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SUMMARY

What is a test case for? Sometimes, to expose a fault. Tests can also exercise code, use memory or time,
or produce desired output. Given a desired effect a test case can be seen as a cause, and its components
divided into essential (required for effect) and accidental. Delta debugging is used for removing accidents
from failing test cases, producing smaller test cases that are easier to understand. This paper extends delta
debugging by simplifying test cases with respect to arbitrary effects, a generalization called cause reduction.
Suites produced by cause reduction provide effective quick tests for real-world programs. For Mozilla’s
JavaScript engine, the reduced suite is possibly more effective for finding faults. The effectiveness of
reduction-based suites persists through changes to the software, improving coverage by over 500 branches
for versions up to four months later. Cause reduction has other applications, including improving seeded
symbolic execution, where using reduced tests can often double the number of additional branches explored.
Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

What is a test case for? This question motivates much of current software testing research. In the
final analysis, the goal of testing is to improve software reliability and reduce risk of failure. As
a means to this end, it is often asserted that the purpose of a test is to detect faults. However, for
most Software Under Test (SUT), for most iterations of the testing process, most test cases will not
expose a fault. Many test cases will never expose a fault. To say that these test cases are without value
seems obviously incorrect. Testing, in both research and practice, therefore has also assumed that a
test case is valuable because it exercises certain behavior of the SUT. The concept of code coverage
[1], for example, equates a test case’s value with the structural elements of the SUT it exercises. In
stress testing, a test case is often valued for the memory, processor time, or bandwidth it requires.
Understanding the precise details of each test case, or each test suite, is generally impossible. The
essential effects (code coverage, load, use case, failure) of a test case are used in numerous ways:

• Test cases are often generated, either manually or automatically, to achieve one of these
effects. E.g., unit tests are often produced to cover certain code paths, concolic testing [2]
generates tests with complete branch coverage as a goal, and stress tests are obviously devised
to produce stress.

• Test cases are often selected based on these purposes. Regression suites are often composed
of tests that have previously failed. Work on test suite reduction and prioritization [3] typically
chooses tests based on their structural coverage.
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int f(int a, int b) {
int x = (a * 40) + 2;
int y = a + b;
int z = (a * 40) + 161;
return (a > 0 ? x : z);

}

Figure 1. A test case for common sub-expression elimination

• Test cases are often evaluated by these purposes. Quality assurance processes often use some
form of structural coverage as a requirement for an “adequate” test suite [4], and of course
testing research usually validates proposed techniques by fault detection or code coverage.

Based on this understanding, a test case can, for any given purpose, be understood as having both
an essential effect (what makes the test case suitable for the purpose at hand—detecting some fault,
covering some code, inducing some computational or network load, etc.) and an accidental aspect.
The accidents of a test case are those components of the test that are not necessary to achieve the
purpose of the test case. These accidental aspects of a test case are unfortunate in two respects. First,
as noted, human understanding of test cases generally is limited; the task of debugging is arguably
simply the effort of distinguishing the essence of a test case (or set of test cases) from the accidental
aspects. Fault localization [5] can be thought of as automatically extracting a failure-based essence,
in terms of source code locations. Second, time spent executing the accidental aspects of a test case
is, in terms of a given essential property of a test case, wasted computational effort. This wasted
effort is precisely why test case selection and prioritization often aims to avoid execution of tests that
are redundant in terms of their essence (e.g., to compose minimal suites with complete coverage).

As an example, consider the C compiler test case in Figure 1. Assuming that the test case was
written in order to test the compiler’s common sub-expression elimination (CSE) optimization, it
is clear that the test has both essential portions (required for the intended effect) and accidental
elements. The variables and computation associated with b and y in particular do not seem to be
required. The computation in the return statement, on the other hand, could be simplified, but
if x and z are not potentially involved in the return value they may be eliminated as dead code by
the compiler, avoiding CSE. While the runtime penalty of the accidental code is trivial, it is easy
to imagine such elements as imposing a serious burden on testing, over longer tests or a very large
number of tests. In this case, the additional code imposes a mental burden on someone attempting
to understand the purpose of the test.

1.1. Delta Debugging: Reducing a Test Case for Human Understanding

Delta debugging (or delta-minimization) is a greedy algorithm (called ddmin) for reducing the
size of failing test cases by eliminating accidental components. Delta debugging algorithms have
retained a common core since the original proposal of Hildebrandt and Zeller [6]: use a variation
of binary search to remove individual components of a failing test case t to produce a new test
case t1min satisfying two properties: (1) t1min fails and (2) removing any component from t1min

results in a test case that does not fail.∗ Such a test case is called 1-minimal. Because 1-minimal
test cases can potentially be much larger than the smallest possible set of failing components, ddmin
technically reduces the size of a test case, rather than truly minimizing it. While the precise details
of ddmin and its variants are complex, delta debugging algorithms can be simply described. Ignoring
caching and the details of an effective divide-and-conquer strategy for constructing candidate test

∗In their original formulation, Hildebrandt and Zeller refer to “circumstances” rather than components, to emphasize the
generality of the idea, but in all of the uses in this paper, non-overlapping components of a test case are the circumstances
in question.
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cases, ddmin for a base failing test case tb proceeds by iterating the following two steps until a
fixpoint is reached:

1. Construct the next candidate simplification of tb, denoted by tc. Terminate if no tc remain (tb
is 1-minimal).

2. Execute tc by calling rtest(tc). If rtest returns 7 (the test fails) then it is a simplification of
tb. Set tb = tc.

The purpose of this iteration is to reduce a test case until it has as few accidental components as
possible, with respect to its essential nature as a failing test case. Note that the algorithm ignores
any properties of a candidate test case except requiring 1) that the size, as measured by some notion
of test components, must be smaller than the original test case and 2) the test case must still fail
(in most practical cases, this is additionally restricted to “fail in the same way as the original test
case”). These two conditions may be thought of as the cause condition and the effect condition. All
other aspects of the candidate test cases are ignored: for instance, the algorithm allows the effects
of a reduced test case to be more complex or numerous than for the original test case, so long as
the desired effect is preserved. In practice, it appears reduction seldom introduces more effect-side
behavior, however.

1.2. Cause Reduction: Delta Debugging with a Parameterized Effect

Delta debugging is an extremely useful algorithm, and good delta debugging tools are practically
required in order to do meaningful random testing on complex systems [7, 8]. Unfortunately,
traditional delta debugging reduces tests too much for any goal not related to simple success or
failure, discarding all behavior not related to the failure of a test. Even more critically, traditional
delta debugging cannot be applied to successful tests at all. The assumption has always been that
delta debugging is a debugging algorithm, only useful for reducing failures. However, the best way
to understand ddmin-like algorithms is that they reduce the size of a generic cause (e.g. a test case,
a thread schedule, etc.) while ensuring that it still causes some fixed effect† (in ddmin, the effect is
always test failure) related to the essence of a test case: ddmin is a special-case of cause reduction.‡

The core value of delta debugging can be understood in a simple proposition: given two test cases
that achieve the same purpose, the smaller of the two test cases will typically execute more quickly
and be easier to understand and mechanically analyze. Delta debugging is valuable because, given
two test cases that both serve the same purpose, the smaller of the two is almost always preferable.
There is no reason why the essence of a test case should be limited to fault detection.

