
Error Explanation with Distance Metrics

Alex Groce1

Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213

Abstract. In the event that a system does not satisfy a specification,
a model checker will typically automatically produce a counterexam-
ple trace that shows a particular instance of the undesirable behavior.
Unfortunately, the important steps that follow the discovery of a coun-
terexample are generally not automated. The user must first decide if the
counterexample shows genuinely erroneous behavior or is an artifact of
improper specification or abstraction. In the event that the error is real,
there remains the difficult task of understanding the error well enough to
isolate and modify the faulty aspects of the system. This paper describes
an automated approach for assisting users in understanding and isolating
errors in ANSI C programs. The approach is based on distance metrics
for program executions. Experimental results show that the power of the
model checking engine can be used to provide assistance in understand-
ing errors and to isolate faulty portions of the source code.

1 Introduction

In an ideal world, given a trace demonstrating that a system violates a specifi-
cation, a programmer or designer would always be able in short order to identify
and correct the faulty portion of the code, design, or specification. In the real
world, dealing with an error is often an onerous task, even with a detailed failing
run in hand. This paper describes the application of a technology traditionally
used for finding errors to the problem of understanding and isolating errors.

Error explanation describes automated approaches that aid users in moving
from a trace of a failure to an understanding of the essence of the failure and,
perhaps, to a correction for the problem. This is a psychological problem, and it
is unlikely that formal proof of the superiority of any approach is possible. Fault
localization is the more specific task of identifying the faulty core of a system.

Model checking [9] tools explore the state-space of a system to determine if
it satisfies a specification. When the system disagrees with the specification, a
counterexample trace [8] is produced. This paper explains how a model checker
can provide error explanation and fault localization information. For a program
P , the process (Figure 1) is as follows:

1. The bounded model checker CBMC uses loop unrolling and static single
assignment to produce from P and its specification a SAT problem, S. The
satisfying assignments of S are bounded executions of P that violate the
specification (counterexamples).

CBMC explain

SAT solver PBS

counterexample

counterexample

closest successful execution

∆ s

S S’

P + spec.

finds a counterexample finds closest successful execution
 as measured by distance metric

3,41

6,7

2 5

Fig. 1. Explaining an error using distance metrics.

2. CBMC uses a SAT solver to find a counterexample.
3. The explain tool produces a SAT problem, S′. The satisfying assignments

of S′ are executions of P that do not violate the specification.
4. explain uses the counterexample to add to S′ an optimization problem: find

a satisfying assignment that is as similar as possible to the counterexample,
as measured by a distance metric on executions of P .

5. explain uses the PBS solver to find a successful execution that is as close
as possible to the counterexample.

6. The differences (∆s) between the successful execution and the counterexam-
ple are computed.

7. A slicing step is applied to reduce the number of ∆s the user must examine.
The ∆s are then presented to the user as explanation and localization.

8. If the explanation is unsatisfactory the user may add assumptions and return
to step 1 (see Section 5).

There are many possible approaches to error explanation. A basic notion
shared by many researchers in this area [5, 12, 24] and many philosophers [21] is
that to explain something is to identify its causes. A second common intuition
is that successful executions that closely resemble a faulty run can shed consid-
erable light on the sources of the error (by an examination of the differences in
the successful and faulty runs) [12, 18, 25].

David Lewis [16] has proposed a theory of causality that provides a justifi-
cation for the second intuition if we assume explanation is the analysis of causal
relationships. Following Hume and others, Lewis holds that a cause is something
that makes a difference: if the cause c had not been, the effect e would not have
been. Lewis equates causality to an evaluation based on distance metrics between
possible worlds (counterfactual dependence). This provides a philosophical link
between causality and distance metrics for program executions.

For Lewis, an effect e is dependent on a cause c at a world w iff at all
worlds most similar to w in which ¬c, it is also the case that ¬e. Causality does
not depend on the impossibility of ¬c and e being simultaneously true of any
possible world, but on what happens when we alter w as little as possible, other
than to remove the possible cause c. This seems reasonable: when considering the
question “Was Larry slipping on the banana peel causally dependent on Curly
dropping it?” we do not, intuitively, take into account worlds in which another
alteration (such as Moe dropping a banana peel) is introduced. Distance metrics

between possible worlds are problematic, and Lewis’ proposed criteria for such
metrics have met with criticism [21].

