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Abstract. From operating systems and web browsers to spacecraft,
many software systems maintain a log of events that provides a partial
history of execution, supporting post-mortem (or post-reboot) analy-
sis. Unfortunately, bandwidth, storage limitations, and privacy concerns
limit the information content of logs, making it difficult to fully recon-
struct execution from these traces. This paper presents a technique for
modifying a program such that it can produce exactly those executions
consistent with a given (partial) trace of events, enabling efficient anal-
ysis of the reduced program. Our method requires no additional history
variables to track log events, and it can slice away code that does not exe-
cute in a given trace. We describe initial experiences with implementing
our ideas by extending the CBMC bounded model checker for C pro-
grams. Applying our technique to a small, 400-line file system written in
C, we get more than three orders of magnitude improvement in running
time over a naive approach based on adding history variables, along with
fifty- to eighty-fold reductions in the sizes of the SAT problems solved.

1 Introduction

Analysis of systems that have failed after deployment is a fact of life in all engi-
neering fields. When a bridge collapses or an engine explodes — or a computer
program crashes — it is important to understand why in order to avoid future
failures arising from the same causes. In the case of software, a patch may be
able to correct the flaw and restore a system to working order, making tools for
analyzing failure even more valuable.

The motivation for trace-based analysis of programs is straightforward: crit-
ical software systems, including file systems, web servers, and even robots ex-
ploring the surface of Mars, often produce traces of system activity that humans
use to diagnose faulty behavior. Reconstructing the full state or history of a
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program from these traces or logs is difficult: the traces contain limited informa-
tion, due to the overhead of instrumentation, privacy concerns, and (in the case
of space missions) limited storage space and communication bandwidth. Almost
all programmers are familiar with the difficulty of this detective work: after all,
“printf-debugging” is a particularly common case of trace-based analysis.

The goal of our work is to exploit failure traces in order to increase the
scalability of precise program analyses. In particular, we show how restricting
program behaviors given a trace can dramatically decrease the size of the SAT
formulas in bounded model checking. Given the program source and a trace log,
it should be possible to use bounded model checking to find detailed, concrete
program executions compatible with the trace — even in cases where the full
program is too large to be model checked.

Because the ultimate goal is to provide tool support for programmers dealing
with anomalies in remote spacecraft, we refer to trace elements (or printfs) as
EVRs, after the JPL shorthand for Event Reporting. An EVR is a command which
appends information to a running log. An EVR may print a constant string and
serve simply to indicate the control flow of the program, or it may contain the
current values of critical variables.

A secondary benefit of our work is that program traces are useful as spec-
ifications. EVRs and printfs are useful for debugging because they provide a
high-level description of program behavior. In many cases, a bug is discovered
by a programmer reading a trace and noticing an event sequence that should
not be possible. The techniques that allow reconstruction of concrete executions
given a trace also make it possible to check properties such as: “the system must
not produce trace o” or “the system must be able to produce trace o”. We ex-
tend the language of traces to include hidden and wildcard events, producing a
restrictive but convenient property language.

This paper contributes two novel techniques. First, we introduce a general
method for adding assume statements to a deterministic program to restrict its
behavior to exactly those executions compatible with a given trace — without
introducing history variables or state. Second, we make use of the information
gathered in the assume statement-generation to slice [20] the program, removing
portions of the source code based on the information in the program trace.

The first technique is best understood by noting that EVR(a) can be seen
as an operation that appends the string a to a history variable, log. Adding
assume(log = o) at the end of the program will restrict it to behaviors match-
ing the trace o. For deterministic programs, our analysis computes assumptions
that are logically equivalent but do not mention log. This direct encoding in
terms of control flow and data values aids the SAT solver in propagating con-
straints — and reduces the size of the state space. The value of slicing may be
observed in a more concrete example: consider a program containing complex
fault-handling routines. If execution of these routines always produces EVRs, and
those EVRs do not appear in the trace, the fault handling component(s) can be
completely eliminated during analysis, with a potential for a drastic reduction
in the size of SAT instances used in model checking. Our approach addresses



common variations of the basic problem, including the case where only a suffix
of the full trace is known, as well as the presence of multiple, unsynchronized
traces.