The definitions provided in the core delta debugging paper [9] are almost unchanged in cause
reduction. The one necessary alteration is to replace the function rtest, which “takes a program
run and tests whether it produces the failure” in Definition 3 (in the DD journal paper [9]) with a
function reffect such that reffect simply tests whether the test case satisfies an arbitrary predicate
representing some interesting effect. Failure is just one instance of an effect to be preserved.

This “new” algorithm is called cause reduction but, of course, it is almost exactly the same as
the original ddmin algorithm, and most optimizations, variations, and restrictions still apply. For
example, in traditional delta debugging, it is critical to define candidate test cases for reduction
such that the validity of the original test case is preserved. In some settings, this is trivial: e.g., many
random testing systems produce test cases where each test component is independent with respect to
validity of the test case. In other cases, such as detecting incorrect compilation (vs. compiler crashes)
of C code [8], preserving test case validity requires complex checks, and is a time-consuming aspect
of setting up a delta debugging system. In this paper, it is assumed that the conventional engineering
methods for preserving test case validity have been applied. In all experiments, even for human-
produced test cases, line or character based reduction always produces valid test cases.

†In practice, again, note that the test may cause some additional effect(s) as well, but it is guaranteed by the algorithm to
maintain the desired effect.
‡The authors would like to thank Andreas Zeller for suggesting the term “cause reduction.”
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int f(int a) {
int x = (a * 4) + 2;
int z = (a * 4) + 1;
return (a ? x : z);

}

Figure 2. A reduced test case for common sub-expression elimination

The most interesting consequence of the “minor change” introduced by the concept of cause
reduction is that ddmin is no longer defined only for failing test cases. If the effect chosen is well-
defined for all test cases, then ddmin can be applied to reduce the cause (test case) for any test
case. As an example, imagine taking off-the-shelf character-level delta debugging tools, plus some
static analysis to guarantee that a C program remains in the defined subset of the language [8]
and applying these tools to the code in Figure 1.§ Assuming this test case succeeds, traditional
delta debugging cannot reduce it. However, it is easy to instrument the compiler to log whether
it successfully applied common sub-expression elimination (or a value numbering optimization
performing the same function), and consider a run to be “failing” if CSE succeeds. With this criteria,
the ddmin algorithm reduces the program to the smaller version shown in Figure 2 (reformatted to
insert removed line breaks).

The idea of cause reduction is, in some sense, quite trivial. The core question is whether cause
reduction is simply a novel but pointless generalization of a useful algorithm, or whether the concept
of cause reduction enables practically important advances in software testing. This paper introduces
at length one such advance, the use of cause reduction with respect to code coverage to produce
very small, highly efficient, regression suites (“quick tests”) for use in large-scale random testing.
This paper shows that reduction that preserves statement coverage can approximate retaining other
important effects, including fault detection and branch coverage. A large case study based on testing
Mozilla’s SpiderMonkey JavaScript engine uses real faults to show that cause reduction is effective
for improving test efficiency, and that the effectiveness of reduced test cases persists even across a
long period of development, without re-running the reduction algorithm. Even more surprisingly,
for the version of SpiderMonkey used to perform cause reduction and a version of the code from
more than two months later, the reduced suite not only runs almost four times faster than the original
suite, but detects more distinct faults. A mutation-based analysis of the YAFFS2 flash file system
shows that the effectiveness of cause reduction is not unique to SpiderMonkey. Moreover, cause
reduction can be used to aid complex program analyses that are based on test cases. Reducing by
code coverage, even when it does not significantly improve the runtime of a test case, can make the
test case a more suitable basis for symbolic execution. In many cases, spending 20% of a symbolic
execution budget on reducing test cases, rather than on symbolic exploration, can result in covering
more than twice as many additional branches as symbolic execution alone [10].

This paper is an extension of the ICST 2014 [11] paper proposing the idea of cause reduction for
quick testing, providing more, and more detailed, experimental results as well as new applications of
cause reduction. Section 2 presents the problem of quick testing and introduces a detailed study of
how cause reduction with respect to code coverage can address this problem. Section 3 shows how
cause reduction can aid seeded symbolic execution. Sections 4 and 5 introduce two more narrow
applications of cause reduction that use different cause reduction criteria, in order to suggest to the
reader the flexibility of the idea. Finally, in Section 6 the paper’s results are placed in the context of
other work on delta debugging, test suite optimization, and causality. Section 7 presents some final
thoughts on cause reduction and summarizes key results.

§In practice, character level delta debugging is not recommended for C programs, but in this case it is not problematic;
moreover, for this toy example, no code is produced that introduces undefined behavior and still compiles, making the
static analysis step unnecessary.
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2. COVERAGE-BASED CAUSE REDUCTION FOR QUICK TESTING

2.1. The Quick Test Problem

In testing a flash file system implementation that eventually evolved into the file system for the
Mars Science Laboratory (MSL) project’s Curiosity rover [12, 13], one of the authors of this paper
discovered that, while an overnight sequence of random tests was effective for shaking out even
subtle faults, random testing was not very effective if only a short time (less than an hour) was
available for testing. Each individual random test was a highly redundant, ineffective use of testing
budget. As a basic sanity check/smoke test before checking a new version of the file system in,
it was much more effective to run a regression suite built by applying delta debugging [9] to a
representative test case for each fault previously found.

In addition to detecting actual regressions of the NASA code, ddmin-minimized test cases
obtained close to 85% statement coverage in less than a minute, which running new random
tests often required hours to match. Unfortunately, the delta debugging-based regression was often
ineffective for detecting new faults unrelated to previous bugs. Inspecting minimized test cases
revealed that, while the tests covered most statements, the tests were extremely focused on corner
cases that had triggered failures, and sometimes missed very shallow bugs easily detected by a short
amount of random testing. While the bug-based suite was effective as a pure regression suite, it
was ineffective as a quick way to find new bugs; on the other hand, running new random tests was
sometimes very slow for detecting either regressions or new bugs.