Program executions are much more amenable to measurement and predica-
tion than possible worlds. If we replace possible worlds with program executions
and events with propositions about those executions, a practically applicable
definition emerges1:

Definition 1 (causal dependence). A predicate e is causally dependent on
a predicate c in an execution a iff:

1. c and e are both true for a (we abbreviate this as c(a) ∧ e(a))
2. ∃ an execution b . ¬c(b)∧¬e(b)∧ (∀b′ . (¬c(b′)∧e(b′))⇒ (d(a, b) < d(a, b′)))

where d is a distance metric for program executions (defined in Section 3). In
other words, e is causally dependent on c in an execution a iff executions in which
the removal of the cause also removes the effect are more like a than executions
in which the effect is present without the cause.

This paper describes a distance metric that allows determination of causal
dependencies and the implementation of that metric in a tool called explain
that extends CBMC [1], a model checker for programs written in ANSI C. Note
that the focus of the paper is not on computing causal dependence, which is only
useful after forming a hypothesis about a possible cause c.

The basic approach, presented in Sections 3 and 4, is to explain an error
by finding an answer to an apparently different question about an execution a:
“How much of a must be changed in order for the error e not to occur?” explain
answers this question by searching for an execution, b, that is as similar as
possible to a, except that e is not true for b. Typically, a will be a counterexample
produced by model checking, and e will be the negation of the specification.
Section 3.4 provides a proof of a link between the answer to this question about
changes to a and the definition of causal dependence. The guiding principle in
both cases is to explore the implications of a change (in a cause or an effect)
by altering as little else as possible: differences will be relevant if irrelevant
differences are suppressed.

2 Related Work

Recent work has described proof-like and evidence-based counterexamples [7,
22]. Automatically generating assumptions for verification [10] can also be seen
as a kind of error explanation. These approaches appear to be unlikely to result
in succinct explanations, as they may encode the complexity of the transition
system; one measure of a useful explanation lies in how much it reduces the
information the user must consider.

Error explanation facilities are now featured in MSR’s SLAM model checker [5]
and NASA’s JPF model checker [12]. Jin, Ravi, and Somenzi proposed a game-
like explanation (directed more at hardware than software systems) in which an
1 Our causal dependence is actually Lewis’ counterfactual dependence.

adversary tries to force the system into error [14]. Of these, only JPF uses a
(weak) notion of distance between traces, and it cannot solve for nearest suc-
cessful executions.

Zeller’s delta debugging [25] extrapolates between failing and successful test
cases to find more similar executions, with respect to inputs only. Delta-debugging
for deriving cause-effect chains [24] takes state variables into account, but re-
quires user choice of instrumentation points and does not provide true minimal-
ity or always preserve validity of execution traces.

Renieris and Reiss [18] describe an approach that is quite similar in spirit to
the one described here, with the advantages and limitations of a testing rather
than model checking basis. They use a distance metric to select a successful test
run from among a given set rather than, as in this paper, to automatically gen-
erate a successful run that resembles a given failing run as much as is possible.
Experimental results show that this makes their fault localization highly depen-
dent on test case quality. Section 5.1 makes use of a quantitative method for
evaluating fault localization approaches proposed by Renieris and Reiss.

This paper presents a new distance metric for program executions, based on
David Lewis’ counterfactual analysis of causality. The other original contribu-
tions are: a method for solving the optimization problem of finding the closest
successful execution to a given failing execution and a new slicing technique
which can remove irrelevant code that cannot be sliced away by previous static
or dynamic slicing approaches.

3 Distance Metrics for Program Executions

A distance metric [20] for program executions is a function d(a, b) (where a and
b are executions of the same program) that satisfies certain properties:

1. Nonnegative property: ∀a . ∀b . d(a, b) ≥ 0
2. Zero property: ∀a . ∀b . d(a, b) = 0⇔ a = b
3. Symmetry: ∀a . ∀b . d(a, b) = d(b, a)
4. Triangle inequality: ∀a . ∀b . ∀c . d(a, b) + d(b, c) ≥ d(a, c)

3.1 Representing Program Executions

In order to compute distances between program executions, we need a sin-
gle, well-defined representation for those executions. Bounded model checking
(BMC) [6] also relies on a representation for executions: in BMC, the model
checking problem is translated into a SAT formula whose satisfying assignments
represent counterexamples of a certain length.

CBMC [15] is a BMC tool for ANSI C programs. Given an ANSI C program
and a set of unwinding depths U (the maximum number of times each loop may
be executed), CBMC produces a set of constraints that encode all executions
of the program in which loops have finite unwindings. CBMC uses unwinding
assertions to notify the user if counterexamples with more loop executions are

possible. The representation used is based on static single assignment (SSA) [3]
and loop unrolling. CBMC and explain handle the full set of ANSI C types,
structures, and pointer operations including pointer arithmetic. CBMC only
checks safety properties, although in principle BMC (and the explain approach)
can handle full LTL.