We implemented our approach as an extension to CBMC [13], a bounded
model checker for ANSI-C programs. Analyzing a trace with known length al-
lows us to avoid considering loops and non-terminating execution, making the
problem a natural fit for bounded model checking. BMC also determinizes C
programs by making all external inputs explicit. We analyzed a model of a small
file system and a resource arbiter. As expected, using a trace to guide explo-
ration improved the performance of model checking over a naive approach based
on adding history variables, providing more than three orders of magnitude im-
provement in running times as well as a fifty- to eighty-fold reduction in the sizes
of the SAT problems produced.

2 Reducing a Program with Respect to a Trace

We now formalize the notion of reducing a statement .S with respect to a trace o.
The motivation for reduction is improving the scalability of tool-based program
analysis. Ideally, we would like to construct a new statement 7" such that 7" has
exactly those executions of S matching o — i.e., (i) all executions of S that
produce ¢ are executions of T', (ii) all executions of T" are executions of S, and
(iii) all executions of T produce o. Here, (i) ensures that we miss no executions
that produce o, (ii) ensures that the verifier produces no “false alarms”, and (iii)
ensures that we ignore executions that do not produce o. Of these, (i) is critical:
soundness is essential to further analysis; (ii) and (iii) are desirable but not
necessary. Constructing a reduced statement T' satisfying all three conditions
is difficult in general, but is possible given restrictions on S. In this section,
we describe these restrictions, and show how a reduced statement 7" may be
constructed given S satisfying these restrictions.

2.1 Notation

To simplify the exposition, we describe our approach in the context of a simple
do-od language with assume and EVR statements. A program is a tuple (V, X, S)
where V is a set of typed program variables that contains a special variable log
of type X*, X' is a finite alphabet of symbols, and S is a statement according to
the syntax shown in Figure 1. In this figure, the nonterminal v denotes a variable
name in V, the nonterminal E denotes an expression (whose syntax we do not
elaborate in this paper), and a denotes a symbol in Y. A statement is said to be
“well-formed” when it does not mention the variable log.

The meaning of a program is given in terms of pre- and post-condition se-
mantics in the usual way. We expect that readers are familiar with all but the
last construct of this language, and thus omit a full semantics of the language.
The semantics of the remaining construct, the EVR statement, is given as follows:
for any symbol a in X, EVR(a) is equivalent to “log := logea”. That is, EVR(a)
appends the symbol a to the variable log.



<S> ::= E | IF F THEN S [ ELSE S ] FI | WHILE F DO S END
I

v =
| S; S | SKIP | ASSUME F | ASSERT E | EVR(a)

Fig. 1: Language syntax

2.2 A Simple Construction

Suppose that we are given a program (V, X, S) and a string o over X. As de-
scribed above, we want to construct a reduced program (V, X', T') satisfying con-
ditions (i), (ii) and (iii) above. It is not hard to show that the desired statement
T satisfies the following statement equality:

T = assume (log=()); S; assume (log =o0) (1)

That is, T consists of exactly those executions of S that, started in a state in
which the log is empty, either terminate in a state in which the log is o, or
do not terminate at all'. This equation suggests a simple construction: replace
occurrences of EVR(a) in S with code for appending a to log, and add the two
assume statements shown above.

As discussed in Section 4, experience with this simple construction for model
checking C programs shows that the addition of such assume statements some-
times reduces analysis time significantly (in one instance, time to find an error
improves from 17,608 seconds to 105 seconds). Unfortunately, this construction
does not suffice to analyze large programs (see Table 2 in Section 4). The lim-
itations of this construction are twofold: (a) knowledge of o is not exploited in
order to simplify the program, and (b) the introduction of 1log as a new program
variable adds additional state, which increases the size of the state space to be
explored. We now discuss how we avoid these limitations.