The functional programming community has long recognized the value of very quick, if
not extremely thorough, random testing during development, as shown by the wide use of the
QuickCheck tool [14]. QuickCheck is most useful, however, for data structures and small modules,
and works best in combination with a functional style allowing modular checks of referentially
transparent functions. Even using feedback [12, 15], swarm testing [16], or other improvements
to standard random testing, it is extremely hard to randomly generate effective tests for complex
systems software such as compilers [17] and file systems [12, 13] without a large test budget. For
example, even tuned random testers show increasing fault detection with larger tests, which limits
the number of tests that can be run in a small budget [17, 18]. The value of the ddmin regressions
at NASA, however, suggests a more tractable problem: given a set of random tests, generate a
truly quick test for complex systems software. Rather than choosing a particular test budget that
represents “the” quick test problem, this paper proposes that quick testing is testing with a budget
that is at most half as large as a full test budget, and typically more than an order of magnitude
smaller. Discussion with developers and the authors’ experience suggested two concrete values to
use in evaluating quick test methods. First, tests that take only 30 seconds to run can be considered
almost without cost, and executed after, e.g., every compilation. Second, a five minute budget is
too large to invoke with such frequency, but maps well to short breaks from coding (e.g. the time
it takes to get coffee), and is suitable to use before relatively frequent code check-ins. The idea of
a quick test is inherent in the concept of test efficiency, defined as coverage/fault detection per unit
time [19, 20], as opposed to absolute effectiveness, where large suites always tend to win.

The quick test problem is therefore: given a set of randomly generated tests, produce test suites
for test budgets that are sufficiently small that they allow tests to be run frequently during code
development, and that maximize:

1. Code coverage: the most important coverage criterion is probably statement coverage; branch
and function coverage are also clearly desirable;¶

2. Failures: automatic fault localization techniques [5] often work best in the presence of
multiple failing test cases; more failures also indicate a higher probability of finding a flaw;

¶The importance of various coverages is based on recent work on the effectiveness of coverage criteria for test suite
evaluation [21, 22].
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3. Distinct faults detected: finally, the most important evaluation metric is the actual number of
distinct faults that a suite detects; it is generally better to produce four failures, each of which
exhibits a distinct fault, than to produce 50 failures that exhibit only two different faults [23].

It is acceptable for a quick test approach to require significant pre-computation and analysis of
the testing already performed if the generated suites remain effective across significant changes to
the tested code without re-computation. Performing 10 minutes of analysis before every “30 second
run” is unacceptable (in that they are no longer 30 second runs); performing 10 hours of analysis
once to produce quick test suites that remain useful for a period of months is fine. For quick test
purposes, it is also probably more feasible to build a generally good small suite rather than perform
change analysis on-the-fly to select test cases that need to be executed [3, 24]. In addition compilers
and interpreters tend to pose a difficult problem for change analysis, since optimization passes rely
on deep semantic properties of the test case.

Given the highly parallel nature of random testing, in principle arbitrarily many tests could be
performed in five minutes. In practice, considerable effort is required to introduce and maintain
cloud or cluster-based testing, and developers often work offline or can only use local resources due
to security or confidentiality concerns. More critically, a truly small quick test would enable testing
on slow, access-limited hardware systems; in MSL development, random tests were not performed
on flight hardware due to high demand for access to the limited number of such systems [25],
and the slowness of radiation-hardened processors. A test suite that only requires 30 seconds to
five minutes of time on a workstation, however, would be feasible for use on flight testbeds. The
desire for high quality random tests for slow/limited access hardware may extend to other embedded
systems contexts, including embedded compiler development. Such cases are more common than
may be obvious: for instance, Android GUI random testing [26] on actual mobile devices can be
even slower than on already slow emulators, but is critical for finding device-dependent problems.
Quick testing’s model of expensive pre-computation to obtain highly efficient execution is a good
fit for the challenge of testing on slow and/or over-subscribed hardware.

In some cases, the quick test problem might be solved simply by using test-generation techniques
that produce short tests in the first place, e.g. evolutionary/genetic testing approaches where test
size is included in fitness [27, 28, 29], or bounded exhaustive testing (BET). BET, unfortunately,
performs poorly even for file system testing [30] and is very hard to apply to compiler testing.
Recent evolutionary approaches [28] are more likely to succeed, but (to the authors’ knowledge)
have not been applied to such complex problems as compiler or interpreter testing, where hand-
tuned systems requiring expert knowledge are typical [17, 31]. Even random testers for file systems
are often complex, hand-tuned systems with custom feedback and hardware fault models [12].

One approach to quick testing is to use traditional test suite prioritization or minimization
techniques [3]. However, these techniques provide no mitigation for the extreme redundancy and
inefficiency of most random tests. If a typical generated random test requires more than a second to
execute, a 30 second quick test will never execute more than 30 tests; 30 random tests is, for most
systems, not a very effective test, even if those tests are well chosen. Cause reduction offers the
potential to actually increase the number of tests run with the same computational effort. However,
to apply cause reduction, the user needs to find an effect that maintains the desirable properties of
the original test case: fault detection and, more generally, exploration of SUT behavior. Does such
an effect exist?

2.2. Coverage as an Effect

In fact, a large portion of the literature on software testing is devoted to proposing precisely such
a class of effects: running a test case always produces the effect of covering certain source code
elements, which can include statements, branches, data-flow relationships, state predicates, or paths.
High coverage is a common goal of testing, as high coverage correlates with effective fault detection
[32]. Producing small test suites with high code coverage [20] has long been a major goal of software
testing efforts, inspiring a lengthy literature on how to minimize a test suite with respect to coverage,
how to select tests from a suite based on coverage, and how to prioritize a test suite by coverage [3].
Coverage-based minimization reduces a suite by removing test cases; using cause reduction, a suite
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can also (orthogonally) be reduced by minimizing each test in the suite (retaining all tests) with the
effect being any chosen coverage criteria. The potential benefit of reduction at the test level is the
same as at the suite level: more efficient testing, in terms of fault detection or code coverage per unit
of time spent executing tests. Cause reduction with respect to coverage is a promising approach for
building quick tests, as random tests are likely to be highly reducible.

As described in the introduction, ddmin algorithms proceed by generating “candidate” tests: tests
that are smaller than the original test case, but may preserve the property of interest, which in the
original algorithm is “this test fails.” When evaluating the preservation check on a candidate reduced
test case returns 7 (indicating the test failed) ddmin essentially starts over, with the candidate test
case as the new starting point for reduction, until no candidates fail. Preservation is formulated as
follows for coverage-based reduction:

reffect(tc, tb) =
{

iff ∀s ∈ c(tb).s ∈ c(tc) 7
else 3

where tc is the currently proposed smaller test, tb is the original test case, and c(t) is the set of
all coverage entities executed by t. While it may be confusing that a valid reduction of the test
case returns 7 the terminology of the original papers is maintained to show how little difference
there is between generalized cause reduction and the ddmin algorithm; recall that in ddmin the point
of preservation is to find tests that fail. Returning 7 in this context means that the new test has
preserved coverage and can therefore be used as the basis for further reduction efforts, while 3
means that the candidate test does not preserve coverage, and should be discarded (the fate of any
successful test case in the original ddmin algorithm). Note that this definition allows a test case to
be minimized to a test with better coverage than the original test. In practice, improved coverage
seems rare: if a smaller test that does not preserve the added coverage can be found, ddmin removes
gained coverage. As a variant, it would be possible to force preservation of any gains in coverage
encountered during reduction; the authors did consider this approach, but found that such gains were
rare enough that it made little difference. Forcing reductions to improve coverage resulted in most
test cases not reducing at all, at high computational cost, and very slight gains in coverage at high
cost for other test cases (with little reduction). However, the authors did not experiment extensively
with these variants.