Given the example program minmax.c (Figure 2), CBMC produces the con-
straints shown in Figure 3 (U is not needed, as minmax.c is loop-free)2. The
renamed variables describe unique assignment points: most#2 denotes the sec-
ond possible assignment to most. CBMC assigns uninitialized (#0) values nonde-
terministically — thus input1, input2, and input3 will be unconstrained 32
bit integer values. The assumption on line 5 limits executions to those in which
these values are non-negative (constraints {-15} and {-16} encode this require-
ment). The \guard variables encode the control flow of the program (\guard1
is the value of the conditional on line 6, etc.), and are used when presenting the
counterexample to the user (and in the distance metric). Control flow is handled
by using φ-functions, as usual in SSA: the constraint {-10}, for instance, assigns
most#3 to either most#2 or most#1, depending on the conditional for the assign-
ment to most#2 (the syntax is that of the C conditional expression). most#3,
therefore, is the value assigned to most at the point before the execution of line
8 of minmax.c. A solution to this set of constraints is an erroneous execution of
minmax.c: a counterexample.

CBMC generates CNF clauses representing the conjunction of ({-1}∧{-2}∧ . . .
{-16}) with the negation of the claim (¬{1}). CBMC calls ZChaff [17], which
produces a satisfying assignment in less than a second. The satisfying assignment
encodes an execution of minmax.c in which the assertion is violated (Figure 4).

Figure 4 includes both an easier-to-read summary of the full counterexample
generated by CBMC and the more detailed internal representation consisting of
the set of all values assigned to the variables appearing in the constraints.

For given loop bounds, all executions of a program can be represented as
sets of assignments to the variables appearing in the constraints. Moreover, all

2 Output is slightly simplified for readability.

1 int main () {
2 int input1, input2, input3; //input values
3 int least = input1;
4 int most = input1;
5 assume ((input1 >= 0) && (input2 >= 0) && (input3 >= 0));
6 if (most < input2) //guard1
7 most = input2;
8 if (most < input3) //guard2
9 most = input3;
10 if (least > input2) //guard3
11 most = input2; //ERROR: should be ‘‘least = input2’’
12 if (least > input3) //guard4
13 least = input3;
14 assert (least <= most); //specification
15 }

Fig. 2. minmax.c

{-16} \guard#0 => input1#0 >= 0 && input2#0 >= 0 && input3#0 >= 0
{-15} \guard#0 == TRUE
{-14} least#1 == input1#0
{-13} most#1 == input1#0
{-12} \guard#1 == (most#1 < input2#0 && \guard#0)
{-11} most#2 == input2#0
{-10} most#3 == (\guard#1 && \guard#0 ? most#2 : most#1)
{-9} \guard#2 == (most#3 < input3#0 && \guard#0)
{-8} most#4 == input3#0
{-7} most#5 == (\guard#2 && \guard#0 ? most#4 : most#3)
{-6} \guard#3 == (least#1 > input2#0 && \guard#0)
{-5} most#6 == input2#0
{-4} most#7 == (\guard#3 && \guard#0 ? most#6 : most#5)
{-3} \guard#4 == (least#1 > input3#0 && \guard#0)
{-2} least#2 == input3#0
{-1} least#3 == (\guard#4 && \guard#0 ? least#2 : least#1)
|--------------------------
{1} \guard#0 => least#3 <= most#7

Fig. 3. Constraints generated for minmax.c

executions (for fixed U) are represented as assignments to the same variables.
Different flow of control will simply result in differing \guard values and φ-
function assignments.

3.2 The Distance Metric d

The distance metric d will be defined only between two executions of the same
program with the same maximum bound on loop unwindings3. This guarantees
that any two executions will be represented by constraints on the same variables.
d(a, b) is equal to the number of variables to which a and b assign different values.

Definition 2 (distance between two executions, d(a, b)). Let a and b be ex-
ecutions of a program P , represented as sets of assignments, a = {v0 = vala0 , v1 =
vala1 , . . . , vn = valan} and b = {v0 = valb0, v1 = valb1, . . . , vn = valbn}.

d(a, b) =
n∑
i=0

∆(i)

where

∆(i) =
{

0, valai = valbi
1, valai 6= valbi

This definition is equivalent to the Levenshtein distance [20] if we consider
executions as strings where the alphabet elements are assignments and substi-
tution is the only allowed operation. The properties of inequality guarantee that
d satisfies the four metric properties.

The representation for executions presented here has the advantage of com-
bining precision and relative simplicity, and results in a very clean distance met-
ric. All of the pitfalls involved in trying to align executions with different control
3 Counterexamples can be extended to allow for more unwindings in the explanation.