2.3 Pushing assume Statements Through a Program

Consider the program shown in Figure 2a, where £ and g denote complex com-
putations involving x and y. Suppose that we want to analyze this program given
the singleton trace (1). We see that this trace is produced only if x is assigned a
positive value; since the second branch of the first IF statement does not modify
%, knowledge of the trace should allow us to discard the (complex) details of the
computation of g in our analysis.

One way to achieve this is by pushing assume statements through a program.
As illustrated in Figure 2b, we can push the final assume statement with the
predicate (log = (1)) backwards through the program. This allows us to add an
assume statement with the predicate (x > 0) between the two IF statements; in
turn, this allows us to introduce an assume(P) at the beginning of the program
and thus remove the first ELSE branch.

! Alternatively, we could require that T' only have terminating executions. Since
CBMC produces unrolled (hence terminating) programs, we do not explore this
alternative in this paper.



P A £(0,0)>0 P A £(0,0)>0

x:=0;y:=0; x:=0;y:=0; x:=0;y:=0;
IF P THEN IF P THEN

x = £(x,y) x = £(x,y) x = £(x,y)
ELSE ELSE

y = g&x,y) y = gx,y)
FI ; FI ; x>0
IF x>0 THEN IF x>0 THEN

EVR(1) EVR(1) SKIP
ELSE ELSE

EVR(2) EVR(2)
FI FI

log = (1)

(a) Original program (b) With assumes (c) After slicing

Fig. 2: Example program for trace reduction. Shaded expressions are assumptions.

We are therefore interested in conditions under which we can push assumes
through a program. To this end, we consider the following equation: for given
statement S and predicate @), solve for P in

solve P : S'; assume(Q) C assume(P); S (2)

where we write S C T to mean that all executions of S are executions of T'.
Note that this equation has many solutions in general — e.g., P = true. This is
related to the observation that one can always push weak assumptions through a
program. However, because we want 7" to include as few unnecessary executions
as possible, we are usually interested in the strongest solution in P to this equa-
tion. It is not hard to show that the strongest solution to this equation exists,
and can be expressed in terms of Dijkstra’s weakest-precondition transformer as
—wp(S, Q). Recall that wp(S, Q) denotes the set of states from which all exe-
cutions of S terminate in states satisfying @, whereas wip(S, @) denotes states
from which all terminating executions of S end in states satisfying @. There-
fore, the dual expression ~wp(S, =Q) denotes the set of states from which either
there is an execution of S that terminates in (), or an execution of S that fails
to terminate.

Unfortunately, although the strongest solution to equation (2) satisfies con-
ditions (i) and (ii) above, it does not guarantee (iii), because there may be exe-
cutions of the RHS that are not in the LHS. To derive assumptions guaranteeing
(iii), we need to solve for P in the following equation:

solve P : S'; assume(Q)) = assume(P); S (3)

This equation is a strict equality. Thus, for any solution P, the right-hand side
denotes ezactly those computations of S that end in states satisfying Q.

The problem with this strict condition is that solutions do not exist in general.
The difficulty is illustrated by the following simple example. With [J denoting



nondeterministic choice, consider the statement S given by
(x := x+1) [ (x := x+2)
and let @ be the predicate (x=2). Clearly, this equation has no solution for P.
It is not hard to show that for programs that are total?(in the sense that
they can be executed from any state), equation (3) has at most one solution.
The more interesting question is when the equation has at least one solution in
P. This is addressed by the following result.

Lemma 1 Let S be a total, deterministic statement. For any predicate Q, equa-
tion (3) has a unique solution in P, given by wip(S, @), the weakest liberal pre-
condition of Q with respect to S.

This lemma states that for total, deterministic programs, pushing assumes through
the program is equivalent to computing wip.

