-cra�ed implementations, with
models used to help design these, rather than as the only platform,
making support for testing essential.

�e idea of algorithms that operate on tests, as such, is primarily
represented in the literature by the work on delta-debugging or test
reduction in general: [2, 11, 13, 14, 16, 18, 19, 23, 24]. Pike proposed
a limited test generalization that applies to tests that consist of
Haskell data values [17]; Sai proposed a very limited, ad hoc version
of semantic minimization, [25], and Groce et al. proposed a more
complete normalization [8]. Work on automatically producing
readable tests [3] aims to “simplify” tests. Test case puri�cation
[22] is a kind of limited (in approach and in goal) decomposition.
To our knowledge, there is no existing work on composing tests at
heterogeneous layers of of system, CPS or otherwise.

5 CONCLUSIONS
Cyber-physical systems are typically complex, and tend to combine
reactive real-time behavioral requirements, communication across
unreliable networks, a high degree of computational heterogeneity,

and user interfaces that are unusually complex and bri�le — even
when they lack the additional complexity of high-level autonomy.
Designing such systems is di�cult using today’s methods, and test-
ing them is a particular challenge. In this paper, we propose one
thrust of the e�ort to make CPS more testable. In particular, we
propose two steps. In the short run, adapting the cause reduction
algorithm can enable composition of tests wri�en for di�erent lay-
ers of a CPS; in the long run architectural support for this approach
should make it more powerful and widely applicable.
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