Initial State
--

input1=2147483618 (01111111111111111111111111100010)
input2=1073741792 (00111111111111111111111111100000)
input3=2147483615 (01111111111111111111111111011111)

State 1
--

least=2147483618 (01111111111111111111111111100010)
State 2
--

most=2147483618 (01111111111111111111111111100010)
State 9 file minmax.c line 11 function c::main
--

most=1073741792 (00111111111111111111111111100000)
State 11 file minmax.c line 13 function c::main
--

least=2147483615 (01111111111111111111111111011111)
Failed assertion: assertion file minmax.c line 14 function c::main

input1#0 = 2147483618 most#2 = 1073741792 most#6 = 1073741792
least#1 = 2147483618 most#3 = 2147483618 most#7 = 1073741792
most#1 = 2147483618 \guard#2 = FALSE \guard#4 = TRUE
input2#0 = 1073741792 most#4 = 2147483615 least#2 = 2147483615
input3#0 = 2147483615 most#5 = 2147483618 least#3 = 2147483615
\guard#1 = FALSE \guard#3 = TRUE

Fig. 4. Counterexample for minmax.c

input1#0∆ == (input1#0 != 2147483618) most#4∆ == (most#4 != 2147483615)
least#1∆ == (least#1 != 2147483618) most#5∆ == (most#5 != 2147483618)
most#1∆ == (most#1 != 2147483618) \guard#3∆ == (\guard#3 != TRUE)
input2#0∆ == (input2#0 != 1073741792) most#6∆ == (most#6 != 1073741792)
input3#0∆ == (input3#0 != 2147483615) most#7∆ == (most#7 != 1073741792)
\guard#1∆ == (\guard#1 != FALSE) \guard#4∆ == (\guard#4 != TRUE)
most#2∆ == (most#2 != 1073741792) least#2∆ == (least#2 != 2147483615)
most#3∆ == (most#3 != 2147483618) least#3∆ == (least#3 != 2147483615)
\guard#2∆ == (\guard#2 != FALSE)

Fig. 5. ∆s for minmax.c and the counterexample in Figure 4

flow for purposes of comparison are avoided by the use of SSA. Obviously, the
details of the SSA encoding may need to be hidden from non-expert users (the
CBMC GUI provides this service). Any gains in the direct presentability of the
representation (such as removing values for code that is not executed) are likely
to be purchased with a loss of simplicity in the distance metric d.

3.3 Combining the Metric and Constraints

The next step is to consider the optimization problem of finding an execution
that satisfies a constraint and is as close as possible to a given execution. The
distance to a given execution (e.g. a counterexample) can be easily added to
the encoding of the constraints that define the transition relation for a program.
All of the ∆ functions necessary to compute the distance are added as new
constraints (Figure 5) by the explain tool.

These constraints do not affect satisfiability; correct values can always be
assigned for the ∆s. These values are used to encode the optimization problem.
For a fixed a, d(a, b) = n can directly be encoded as a constraint by encoding
that exactly n of the ∆s be set to 1 in the CNF. However, it is more efficient

Initial State --
input1=2147483618 (01111111111111111111111111100010)
input2=1073741792 (00111111111111111111111111100000)
input3=0 (00000000000000000000000000000000)
State 1
--

least=2147483618 (01111111111111111111111111100010)
State 2
--

most=2147483618 (01111111111111111111111111100010)
State 9 file minmax.c line 11 function c::main
--

most=1073741792 (00111111111111111111111111100000)
State 11 file minmax.c line 13 function c::main
--

least=0 (00000000000000000000000000000000)

Error explanation deltas:
Value changed: input3#0 from 2147483615 to 0
Value changed: most#4 from 2147483615 to 0

file minmax.c line 9 function c::main
Value changed: least#2 from 2147483615 to 0

file minmax.c line 13 function c::main
Value changed: least#3 from 2147483615 to 0

Fig. 6. Closest successful execution and ∆ values for minmax.c

to use pseudo-Boolean (PB) constraints and replace ZChaff with the PB-solver
PBS [2]. With PBS we can express and solve for the conditions d(a, b) = n,
d(a, b) < n, d(a, b) ≥ n, etc., and, more importantly, directly solve optimization
constraints, minimizing or maximizing d(a, b).

From the counterexample shown in Figure 4, we can generate an execution
(1) with minimal distance from the counterexample and (2) in which the asser-
tion on line 14 is not violated. Constraints {-1}-{-16} are conjuncted with the
∆ constraints (Figure 5) and the unnegated verification claim {1}. The PB con-
straints express an optimization problem of minimizing the sum of the ∆s. The
result is an execution (Figure 6) in which a change in the value of input3 results
in least <= most being true at line 14. This solution is not unique. In general,
there may be a very large class of executions that have the same distance from
a counterexample.