We can also ask when it is possible to push assumes forward through a
program. In this case, we are interested in solutions for @ in

solve @ : assume(P); S C S; assume(Q) (4)

It is not hard to show that the strongest solution for ) in this equation is
sp(S, P), the strongest postcondition of P with respect to S. On the other hand,
the strict equation (3) has a solution in @ for arbitrary P only if S is invertible?.
In general, while determinism is not too strict a requirement (for instance, all
sequential C programs are deterministic), invertibility is typically too restrictive.
For instance, constant initializations, such as x := 1, are not invertible. (To see
this, try solving for @ in equation (4) with S being x:=1 and P being x=0.)

However, there are situations in which forward propagation is useful. For
instance, passive programs which consist only of assume statements are trivially
invertible. Such programs are often encountered in verification [7,14]. Because
CBMC generates passive programs, we use forward propagation in our imple-
mentation.

Once assumes have been pushed through the program (either forward or
backward), they can be used to remove branches whose guards are refuted by
the assumptions. Note that this requires a check to determine which guards
are refuted by each assumption. In our implementation, we achieve this with a
simple heuristic: for any assume(p) appearing before a conditional IF ¢ THEN
S1 ELSE S, FI, if p = g then we may replace the conditional with S; without
altering the semantics of the passive program. The amount of slicing obtained
depends on the amount of computational effort given to these implications. Our
experience so far is that even simple syntactic tests produce effective slicing.

2 Such programs are sometimes called “non-miraculous” since they satisfy Dijkstra’s
Law of the Excluded Miracle [4]

3 To see this, replace S with its relational converse ~S, and solve for @ instead of P
in equation (3). The equation is then identical to (3) but with S replaced by ~S.
The condition above then states that ~S should be deterministic, which is the same
as saying that S is invertible.



2.4 Removing Trace Variables

By pushing assumptions through a program, we can determine that certain
guards are always false, and thus remove certain branches from the code, thereby
reducing the size of the program being analyzed. However, since the desired
postcondition is (Log = o), a naive application of this method requires explicit
introduction of the variable log. In general, if the alphabet X has k symbols,
and the given trace o has length n, addition of log adds roughly n - log, (k) bits
to the state space. Since this is linear in n, the length of the trace, the overhead
can be considerable when ¢ is long. In this subsection, we discuss a technique
that allows us to work with predicates that do not mention the variable log,
thus avoiding any overhead.

The idea is to consider predicates in a “log-canonical” form. Let o be a given
trace of length n over X, and let o T i (“o upto i”) denote the first* i characters
of the string . We say that a predicate R is in log-canonical form provided there
is a vector t of predicates, such that R can be expressed as

Fi:0<i<n At; Nlog=oc11) (5)

where none of the predicates ¢; mention the variable log. Because o is fixed, this
predicate is compactly represented by storing only the vector ¢ (which does not
mention log). For any such vector ¢, we write t to denote the predicate shown
in (5). The usefulness of this notion is due to the following result.

Lemma 2 Let S be a well-formed deterministic program as defined above, and
let P be a predicate in log-canonical form. Then wp(S, P) is also in log-canonical
form.

The proof of Lemma (2) is by induction over the grammar shown in Figure 1.
Since S is deterministic, wp(S, -) distributes over the existential quantification in
P. For the first five constructs, the proof is straightforward, using the assumption
that none of the guards or expressions in the program mention log, since S is
well-formed. For the remaining case, EVR(a), we calculate

wp(EVR(a), )

{ definition of  }
wp(EVR(a),(Fi : 0<i<n A t; A log=011))

{ semantics of EVR(a); the ¢; don’t mention log }
(Fi:0<i<n At AN wp(EVR(a),log =0 11))

{ meaning of EVR(a) as appending to log }
(31 :0<i<n At; AN logea=o011)

{ properties of e, and using o[i — 1] to mean the i*" character in ¢ }
(Fi:0<i<nAt; Noli—1]=a A log=0c1(i—1))

{ introducing u (see below) and replacing ¢ with j +1 }
(Fj:0<j<nAwu; ANlog=0Tj})

{ definition of @ }

u

4 Thus, o 1 0 denotes the empty string.



where we have introduced the vector of predicates u, defined as
uj = (tjq1 A oljl=a) for 0<j<n and wu, = false

Since o is a fixed string, the predicate o[j] = a is a constant predicate (either
true or false). Furthermore, by assumption, no t; mentions log. Thus the u;
don’t mention log either, and hence @ is also in log-canonical form.