In principle, any coverage criteria could be used as an effect. In practice, it is highly unlikely
that reducing by extremely fine-grained coverages such as path or predicate coverages [32] would
produce significant reduction. Moreover, ddmin is a very expensive algorithm to run when test cases
do not reduce well, since every small reduction produces a new attempt to establish 1-minimality:
small removals tend to result in a very large computational effort proportional to the reduction.
Additionally, for purposes of a quick test, it seems most important to concentrate on coverage of
coarse entities, such as statements. Finally, only branch and statement (which obviously includes
function) coverage are widely enough implemented for languages that it is safe to assume anyone
interested in producing a quick test has tools to support their use. For random testing, which is
often carried out by developers or by security experts, this last condition is important: lightweight
methods that do not require static or dynamic analysis expertise and are easy to implement from
scratch are more likely to be widely applied [33]. This paper therefore investigates only statement,
branch, and function coverage.

2.3. Combining Test-Based and Suite-Based Reductions

While the primary interest is in reduction at the test case, rather than test suite, level, it is also
interesting to consider the possibility of combining the two approaches to suite reduction. Figure
3 shows an algorithm for combining the approaches, where T is the original test suite and M is the
output selected and reduced suite. First, some test suite selection method is applied to produce a suite
B ⊆ T such that B has the same total coverage as T . Any of the various algorithms [3] proposed for
this task can be used. The tests in B are then, in the order of the coverage they contribute, minimized
with the requirement that they cover all statements that are their additional contribution. That is,
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B = Select(T) compute test cases for complete coverage
M = ∅ output: set of reduced test cases
C = ∅ entities covered so far
while (B 6= ∅)

t = t ∈ B such that c(t)−C is maximized
B = B - t
t′ = ddmin(t, c(t′) ⊇ c(t)−C)
M = M + t′

C = C + c(t′)
return M

Figure 3. Algorithm for combining suite-based selection and cause reduction

rather than requiring each test to preserve its original statement coverage, each test is only required
to preserve coverage such that the entire selected suite will still have the same overall coverage.

2.4. SpiderMonkey JavaScript Engine Case Study

In order to determine the value of cause reduction for quick testing, this paper relies on one large
case study and two smaller studies. The core research questions to be answered are:

• RQ1: How does minimizing an entire suite using cause reduction with respect to coverage
affect other properties of the suite (runtime, different coverages, failures, fault detection)?

• RQ2: How does this impact the effectiveness (by the same evaluation measures) of quick tests
based on these suites, here represented by 30 second and 5 minute test budgets?

• RQ3: How do the results for RQ1 and RQ2 change as the software is modified over time, but
the minimized suite is not re-computed?

• RQ4: What is the computational cost of cause reduction?

In addition to these core questions, this paper also considers the effects of combining cause
reduction with traditional prioritization and selection methods. To answer the questions, the only
approach is to construct a large number of different test suites and compare them: given a baseline
test suite produced by random testing, apply cause reduction by coverage measures and some
traditional suite prioritization algorithms, and measure key suite properties with varying testing
budgets and for different versions of the software under test. Briefly put, the independent variables
are program version, suite construction method, and testing budget, and the dependent variables are
the various evaluation measures listed below. Answers to research questions 1, 2, and 4 are broken
out into separate sections below; results for RQ3 are spread through other sections.

2.4.1. Object of Study The large case study is based on SpiderMonkey, the JavaScript Engine for
Mozilla, an extremely widely used, security-critical interpreter/JIT compiler. SpiderMonkey has
been the target of aggressive random testing since 2007. A single fuzzing tool, jsfunfuzz [31],
is responsible for identifying more than 1,700 previously unknown bugs in SpiderMonkey [34].
SpiderMonkey is (and was) very actively developed, with over 6,000 code commits in the period
from January 2006 to September 2011 (nearly four commits/day). SpiderMonkey is thus ideal for
evaluating the effects of coverage-based reduction, using the last public release of the jsfunfuzz
tool, modified for swarm testing [16]. Figures 4 and 5 show cause reduction by statement coverage in
action. A jsfunfuzz test case consists of a sequence of JavaScript constructs, given as arguments
to a JavaScript function, tryItOut. The tryItOut function compiles its string argument and
executes it in a sandbox, ensuring that unbounded loops or uncaught exceptions don’t terminate
the test, and checking some deeper semantic properties of execution (e.g., calling uneval if an
object is returned by the code fragment). The first figure is a short test generated by jsfunfuzz;
the second is a test case based on it, produced by ddmin using statement coverage as effect. These
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tryItOut("with((delete proto ))
{export parent ;true;}");

tryItOut("while((false for (constructor in false))){}");
tryItOut("throw noSuchMethod ;");
tryItOut("throw undefined;");
tryItOut("if(<><x><y/></x></>) {null;}else{/x/;/x/g;}");
tryItOut("{yield;export count ; }");
tryItOut("throw StopIteration;");
tryItOut("throw StopIteration;");
tryItOut(";yield;");

Figure 4. jsfunfuzz test case before statement coverage reduction

tryItOut("with((delete proto ))
{export parent ;true;}");

tryItOut("while((false for (constructor in false))){}");
tryItOut("throw undefined;");
tryItOut("if(<><x><y/></x></>) {null;}else{/x/;/x/g;}");
tryItOut("throw StopIteration;");
tryItOut(";yield;");

Figure 5. jsfunfuzz test case after statement coverage reduction

tests both cover the same 9,625 lines of code. While some reductions are easily predictable (e.g. the
repeated throw StopIteration), others are highly non-obvious, even to a developer.

2.4.2. Evaluation Measures The evaluation measures for suites are: size (in # tests), statement
coverage (ST), branch coverage (BR), function coverage (FN), number of failing tests, and estimated
number of distinct faults. All coverage measures were determined by running gcov (which was also
used to compute coverage for reffect). Failures were detected by the various oracles in jsfunfuzz
and, of course, detecting crashes and timeouts.