The values of the ∆s allow us to examine precisely the points at which the two
executions differ. The first change is the different value for input3. At least one
of the inputs must change in order for the assertion to hold, as the other values
are all completely determined by the three inputs. The next change is in the
assignment to most at line 9. Because the condition on line 8 is still not satisfied
(no guards change values — control flow is the same as in the counterexample),
the value of most which reaches line 10 (most#5) is not changed. The final
assignment to most is also unchanged (and incorrect). The only change which
reaches the assertion is the alteration to the value of least, which is now correct
because input2 is no longer minimal. input2 cannot be assigned to least due
to the faulty code on line 11.

3.4 Closest Successful Execution ∆s and Causal Dependence

The intuition that comparison of the counterexample with minimally different
successful executions provides information as to the causes of an error can be
justified by showing that ∆s from a (closest) successful execution are equivalent
to a cause c:

Theorem 1. Let a be the counterexample trace and let b be any closest successful
execution to a. Let D be the set of ∆s for which the value is not 0 (the values in
which a and b differ). If δ is a predicate stating that an execution disagrees with
b for at least one of these values, and e is the proposition that an error occurs,
e is causally dependent on δ in a.

Proof. e is causally dependent on δ in a iff for all of the closest executions for
which ¬δ is true, ¬e is also true. ¬δ only holds for executions which agree with
b for all values in D. Clearly, ¬δ(b) holds. ¬e(b) must also be the case, as b is
defined as a closest successful execution to a. Assume that some trace c exists,
such that ¬δ(c) ∧ e(c) ∧ d(a, c) ≤ d(a, b). c must differ from b in some value
(as e(c) ∧ ¬e(b)). c cannot differ from b for any value in D, or δ(c) would be
true. However, if c differs from b in a value other than those in D, c must also
differ from a in this value. Therefore, d(a, c) > d(a, b), which contradicts our
assumption. Therefore, e must be causally dependent on δ in a.

In the example, δ is the predicate (input3#0 != 0) ∨ (most#4 != 0) ∨
(least#2 != 0) ∨ (least#3 != 0). Finding the closest successful execution
also produces a predicate c on which the error is causally dependent4. δ can be
used as a starting point for hypotheses about a more general cause for the error.

4 ∆-Slicing

A successful path with minimal distance to a counterexample may include changes
in values that are not actually relevant to the specification. Changes in an input
value are necessarily reflected in all values dependent on that input.

Consider the program and ∆ values in Figure 7. The change to c is necessary
but also irrelevant to the assertion on line 10. In this case, various static or dy-
namic slicing techniques [23] would suffice to remove the unimportant variables.
Generally, however, static slicing is of limited value as there may be some execu-
tion path other than the counterexample or successful path in which a variable
is relevant. Dynamic slicing raises the question of whether to consider the input
values for the counterexample or for the successful path.

The same approach used to generate the ∆ values can be used to compute
an even more aggressive “dynamic slice.” In traditional slicing, the goal is to
discover all assignments that are relevant to a particular value, either in any
possible execution (static slicing) or in a single execution (dynamic slicing). In
4 Note that the proof also holds for other successful executions: minimal distance

minimizes the number of terms in δ.

1 int main () {
2 int input1, input2;
3 int a = 1, b = 1, c = 1;
4 if (input1 > 0) {
5 a += 5; b += 6; c += 4;
6 }
7 if (input2 > 0) {
8 a += 6; b += 5; c += 4;
9 }
10 assert ((a < 10) || (b < 10));
11 }

Value changed: input2#0 from 1073741824 to 0
Guard changed: input2#0 > 0 && \guard#0 (\guard#2) was TRUE

file slice.c line 7 function c::main
Value changed: a#5 from 12 to 6
Value changed: b#5 from 12 to 7
Value changed: c#5 from 9 to 5

Fig. 7. slice.c and ∆ values

reporting ∆ values, however, the goal is to discover precisely which differences in
two executions are relevant to a value. Moreover, the value in question is always
a predicate (the specification). A slice is an answer to the question: “What is
the smallest subset of this program which always assigns the same values to this
variable at this point?” ∆-slicing answers the question “What is the smallest
subset of changes in values between these two executions that results in a change
in the value of this predicate?”