Finally, recall that we are interested in constructing a statement 7' satisfying
equation (1). Note that both the initial predicate (log = ()) and the final predi-
cate (Log = o) can be written in log-canonical form using appropriate vectors of
predicates; for instance, (Log = ()) corresponds to the vector [true, false, ...false].
As shown in this section, we can push these predicates through the program (ei-
ther backwards or forwards as appropriate). In doing so, we keep track of only
vectors of predicates ¢; that do not mention the variable log. Thus the assumes
added to the reduced statement 7' do not mention log.

2.5 Extension to Suffixes

Because a trace may have a bounded length, discarding old events after a buffer
fills, it is important to handle the case where o is a suffix of the program’s
execution history. A useful benefit of handling suffixes is the potential to produce
a shorter trace matching the suffix; this may be critical when the actual execution
extended over a long period of time — both for reasons of analysis scalability and
human understanding. In this case, the problem definition is: given a program
(V, X, 5) and a finite string o of length n over X, construct a statement 7" such
that,

T = assume(log=()); S ; assume(log | n =o0) (6)

where we write log | ¢ to mean the last ¢ characters of log. In this case, we
define ¢ to mean the following:

(i :0<i<n At; Nlogli=o011)

We leave it to the reader to check that this canonical form is preserved by wp
computations as discussed above.

3 Implementation

Our analysis is implemented as an extension to CBMC [13], a bounded model
checker [3] for ANSI-C programs. Given a program and a set of unwinding depths
U (the maximum number of times each loop may be executed), CBMC produces
constraints encoding all executions of the program not exceeding loop bounds.
CBMC converts constraints into CNF and calls a Boolean satisfiability solver,
such as zChaff [18] or LIMMAT [2]. A satisfying solution is a counterexample
showing a property violation, whereas a proof of unsatisfiability indicates that
the code cannot, within the given loop bounds, violate any properties. CBMC



handles all ANSI C types and pointer operations, and checks safety properties
such as assertion violations, null pointer dereferences, and array bound errors.
CBMC supports assume statements in C source, with the expected semantics.

In order to support analysis of traces, we extended CBMC to recognize two
event reporting functions in C source: EVR takes as argument a constant string
(an identifier for the event, e.g., EVR(¢ ‘timeout’’)) and EVR_value takes an
event identifier and an expression (typically an event-relevant program variable,
e.g., EVR(‘ ‘timeout’’,thread_id)). A trace, for CBMC, is a sequence of event
identifiers, where each identifier produced by an EVR_value call includes a value.
Our trace language also allows event alphabet restrictions and the use of sets of
events in the sequence.

3.1 Analyzing a Simple Program

Consider the program in Figure 3. The program is atypical in that a trace allows
near-total reconstruction of the program inputs (though p and q cannot be pre-
cisely determined). For example, if the trace is o = (foo 2, foo 1), we know
the value of input and constraints on the values of p and g. It is this knowledge
that our analysis will exploit in analyzing the program.

void foo (O { void bar() {
X5 X++;
EVR_value("foo",x); EVR("bar");
} }
int main (int input, bool p, bool q) {
X = input; x#1 == input#0
1 if (p) x#2 == x#1 - 1;
foo(); 2 x#3 == (p#O 7 x#2 : x#1)
3 if (@ x#4 == x#3 - 1;
foo(); 4 x#5 == (q#0 ? x#4 : x#3)
5 if (p && q)
bar(); 6 x#6 == x#5 + 1;
else x#7 == x#5 - 1;
foo(); ' 7 x#8 == (p#0 A q#0 7 x#6 : x#7)
8 assert ((x+1) == input); assert ((x#8 + 1) == input#0)
}

Fig. 3: example.c

As discussed in Section 2.3, our implementation uses a forward analysis to
compute assumptions and slices as CBMC generates the equational form of the
program. This avoids a second pass over the transformed source code. The right
side of Figure 3 shows the passive equational form of example.c. In the remain-
der, we will omit the renamings of p and q, as these inputs are never assigned.