Distinct faults detected by each suite were estimated using a binary search over all source code
commits made to the SpiderMonkey code repository, identifying, for each test case, a commit such
that: (1) the test fails before the commit and (2) the test succeeds after the commit. With the
provision that the authors have not performed extensive hand-confirmation of the results, this is
similar to the procedure used to identify bugs in previous work investigating the problem of ranking
test cases such that tests failing due to different underlying faults appear early in the ranking [23].
This method is not always precise. It is, however, uniform and has no obvious problematic biases.
Its greatest weakness is that if two bugs are fixed in the same check-in, they will be considered to
be “one fault”; the estimates of distinct faults are therefore best viewed as lower bounds on actual
distinct faults. In practice, hand examination of tests in previous work suggested that the results of
this method are fairly good approximations of the real number of distinct faults (as defined by fixes
applied by developers) detected by a suite. Some bugs reported may be faults that developers knew
about but gave low priority; however, more than 80 failures result in memory corruption, indicating
a potential security flaw, and all faults identified were fixed at some point.

2.4.3. Test Suites Constructed for Evaluation The baseline test suite for SpiderMonkey is a set of
13,323 random tests, produced during four hours of testing the 1.6 source release of SpiderMonkey.
These tests constitute what is referred to below as the Full test suite. Running the Full suite is
essentially equivalent to generating new random tests of SpiderMonkey. A reduced suite with
equivalent statement coverage, referred to as Min, was produced by performing cause reduction
with respect to statement coverage on every test in Full. The granularity of minimization was based
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Figure 6. Semantic units in GE-Min test cases

on the semantic units produced by jsfunfuzz, with 1,000 such units in each test in Full. A unit is
the code inside each tryItOut call—approximately one line of code. After reduction, the average
test case size was just over 123 semantic units, a bit less than an order of magnitude reduction; while
increases in coverage were allowed, in 99% of cases coverage was identical to the original test. The
computational cost of cause reduction was, on contemporary hardware, around 30–35 minutes per
test case, somewhat higher than the costs of traditional delta debugging reported in older papers
[7]. The entire process completed in less than four hours on a modestly sized heterogeneous cluster
(using fewer than 120 nodes). The initial plan to also minimize by branch coverage was abandoned
when it became clear that statement-based minimization tended to almost perfectly preserve total
suite branch coverage. Branch-based minimization was also much slower (by a factor of two or
more) and typically reduced size by a factor of only 2/3, vs. nearly 10x reduction for statements.

A third suite, MinFN was produced by the same method, only applying cause reduction with
respect to function, rather than statement, coverage. The cost of reduction was improved to less than
10 minutes on average, and the average length in semantic units was lowered to only 27.6 units.

A fourth suite, MinFail, was produced by taking all 1,631 failing test cases in Full and reducing
them using ddmin with the requirement that the test case fail and produce the same failure output
as the original test case. After removing numerous duplicate tests, MinFail consisted of 1,019 test
cases, with an average size of only 1.86 semantic units (the largest test contained only 9 units).
Reduction in this case only required about five minutes per test case.

Two additional small suites, GEST (Full) and GEST (Min) were produced by applying Chen and
Lau’s GE heuristic [35] for coverage-based suite minimization to the Full and Min suites. The GE
heuristic first selects all test cases that are essential (i.e., they uniquely cover some coverage entity),
then repeatedly selects the test case that covers the most additional entities, until the coverage of
the minimized suite is equal to the coverage of the full suite (i.e., an additional greedy algorithm,
seeded with test cases that must be in any solution). Ties are broken randomly.
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GEST and cause reduction with respect to statement coverage were combined to produce the GE-
Min suite, by applying the algorithm in Figure 3. This resulted in a test suite with the same coverage
as the entire original test suite, but a runtime of less than 30 seconds—a full coverage 30 second
quick test. The total number of semantic units for all tests in GE-Min is only 1,212, slightly larger
than one original unreduced test case. Figure 6 shows the size in semantic units of tests in GE-Min.
After the first few test cases, reduction is soon targeting only a very small number of statements per
test case, resulting in very small and highly specialized test cases.

In order to produce 30 second and five minute test suites (the extremes of the likely quick test
budget), it was necessary to choose subsets of Full and Min. The baseline approach is to randomly
sample a suite, an approach to test case prioritization used as a baseline in numerous previous
test case prioritization and selection papers [3]. While a large number of plausible prioritization
strategies exist, this study is restricted to ones that do not require analysis of faults, expensive
mutation testing, deep static analysis, or in fact any tools other than standard code coverage. As
discussed above, a primary goal here is to prefer methods as lightweight and generally applicable
as possible. On this basis, the strategies are limited to (simple) four coverage-based prioritizations
from the literature [3, 36], which are denoted by ∆ST, |ST|, ∆BR, and |BR|. ∆ST indicates a suite
ordered by the incremental improvement (∆) in statement coverage offered by each test over all
previous tests (an additional greedy algorithm), while |ST| indicates a suite ordered by the absolute
statement coverage of each test case (a pure greedy algorithm). The first test executed for both ∆ST
and |ST| will be the one with the highest total coverage. ∆BR and |BR| are similar, except ordered
by different coverage.

Finally, a key question for a quick test method is how long quick tests remain effective. As code
changes, a cause reduction and prioritization based on tests from an earlier version of the code
will (it seems likely) become obsolete. Bug fixes and new features (especially optimizations in a
compiler) will cause the same test case to change its coverage, and over time the basic structure
of the code may change; SpiderMonkey itself offers a particularly striking case of code change:
between release version 1.6 and release version 1.8.5, the vast majority of the C code-base was
re-written in C++. All experiments were therefore performed not only on SpiderMonkey 1.6, the
baseline for cause reduction, but applied to “future” (from the point of view of quick test generation)
versions of the code. The first two versions are internal source commits, not release versions, dating
from approximately two months (2/24/2007) and approximately four months (4/24/2007) after the
SpiderMonkey 1.6 release (12/22/2006). When these versions showed that quick tests retained
considerable power, it indicated that a longer lifetime than expected might be possible. The final
two versions of SpiderMonkey chosen were therefore the 1.7 release version (10/19/2007) and the
1.8.5 release version (3/31/2011). Note that all suites were reduced and prioritized based on the 1.6
release code; no re-reduction or re-prioritization was ever applied. Strictly speaking, therefore, this
involved no creation of new suites other than the random selection of 30s and 5m samples.