To compute this “slice,” we use the same ∆ and pseudo-Boolean constraints
as presented above. The constraints on the transition relation, however are re-
laxed. For every variable vi such that ∆(i) = 1 in the counterexample with
constraint vi = expr, and values valai and valbi in the counterexample and clos-
est successful execution, respectively, a new constraint is generated:

(vi = valai) ∨ ((vi = valbi) ∧ (vi = expr))

That is, for every value in this new execution that changed, the value must
be either the same as in the original counterexample or the same as in the closest
successful run. If the latter, it must also obey the transition relation. For values
that did not change (∆(i) = 0) the constant constraint vi = valai is used. The
“execution” generated from these constraints may not be a valid run of the
program (it will not be, in any case where the slicing reduces the size of the ∆s).
However, no invalid state or transition will be exposed to the user: the only part
of the solution that is used is the new set of ∆s. These are always a subset of the
original ∆s. The improper execution is only used to focus attention on the truly
necessary changes in a proper execution. The change in the transition relation
can be thought of as encoding the notion that we allow a variable to revert to
its value in the counterexample if this alteration is not observable with respect
to satisfying the specification.

In slice.c, for example, the constraint c#5 == (input2#0 > 0 && \guard#0
? c#4 : c#3) is replaced with ((c#5 == 9) || ((c#5 == 5) && (c#5 == (in-
put2#0 > 0 && \guard#0 ? c#4 : c#3)))), and so forth. The relaxation of

Value changed: input2#0 from 1073741824 to 0
Guard changed: input2#0 > 0 && \guard#0 (\guard#2) was TRUE

file slice.c line 7 function c::main
Value changed: b#5 from 12 to 7

Fig. 8. ∆-slice for slice.c

the transition relation allows for a better solution to the optimization problem,
the ∆-slice shown in Figure 8. Another slice would replace b with a. It is only
necessary to observe a change in either a or b to satisfy the assertion. Previous
dynamic slicing techniques do not appear to provide this kind of information.

5 Case Study: TCAS

TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict de-
tection and resolution system used by all US commercial aircraft. The Georgia
Tech version of the Siemens suite [19] includes an ANSI C version of the Reso-
lution Advisory (RA) component of the TCAS system (173 lines of C code) and
41 faulty versions of the RA component.

Renieris and Reiss made use of the entire Siemens suite [18]. Their fault
localization technique requires only a set of test cases (and a test oracle) for the
program in question. The Siemens suite provides test cases and a correct version
of the program for comparison. To apply the explain tool a specification must
be provided for the model checker. It would be possible to hard-code values for
test cases as very specific assertions, but this obviously does not reflect useful
practice. “Successful” runs produced might be erroneous runs not present in
the test suite. Most of the Siemens programs are difficult to specify. The TCAS
component, however, is suitable for model checking with almost no modification.
A previous study of the component using symbolic execution [11] provided a
partial specification that was able to detect faults in 5 of the 41 versions (CBMC’s
automatic array bounds checking detected 2). In addition to these assertions, it
was necessary to include some obvious assumptions on the inputs.

Variation #1 of the TCAS code differs from the correct version in a single
line (Figure 9). A ≥ comparison in the correct code has been changed into a
> comparison on line 100. Figure 10 shows the result of applying explain to
the counterexample generated by CBMC for this error (after ∆-slicing). The
counterexample passes through 90 states before an assertion fails.

100c100
// (correct version)
< result = !(Own Below Threat()) || ((Own Below Threat()) && (!(Down Separation >= ALIM())));

// (faulty version #1)
> result = !(Own Below Threat()) || ((Own Below Threat()) && (!(Down Separation > ALIM())));

Fig. 9. diff of correct TCAS code and variation #1

Value changed: Input Down Separation#0 from 400 to 159
Value changed: P1 BCond#1 from TRUE to FALSE

file tcasv1.c line 255 function c::main

P1 BCond = ((Input Up Separation < Layer Positive RA Alt Thresh) &&
(Input Down Separation >= Layer Positive RA Alt Thresh));

assert(!(P1 BCond && PrB)); // P1 BCond -> ! PrB

Fig. 10. First explanation for variation #1 (after ∆-slicing), code for violated assertion

Value changed: Input Down Separation 1#0 from 500 to 504
Value changed: Down Separation#1 from 500 to 504

file tcasv1a.c line 215 function c::main
Value changed: result 1#1 from TRUE to FALSE

file tcasv1a.c line 100 function c::Non Crossing Biased Climb
Value changed: result 1#3 from TRUE to FALSE
Value changed: tmp#1 from TRUE to FALSE

file tcasv1a.c line 106 function c::Non Crossing Biased Climb
Guard changed: \guard#1 && tmp#1 (\guard#7) was TRUE

file tcasv1a.c line 144 function c::alt sep test
Value changed: need upward RA 1#1 from TRUE to FALSE