CBMC produces predicate vectors (as described in Section 2.4) as it converts
the program equations into SAT. If we restrict behavior to match o, the vector
has three elements, corresponding to the conditions under which 0, 1, or all
elements of the trace have been consumed. As shown in eq. (5), the interpretation
of [to, t1,t2] is (to Alog = ()) V (t1 Alog = (foo 1))V (t2Alog = (foo 2, foo 1)).

Loc Events Consumed
A B C
O (foo 2) (foo 2, foo 1)
1 true false false
2 false x#2 == 2 false
3 —p P A x#2 == 2 false
4 false 3A A x#4 == 2(13B A x#2 == 2 A x#4 == 1
5 |[7a A —pl(q A 4B) vV (=g A 3B) q N 4C
6 false false false
7 false BA A x#7 == 5B A x#7 ==
8 false - AN @) AN TB -p AN @ AN TC
Table 1: Vectors as example.c is analyzed with o. We refer to previous vector entries
in a row-column format (i.e., 3B is row 3, column B: p A x#2 == 2).

Table 1 shows the elements of the vectors at 8 program locations (labeled
as 1-8 in Figure 3. When pushing assumptions forward, we begin with a vector
interpreted as constraining the log to be empty: [true, false, false] (the first row
of Table 1). At location 2 the modified vector requires that x’s value at the
location of the EVR_value call match the value in o.

The vector for location 6 is false: if this branch is taken, the sequence of events
cannot possibly match o. When the vector for a branch is false, that branch can
be sliced away. We slice the program by changing the equational form and relying
on the model checker’s ability to prevent un-referenced variables from appearing
in the SAT constraints. The final assumption will force the program to take the
ELSE-branch, which makes it safe to simplify the conditional expression for x#8 to
(false 7 x#6 : x#7), which simplifies to x#7. The equation for x#6 can then be
discarded. The sliced version of the program produces a SAT problem with 696
variables and 2,312 clauses. Without slicing (leaving the irrelevant then-branch
in place), the program requires 834 variables and 2,701 clauses.

3.2 Analyzing with Only a Suffix of a Trace

If we allow o to be a suffix of the complete trace, the allowed program behaviors
are the same (in this example, though not in general), but the analysis is altered.
The first row of each vector is always true, as it is always possible to begin con-
suming events. The then-branch of the third conditional cannot be sliced away
in the initial pass through the program — any events may appear before o be-
gins. The bar-branch can still be sliced away, as it is easy to note that the final
condition (8C) implies = (p A q) — all allowed executions of the program will



have to take the else-branch. Our analysis does not attempt to extract all such
implications, but slices based on those that are trivially implied by the assump-
tion (appearing on both sides of a disjunction, or either side of a conjunction,
recursively), which has provided near-optimal slicing in our experience.

3.3 Using Traces as Specifications

Traces can be also be used as specifications. In order to use a trace as a specifica-
tion, CBMC performs the same analysis as above, but searches for any execution
of the program, rather than searching for property violations. We allow for mul-
tiple traces, alphabet restriction, and sets of events. With multiple traces, the
tool maintains vectors for each trace and assumes the conjunction of all final
conditions. This feature can be useful for post-mortem analysis as well, e. g., in
the case of traces over different events produced by independent threads with-
out time-stamps. Restricting which EVRs are taken into account is useful for
specification: many events may be irrelevant to the property in question, al-
though they appear in the actual code and traces. The utility of sets of events
for specification should be obvious — e.g., for specifying that a file should be
written to disk when either a close or sync operation occurs (see below in the
experimental results). Handling alphabet restriction and event sets requires only
a small modification of the mechanism for checking whether the ith event of a
trace matches a particular alphabet symbol in an EVR call.