2.4.4. SpiderMonkey Results for RQ1 (and RQ3): Effect of Reduction on Baseline Suite Table I
provides information on the base test suites across the five versions of SpiderMonkey studied.
A purely failure-based quick test such as was used at NASA (MinFail) produces very poor code
coverage (e.g., covering almost 100 fewer functions than the original suite, and over 3,000 fewer
branches), as expected. It also loses fault detection power rapidly, only finding ∼7 distinct faults on
the next version of the code base, while suites based on all tests can detect ∼20-∼36 faults. Given
its extremely short runtime, retaining such a suite as a pure regression test suite may be useful,
but it cannot be expected to work as a good quick test. Second, the suites greedily minimized by
statement coverage (GEST (Full) and GEST (Min)) are very quick, and potentially useful, but lose a
large amount of branch coverage and do not provide enough tests to fill a five minute quick test. The
benefits of suite minimization by statement coverage (or branch coverage) were represented in the
30 second and five minute budget experiments shown below by the ∆ prioritizations, which produce
the same results, with the exception that for short budgets tests included because they uniquely cover
some entity are less likely to be included than with random sampling of the minimized suites.
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Table I. SpiderMonkey Unlimited Test Budget Results

Size Statement Branch Function # Failing Estimated
Suite (# Tests) Time(s) Coverage Coverage Coverage Tests # Faults

Release 1.6, 12/22/06
Full 13,323 14,255.068 19,091 14,567 966 1,631 22
Min 13,323 3,566.975 19,091 14,562 966 1,631 43

MinFN 13,323 2,636.648 18,876 14,280 966 1,627 39
MinFail 1,019 169.594 16,020 10,875 886 1,019 22

GEST (Full) 168 182.823 19,091 14,135 966 14 5
GEST (Min) 171 47.738 19,091 14,099 966 14 8

GE-Min 168 25.443 19,091 13,722 966 12 8

Non-release snapshot, 2/24/07
Full 13,323 9,813.781 22,392 17,725 1,072 8,319 20
Min 13,323 3,108.798 22,340 17,635 1,070 4,147 36

MinFN 13,323 2,490.859 22,107 17,353 1,070 1,464 32
MinFail 1,019 148.402 17,923 12,847 958 166 7

GEST (Full) 168 118.232 21,305 16,234 1,044 116 5
GEST (Min) 171 40.597 21,323 16,257 1,045 64 3

GE-Min 168 25.139 20,887 15,424 1,047 8 6

Non-release snapshot, 4/24/07
Full 13,323 16,493.004 22,556 18,047 1,074 189 10
Min 13,323 3,630.917 22,427 17,830 1,070 196 6

MinFN 13,323 2,522.145 22,106 17,449 1,066 167 5
MinFail 1,019 150.904 18,032 12,979 961 158 5

GEST (Full) 168 206.033 22,078 17,203 1,064 4 1
GEST (Min) 171 45.278 21,792 16,807 1,058 3 1

GE-Min 168 24.125 21,271 15,822 1,052 2 2

Release 1.7, 10/19/07
Full 13,323 14,282.776 22,426 18,130 1,071 528 15
Min 13,323 3,401.261 22,315 17,931 1,067 274 10

MinFN 13,323 2,474.55 22,022 17,565 1,065 241 11
MinFail 1,019 168.777 18,018 13,151 956 231 12

GEST (Full) 168 178.313 22,001 17,348 1,061 6 2
GEST (Min) 171 43.767 21,722 16,924 1,055 5 2

GE-Min 168 24.710 21,212 15,942 1,045 4 4

Release 1.8.5, 3/31/11
Full 13,323 4,301.674 21,030 15,854 1,383 11 2
Min 13,323 2,307.498 20,821 15,582 1,363 3 1

MinFN 13,323 1,775.823 20,373 15,067 1,344 3 2
MinFail 1,019 152.169 16,710 11,266 1,202 2 1

GEST (Full) 168 51.611 20,233 14,793 1,338 1 1
GEST (Min) 171 28.316 19,839 14,330 1,327 1 1

GE-Min 168 21.550 18,739 13,050 1,302 1 1

Legend: Full = Original Suite; Min = ddmin(Full, Statement Coverage); MinFN = ddmin(Full, Function
Coverage); MinFail = ddmin(Full, Failure); GEST = Greedy Selection for Statement Coverage
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The most important total suite result is that the cause reduced Min suite retains (or improves)
many properties of the Full suite that are not guaranteed to be preserved by the modified ddmin
algorithm. For version 1.6, only five branches are “lost”, and (most strikingly) the number of failing
test cases is unchanged. Most surprisingly, the estimated distinct fault detection is improved: it has
grown from ∼22 faults to ∼43 faults. The difference in results is statistically significant: dividing
the test populations into 30 equal-sized randomly selected test suites for both full and minimized
tests, the average minimized suite detects 11.83 distinct faults on average, while the average full
suite only detects 7.6 faults, with a p-value of 5.2 · 10−10 under U-test. It is unclear how any bias in
the fault estimation method produces this strong an effect, given that the tests produced are similar in
structure and nature, and the estimation method was applied in the same way to all tests. One likely
hypothesis as to the cause of the failure preservation level is that ddmin tends to preserve failure
because failing test cases have unusually low coverage in many cases. Since the ddmin algorithm
attempts to minimize test size, this naturally forces it to attempt to produce reduced tests that also
fail; moreover, some failures execute internal error handling code (some do not, however—many
test cases violating jsfunfuzz semantic checks, for example).

The apparent increased diversity of faults, however, is surprising and unusual, and suggests that
the use of ddmin as a test mutation-based fuzzing tool might be an interesting area for future
research. In retrospect, it is obvious that ddmin takes as input a test case and generates a large
number of related, but distinct, new test cases—it is, itself, a test case generation algorithm. It
seems safe to say that the new suite is essentially as good at detecting faults and covering code,
with much better runtime (and therefore better test efficiency [19]). In order to better understand
the reasons why the number of distinct faults identified increased, the authors examined by hand a
number of the cases where the identified bug changed from the original suite to the reduced suite.
Understanding exactly what is taking place in 1,000 (or even 100) linejsfunfuzz-produced test
cases was unfortunately almost impossible without intimate understanding of the code involved. A
tool to identify cases where the difference in estimated fault also resulted in a change in minimized
(by traditional failure-based delta debugging) test cases was developed and applied to these results.
The pattern in the 53 identified instances was similar: the cases had considerable overlap in actual
JavaScript code, but the result for the coverage-minimized tests differed in one or two lines—it
was more often shorter or simpler, but sometimes larger or more complex. The last line of the test
case, triggering failure, was the same in all but two cases. Figure 7 shows an example of a typical
case. This case appears to be an instance of two partial fixes for one underlying fault, though the
code changes in both instances are complex (and lengthy) and involve enough other modification
(e.g. what appear to be refactorings) that determining this for certain would require considerable
SpiderMonkey code base expertise.