file tcasv1a.c line 144 function c::alt sep test
Guard changed: \guard#15 && need upward RA 1#1 (\guard#16) was TRUE

file tcasv1a.c line 152 function c::alt sep test
Guard changed: \guard#15 && !need upward RA 1#1 (\guard#17) was FALSE

file tcasv1a.c line 152 function c::alt sep test
Guard changed: \guard#17 && !need downward RA 1#1 (\guard#19) was FALSE

file tcasv1a.c line 156 function c::alt sep test
Value changed: ASTUpRA#2 from TRUE to FALSE
Value changed: ASTUpRA#3 from TRUE to FALSE
Value changed: ASTUpRA#4 from TRUE to FALSE
Value changed: PrB#1 from TRUE to FALSE

file tcasv1a.c line 230 function c::main

Fig. 11. Second explanation for variation #1 (after ∆-slicing)

The explanation given is not particularly useful. The assertion violation has
been avoided by altering an input so that the antecedent of the implication in
the assertion is not satisfied. The distance metric-based technique is not fully
automated; fortunately user guidance is easy to supply in this case. We are
really interested in an explanation of why the second part of the implication
(PrB) is true in the error trace, given that P1 BCond holds. To coerce explain
into answering this query, we add the constraint assume(P1 BCond); to variation
#15. After model checking the program again we can reapply explain. The new
explanation (Figure 11) is far more useful.

Observe that, as in the first explanation, only one input value has changed.
The first change in a computed value is on line 100 of the program — the location
of the fault! Examining the source line and the counterexample values, we see
that ALIM() had the value 640. Down Separation also had a value of 640. The
subexpression (!(Down Separation > ALIM())) has a value of TRUE in the
counterexample and FALSE in the successful run. The fault lies in the original
value of TRUE, brought about by the change in comparison operators and only
exposed when ALIM() = Down Separation. The rest of the explanation shows
how this value propagates to result in a correct choice of RA.

5 This implication antecedent solution can presumably be automated.

Var. exp slice time assm slice time JPF time (R&R) n-c (R&R) n-s CBMC
#1 0.51 0.00 4 0.90 0.91 4 0.87 1521 0.00/0.00 0.58/0.58 0.41
#11 0.36 0.00 5 0.88 0.93 7 0.93 5673 0.00/0.95 0.00/0.95 0.51
#31 0.76 0.00 4 0.89 0.93 7 FAIL - 0.00/0.00 0.00/0.00 0.46
#40 0.75 0.88 6 - - - 0.87 30,482 0.83/0.83 0.77/0.77 0.35
#41 0.68 0.00 8 0.84 0.88 5 0.30 34 0.56/0.60 0.92/0.92 0.38

Table 1. Scores for localization techniques. Explanation execution times in seconds.
Best results in boldface. FAIL indicates memory exhaustion (> 768MB used).

For one of the five interesting6 variations (#40), a useful explanation is pro-
duced without any added assumptions. Variations #11 and #31 also require
assumptions about the antecedent of an implication in an assertion. The final
variation, #41, requires an antecedent assumption and an assumption requiring
that TCAS is enabled (the successful execution finally produced differs from the
counterexample to such an extent that changing inputs so as to disable TCAS
is a closer solution).

5.1 Evaluation of Fault Localization

Renieris and Reiss[18] propose a scoring function for evaluating error localization
techniques based on program dependency graphs [13]. A pdg is a graph of the
structure of a program, with nodes (source code lines in this case) connected
by edges based on data and control dependencies. For evaluation purposes, they
assume that a correct version of a program is available. A node in the pdg is a
faulty node if it is different than in the correct version. The score assigned to an
error report (which is a set of nodes) is a number in the range 0 - 1, where higher
scores are better. Scores approaching 1 are assigned to reports that contain only
faulty nodes. Scores of 0 are assigned to reports that either include every node
(and thus are useless for localization purposes) or only contain nodes that are
very far from faulty nodes in the pdg. Consider a breadth-first search of the
pdg starting from the set of nodes in the error report R. Call R a layer, BFS0.
We then define BFSn+1 as a set containing BFSn and all nodes reachable in
one directed step in the pdg from BFSn. Let BFS∗ be the smallest layer BFSn
containing at least one faulty node. The score for R is 1− |BFS∗||PDG| . This reflects
how much of a program an ideal user (who recognizes faulty lines on sight) could
avoid reading if performing a breadth-first search of the pdg beginning from the
error report.