4 Experimental Results

We applied the technique to a small file system model, consisting of about 400
lines of C code. The model allows basic operations such as opening, closing,
reading and writing files; it also supports reset events, which re-initialize all
data structures except the disk contents (which is modeled as an array).

As written, the system is not robust across resets: a file can be opened,
written to, and closed; if a reset happens at this point, the data in the file can
be lost (the sync to disk in the close operation is faulty). We first consider the
use of a partial trace as a specification. Using a trace with an open, write,
close, a sequence of wildcard actions (not allowing a delete), and an open
followed by a failed read®, we can specify that data should not be lost across
any file system event sequence (of a bounded length), even if resets are present.
Finding a counterexample (an execution matching this bad trace) requires 105
seconds, when using our technique and this trace as a specification. The utility
of guiding the search with a trace is evident: CBMC requires 17,608 seconds
to find a counterexample when checking the same property using a hand-coded
monitor automaton (“blind” search) as a specification but without even a partial
trace of execution. Because the wildcard actions limit the amount of slicing
possible, the reduction in the size of the SAT problem is less impressive than the

5 In the log, success or failure is recorded in addition to which operation is performed.
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Fig. 4: Results for 8 maximum files

decrease in running time: the monitor-based approach produces a SAT instance
with 613,857 variables and 2,108,934 clauses; our approach brings this down to
328,142 variables and 1,128,272 clauses.

A more significant reduction in the size of the SAT problem is seen when
examining the same trace with reset in place of wildcards. Figure 4 provides a
logscale graph of SAT run-times, given a complete trace for the file system in
the smallest configuration we examined. Across a range of unwinding depths,
full application of our approach results in a reduction of running time by several
orders of magnitude. Applying our analysis to produce an assumption but using
no slicing produces a smaller, but still quite significant, reduction over using a
trace array semantics. Table 2 shows timing and SAT instance sizes for other
configurations of the file system. Checking the property on the largest configu-
ration and unwinding depth requires only 26,916 SAT variables when slicing is
used; the smallest configuration uses 899,989 variables if slicing is not applied,
and uses 3,266,123 variables in the largest configuration; running times for the
sliced version are uniformly less than one second; over a thousand seconds are
needed without slicing. Blind search — without a trace array — was consistently
at least an order of magnitude slower than search using a trace array, and did
not complete within a timeout period for larger system configurations such as
those shown in Table 2.

Applying trace-based analysis to a small model of the core of the resource
arbitration algorithm for the Mars Exploration Rovers also improved SAT prob-
lem sizes and running times significantly. Adding assumptions to match a failure



Sliced Assumes Only Trace Array

U Vars|Clauses|Time Vars| Clauses| Time Vars| Clauses| Time

File System Results (System Size = 10)
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14//19,072| 69,461| 0.32([1,195,603| 4,100,816 181.05|(1,276,744| 4,784,9891,152.70

15//19,468| 70,676| 0.32((1,294,141| 4,439,660| 206.25|/1,381,339| 5,203,676 624.28

16//19,864| 71,891| 0.33|(1,392,727| 4,778,839 248.86|(1,485,982| 5,626,682 806.59

17/|20,260| 73,106| 0.34|[1,491,268| 5,118,198 269.77|/1,590,580| 6,053,852|1,495.01

18][20,656| 74,321| 0.34([1,589,809| 5,457,812| 331.40||1,695,178| 6,485,261|2,115.49

File System Results (System Size = 12)

[30]]26,916] 94,931] 0.57[[3,266,123]11,291,540]1,216.78]]3,451,137]13,761,421]2,889.41]
Resource Arbiter Results (Safety)