It appears that the phenomenon of detecting “more faults” may be strongly related to the very
buggy nature of SpiderMonkey 1.6. For many faults, there may be several fixes, made at different
times, that affect different manifestations of a single underlying conceptual “bug.” The binary-search
based approach is unable to generalize these into a single fault since, in fact, various aspects of
“the fault” were fixed at different times, affecting different exposing test cases. The coverage-based
minimization increases the set of “fixes” for one underlying fault that are needed to be included
in order to reach a state where no test cases fail, because the preconditions that come before the
statements inducing the failure become more varied. Why are the preconditions more varied? One
guess, which seems to match hand examination, is that some preconditions appear much more
frequently in test cases than others, due to the combinatorics of jsfunfuzz. These tend to be the
ones that induce failure in the non-minimized suite test cases. However, these multiple appearances
of the more-common precondition to failure appear to be coverage-redundant with respect to each
other, so the cause reduced suite eliminates most of the appearances of these common preconditions,
allowing other preconditions to trigger failure in a different way. While understanding precisely
what is going on would probably require the expertise of SpiderMonkey developers, or very long
investigation, this hypothesis seems to match the hand examination of particular test cases. In short,
it is probably only true in a somewhat over-formal sense (based on the actual fixes applied to
SpiderMonkey, rather than a reasonable notion of “different bugs”) that the coverage minimized
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Minimization of original (Full) suite test case:

tryItOut("L: {prototype%=new ({}). lookupGetter (); }");
tryItOut(" noSuchMethod = parent ;");
tryItOut(" iterator = prototype;");
tryItOut("try { throw constructor; } catch( parent if (function()

{gc()})()) { try { throw prototype; } catch( proto )
{ throw proto ; } finally {return (prototype =
<x><y/></x>. noSuchMethod .unwatch("constructor")); }
} finally { export *; } ");

Minimization of reduced (Min) suite test case:

tryItOut("do {<><x><y/></x></>; } while(({}) && 0);");
tryItOut("try { throw constructor; } catch( parent if (function()

{gc()})()) { try { throw prototype; } catch( proto )
{ throw proto ; } finally {return (prototype =
<x><y/></x>. noSuchMethod .unwatch("constructor")); }
} finally { export *; } ");

Figure 7. Change in minimized tests for change in fault example
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Figure 8. Statement coverage for 30s and 5m quick tests across SpiderMonkey versions

suite detects more faults. However, it is also true that the reduced suite serves as a considerably
better regression test in that a larger portion of the needed fixes to SpiderMonkey 1.6 must be
applied to produce a successful run of the whole suite.

2.4.5. SpiderMonkey Results for RQ2 (and RQ3): Effectiveness for Quick Testing Tables II and
III show how each proposed quick test approach performed on each version, for 30 second and five
minute test budgets, respectively. All nondeterministic or time-limited experiments were repeated 30
times. The differences between minimized (Min) suites and Full suites for each method and budget
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Table II. SpiderMonkey 30s Test Budget Mean Results

Size Statement Branch Function # Failing Estimated
Suite (# Tests) Coverage Coverage Coverage Tests # Faults

Release 1.6, 12/22/06
Full 27.1 16,882.1 11,895.4 897.0 2.8 2.8

Full+∆ST 27.6 18,270.5 13,050.1 949.9 4.2 4.0
Full+∆BR 25.7 18,098.2 13,144.7 936.4 2.8 2.6

Min 102.2 17,539.4 12,658.6 916.6 12.6 7.1
Min+∆ST 106.9 18,984.7 13,873.6 963.1 12.0 9.0
Min+∆BR 77.3 18,711.6 13,860.9 958.8 7.3 5.4

MinFN 135.7 17,320.5 12,300.2 922.6 17.0 6.0

Non-release snapshot, 2/24/07
Full 37.8 19,718.0 14,644.9 991.6 23.9 3.1

Full+∆ST 45.1 19,958.0 14,813.9 1,006.0 35.1 3.0
Full+∆BR 39.4 20,502.2 15,511.6 1,021.8 23.5 4.4

Min 105.0 20,319.3 15,303.5 1,013.2 32.2 4.0
Min+∆ST 92.9 21,238.1 15,984.8 1,049.1 35.6 2.7
Min+∆BR 117.2 21,167.2 16,183.9 1,042.0 46.4 5.0

MinFN 137.8 19,896.1 14,783.4 1,017.6 14.9 5.1

Non-release snapshot, 4/24/07
Full 23.8 20,072.8 15,108.5 999.0 0.6 0.6

Full+∆ST 25.3 21,111.7 15,948.7 1,040.3 2.0 2.0
Full+∆BR 25.8 21,101.4 16,122.2 1,037.8 2.0 2.0

Min 100.8 20,485.7 15,564.3 1,016.6 1.6 1.6
Min+∆ST 113.5 21,731.8 16,631.1 1,056.9 2.0 2.0
Min+∆BR 105.4 21,583.7 16,763.8 1,056.4 3.0 2.0

MinFN 145.1 20,001.4 14,983.1 1,017.4 1.8 1.2

Release 1.7, 10/19/07
Full 27.5 20,061.6 15,288.4 1,002.0 1.4 1.4

Full+∆ST 30.0 21,112.9 16,140.3 1,042.0 4.0 3.0
Full+∆BR 29.2 21,047.3 16,280.5 1,036.3 2.0 2.0

Min 103.5 20,416.8 15,675.1 1,015.7 1.8 1.8
Min+∆ST 116.4 21,668.4 16,762.6 1,054.0 4.0 3.0
Min+∆BR 109.7 21,535.6 16,908.7 1,053.8 4.0 3.0

MinFN 148.6 19,967.7 15,099.4 1,019.0 2.9 1.6

Release 1.8.5, 3/31/11
Full 83.4 19,300.8 13,907.5 1,291.4 0.0 0.0

Full+∆ST 98.8 19,876.9 14,430.8 1,320.4 1.0 1.0
Full+∆BR 98.0 19,963.1 14,494.2 1,326.0 1.0 1.0

Min 140.8 19,043.3 13,621.1 1,286.0 0.0 0.0
Min+∆ST 179.4 19,848.2 14,338.0 1,325.0 1.0 1.0
Min+∆BR 178.3 19,975.8 14,453.0 1,329.0 1.0 1.0

MinFN 158.4 18,389.2 12,882.8 1,278.3 0.0 0.0
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Table III. SpiderMonkey 5m Test Budget Mean Results

Size Statement Branch Function # Failing Estimated
Suite (# Tests) Coverage Coverage Coverage Tests # Faults

Release 1.6, 12/22/06
Full 269.4 17,993.2 13,227.5 933.2 32.6 7.4

Full+∆ST 270.2 19,093.0 14,195.9 966.0 23.0 8.0
Full+∆BR 272.1 19,064.2 14,504.3 962.0 24.0 9.0

Min 1,001.2 18,493.2 13,792.4 949.8 121.1 18.8
Min+∆ST 1,088.9 19,093.0 14,298.4 966.0 138.7 22.9
Min+∆BR 1,093.1 19,091.0 14,563.2 964.0 146.3 20.9

MinFN 1,662.2 18,367.0 13,592.1 951.7 204.7 20.9

Non-release snapshot, 2/24/07
Full 381.4 21,175.5 16,308.2 1,037.6 237.8 8.3

Full+∆ST 404.5 21,554.0 16,612.1 1,051.0 258.9 7.0
Full+∆BR 398.7 21,664.2 16,833.1 1,051.0 252.6 8.0