Table 1 shows scores for error reports generated by explain, JPF, and the
approach of Renieris and Reiss. The score for the CBMC counterexample is
given as a baseline. CodeSurfer [4] generated the pdgs and code provided by
Manos Renieris computed the scores for the error reports. The second and third
columns show scores given to reports provided by explain without using added

6 The two errors automatically detected by CBMC are constant-valued array indexing
violations that are “explained” sufficiently by a counterexample trace.

assumptions, before and after ∆-slicing. For #1, #11, #31, and #41, a fault is
included as an effect of a change in input, but removed by slicing. Columns five
and six show explain results after adding appropriate assumptions, if needed.
In order to produce any results (or even find a counterexample) with JPF it
was necessary to constrain input values to either constants or very small ranges
based on a counterexample produced by CBMC. Comparison with the JPF scores
(based on subsets7 of the full JPF reports) is therefore of dubious value. Columns
eleven and twelve show minimum and maximum scores for two methods given
by Renieris and Reiss [18]. After introducing assumptions and slicing, 0.88 was
the lowest score for an explain report. Ignoring pre-assumption inclusions of
faults, ∆-slicing always resulted in improved scores.

In other experiments, explain produced a 3 line (correct) localization of a
58 step locking-protocol counterexample for a 2991 line portion of a real-time
OS microkernel in 158 seconds.

6 Future Work and Conclusions

There are a number of interesting avenues for future research. The current anal-
ysis of one failing run can be extended to the problem of “n different counterex-
amples with m different explanations.” Another extension in progress applies
the basic technique when using predicate abstraction and for LTL path+cycle
counterexamples. An in-depth look at interactive explanation in practice and dis-
cussion of using explain to produce maximally different counterexamples (for
comparison of similarities) are also beyond the scope of this paper.

No single “best” approach for error explanation can be formally defined, as
the problem is inherently to some extent psychological. David Lewis’ approach to
causality is both intuitively appealing and readily translated into mathematical
terms, and therefore offers a practical means for deriving concise explanations of
program errors. A distance metric informed by Lewis’ approach makes it possi-
ble to generate provably-most-similar successful executions by translating metric
constraints into pseudo-Boolean optimality problems. Experimental results in-
dicate that such executions are quite useful for localization and explanation.

Acknowledgments: I would like to thank Ofer Strichman, Willem Visser,
Daniel Kroening, Manos Renieris, Fadi Aloul, Andreas Zeller, and Dimitra Gi-
annakopoulou for their assistance.

References

1. http://www.cs.cmu.edu/~modelcheck/cbmc/.

2. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo
Boolean solver. In Symposium on the theory and applications of satisfiability testing
(SAT), pages 346–353, 2002.

7 specifically only(pos) ∪ only(neg) ∪ cause(pos) ∪ cause(neg) ∪ (all(neg)\all(pos)) ∪
(all(pos)\all(neg)) for transitions and transforms [12]

3. B. Alpern, M. Wegman, and F. Zadeck. Detecting equality of variables in programs.
In Principles of Programming Languages, pages 1–11, 1988.

4. P. Anderson and T. Teitelbaum. Software inspection using codesurfer. In Workshop
on Inspection in Software Engineering, 2001.

5. T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors in
counterexample traces. In Principles of Programming Languages, pages 97–105,
2003.

6. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, 1999.

7. M. Chechik and A. Gurfinkel. Proof-like counter-examples. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 160–175, 2003.

8. E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In Design Automation
Conference, pages 427–432, 1995.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
10. J. Cobleigh, D. Giannakopoulou, and C. Păsăreanu. Learning assumptions for com-

positional verification. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 331–346, 2003.

11. A Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution
for verifying safety-critical systems. In European Software Engineering Confer-
ence/Foundations of Software Engineering, pages 142–151, 2001.

12. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN
Workshop on Model Checking of Software, pages 121–135, 2003.

13. S. Horwitz and T. Reps. The use of program dependence graphs in software
engineering. In International Conference of Software Engineering, pages 392–411,
1992.

14. H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 445–458, 2002.

15. D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, 2004. To
appear.

16. D. Lewis. Causation. Journal of Philosophy, 70:556–567, 1973.
17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, 2001.

18. M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In
Automated Software Engineering, 2003.

19. G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test selection
technique. Software Engineering, 24(6):401–419, 1999.

20. D. Sankoff and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison. Addison Wesley, 1983.

21. E. Sosa and M. Tooley, editors. Causation. Oxford University Press, 1993.
22. L. Tan and R. Cleaveland. Evidence-based model checking. In Computer-Aided

Verification, pages 455–470, 2002.
23. F. Tip. A survey of program slicing techniques. Journal of programming languages,

3:121–189, 1995.
24. A. Zeller. Isolating cause-effect chains from computer programs. In Foundations

of Software Engineering, pages 1–10, 2002.
25. A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