[40]]10,497] 34,118] 0.12]] 39,273] 142,399] 1.19]] 38,936] 141,388]  1.77]
Resource Arbiter Results (Liveness)

[40]]21,311] 72,142] 0.29]] 73,244] 259,308]  1.30]] 72,099] 255,639] 32.96]

Table 2: Results for file system and arbiter. U indicates the unwinding depth for loops.

trace the SAT instance grew slightly, but the search time decreased. Applying
slicing to remove unreachable portions of the source code reduced the running
time to 0.12 seconds. Scaling up to a more complex version of the same model
with more properties (including some bounded liveness properties), blind search
required 33 seconds, unsliced assumptions needed a little over a second, and with
slicing the search time was only 0.29 seconds.

For both the resource arbiter and the file system, the additional overhead
for trace-based analysis (performed while computing the passive form of the
programs and unrolling loops) prior to calling the SAT solver was negligible.

5 Related Work

This paper presents a use of traces in program analysis — as slicing criteria and
specification method — that differs in both motivation and technique from most
previous work on related topics.

Assumptions and never-claims are used in many program verifiers [10, 6] to
restrict explored system behavior; this kind of restriction is more general than
what is described here, but does not provide any a-priori state-space reduction
— the model checker may explore fewer states in an on-the-fly manner, but these
techniques do not preclude exploration of branches that cannot match a given
trace. Such methods are also less convenient than our approach for expressing
the constraint that system behavior must be able (or not able) to produce a
given sequence of events.

Removing code irrelevant to a given program trace is an extension of the idea
of program slicing [20] — in particular dynamic slicing [1]. Static slicing removes



the portions of a program that are not relevant to the analysis of a particular
program point, under any set of inputs. Dynamic slicing performs the same
task, for a known set of inputs. Parametric program slicing [5] makes use of a
more general constraint, allowing for partial knowledge of inputs. Static slicing’s
utility is limited by aliasing and error handling paths, while dynamic slicing is
of little utility when many program traces must be considered — for verification
or bug hunting. The path slicing [12] of BLAST [9] removes portions of an
abstract counterexample that are irrelevant to the feasibility of the path. Path
slicing resembles our approach in that both are hybrids of purely static slicing
and true dynamic slicing; the approaches differ in purpose (we apply slicing
before model checking in order to limit system behaviors; path slicing is a step
in a counterexample-refinement loop) and representation of multiple paths (a
sequence of trace events vs. a fixed control flow). Millett and Teitelbaum applied
more traditional program slicing to Promela models [17]. Only our approach
addresses the notion of slicing based on a given event trace.

Howard et al. [11] use model checking to analyze traces produced by software,
Roger and Goubault-Larrecq propose similar techniques for use in log auditing
for intrusion detection [19], and Gannod and Murthy [8] describe the use of
model checking to reverse engineer software architectures from a set of log files,
in a largely non-automated approach.

Postmortem Symbolic Evaluation (PSE) [16] uses static analysis to produce
possible program traces given only a failure’s location and type. PSE builds on
the work of Liblit and Aiken on the use of backtraces in debugging [15]. The
work of Liblit and Aiken is closely related to our approach, in that they consider
event traces derived from “printf debugging,” including the suffix and multiple
trace variations. Their work focuses on producing all CFL-reachable paths to a
failure, rather than producing only feasible complete concrete executions. It is
interesting to note that Liblit and Aiken come to similar conclusions about the
advantages of backwards over forwards analysis, for largely independent reasons.

6 Summary and Future Work

We have addressed the problem of analyzing a given program given one of its
traces, and demonstrated the utility of our approach for small examples such
as the file system and the resource arbiter. A larger concern is how to optimize
placement of EVRs in order to allow maximal slicing. The placement of EVRs is
at present largely an ad-hoc process: developing a methodology for placing EVRs
is critical if we are to analyze larger programs. We are pursuing these problems
while applying our method to a larger, in-development, production-quality file
system with over 2,000 lines of C source.
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