Min 1,124.9 21,556.8 16,711.3 1,051.1 347.9 10.6
Min+∆ST 1,255.6 21,899.8 17,021.9 1,064.0 383.6 15.0
Min+∆BR 1,227.7 21,940.0 17,180.0 1,058.1 356.5 12.0

MinFN 1,769.4 21,322.6 16,430.6 1,052.1 190.9 15.5

Non-release snapshot, 4/24/07
Full 237.8 21,430.2 16,663.0 1,043.8 7.8 2.7

Full+∆ST 244.7 22,139.0 17,279.3 1,064.0 7.0 2.0
Full+∆BR 241.2 22,126.8 17,483.3 1,064.0 6.1 3.0

Min 1,085.6 21,695.8 16,960.1 1,051.4 16.0 2.9
Min+∆ST 1,113.8 22,106.9 17,308.0 1,065.3 18.0 5.0
Min+∆BR 1,135.1 22,178.0 17,550.5 1,063.0 17.1 3.0

MinFN 1,790.1 21,380.9 16,568.2 1,050.6 23.0 2.6

Release 1.7, 10/19/07
Full 263.7 21,350.0 16,796.8 1,042.2 10.9 3.6

Full+∆ST 282.1 22,074.0 17,438.1 1,063.0 17.8 4.0
Full+∆BR 278.6 22,087.5 17,670.1 1,061.0 11.0 5.0

Min 1,072.9 21,616.9 17,070.0 1,050.4 22.2 4.8
Min+∆ST 1,186.3 22,025.0 17,425.7 1,063.0 26.1 6.0
Min+∆BR 1,165.8 22,082.3 17,676.6 1,060.0 24.0 7.0

MinFN 1,794.4 21,306.7 16,673.1 1,049.0 33.6 4.9

Release 1.8.5, 3/31/11
Full 908.8 20,359.8 15,057.9 1,344.2 0.6 1.1

Full+∆ST 982.6 20,514.6 15,182.8 1,349.0 2.0 1.0
Full+∆BR 1,001.4 20,638.6 15,312.7 1,366.7 3.0 2.0

Min 1,649.1 20,182.0 14,850.2 1,333.5 0.4 1.2
Min+∆ST 1,851.3 20,402.3 15,067.5 1,343.0 1.0 1.0
Min+∆BR 1,661.0 20,445.5 15,108.4 1,348.4 1.0 1.0

MinFN 1,819.6 19,727.7 14,306.2 1,323.7 0.5 0.3
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are statistically significant at a 95% level, under a two-tailed U-test, with only one exception: the
improvement in fault detection for the non-prioritized suites for the 4/24 version is not significant.
The best results for each suite attribute, SpiderMonkey version, and test budget combination are
shown in bold (ties are only shown in bold if some approaches did not perform as well as the
best methods). For number of tests executed, the best value for suites other than MinFN are
shown in bold, as MinFN produced much shorter tests and thus consistently executed the most
test cases. Results for absolute coverage prioritization are omitted from the table to save space, as
∆ prioritization always performed much better; absolute often performed worse than random.

Figure 8 graphically exhibits the raw differences in statement coverage for the suites sampled
as quick tests, ignoring the effects of prioritization, with one-standard-deviation error bars on
points. The power of coverage-based cause reduction can be seen in Tables II and III by comparing
“equivalent” rows for any version and budget: results for each version are split so that Full results
are the first three rows and the corresponding prioritization for the Min tests are the next three rows.
For the first three versions tested, it is almost always the case that for every measure, the reduced
suite value is better than the corresponding full suite value. For 30s budgets this comparison even
holds true for version 1.7, nearly a year later. Moving from 1.6 to 1.7 involves over 1,000 developer
commits and the addition of 10,000+ new lines of code (a 12.5% increase). In reality, it is highly
unlikely that developers would not have a chance to produce a better baseline on more similar code
in a four year period (or, for that matter, in any one month period). The absolute effect size, as
measured by the lower bound of a 95% confidence interval, is often large—typically 500+ lines and
branches and 10 or more functions, and in a few cases more than 10 faults.

It is difficult to generalize from one subject, but based on the SpiderMonkey results, a good
initial quick test strategy to try for other projects might be to combine cause reduction by statement
coverage with test case prioritization by either ∆ statement or branch coverage. In fact, limitation
of quick tests to very small budgets may not be critical. Running only 7 minutes of minimized
tests on version 1.6 detects an average of twice as many faults as running 30 minutes of full tests
and has (of course) indistinguishable average statement and branch coverage. The difference is
significant with p-value of 2.8 · 10−7 under a U-test. In general, for SpiderMonkey versions close
to the baseline, running N minutes of minimized tests, however selected, seems likely to be much
better than running N minutes of full tests. The real limitation is probably how many minimized
tests are available to run, due to the computational cost of minimizing tests.

The GE-Min suite is also a highly competitive 30 second quick test; it only detects one less fault
than the average 30 second ST-prioritized Min quick test, and arguably is more efficient (given that
it requires five fewer seconds to execute). For later versions of SpiderMonkey, while it does not
perform well in terms of branch coverage (invariably producing less coverage than all prioritized
Min suites), it is equal to or superior to the best 30 second quick test in terms of fault detection, the
most important attribute. Running GE-Min as a precursor to other quick tests seems likely to be a
sound rule of thumb for efficient regression.

The MinFN suite also performs adequately as a quick test. For 30s and 5m tests, it is not as
effective (by any measure) as the prioritized Min suites, but outperforms Full based suites in fault
detection for the first two versions, by a substantial (and statistically significant) number of faults.

2.4.6. SpiderMonkey Results for RQ4: Runtime for Cause Reduction These results are based on
fully reduced test cases. However, examining the reduction histories of a sample of 33 test cases
showed that much of the reduction is completed in the early stages of the process. The cost to reach
full 1-minimality is high, but large runtime reductions can be obtained considerably faster. Figures
9 and 10 show how the runtime of the current minimization, as a fraction of the original test case’s
runtime, decreased over time (in seconds) spent running the ddmin algorithm. Data points represent
intermediate results (most minimal preserving test cases thus far seen) during reduction of the 33
sample test cases. In a very few cases, early reductions actually increased runtime by up to 20%
(recall that cause reduction removes test case components, rather than targeting actual runtime),
but generally early stages showed rapid improvement in runtime, followed by a slow convergence
on 1-minimality. Table IV shows the average times to achieve complete 1-minimality, 80% of
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Figure 9. Time spent reducing vs. test case runtime, statement coverage

Table IV. Time to reduce test cases, SpiderMonkey

Average time (s) to obtain % of total runtime reduction
Reduction criteria 100% (1-minimal) 80% 50% 20%

Statements 1,781.7 1,553.1 542.3 207.2
Functions 448.1 258.6 108.6 48.0

total reduction, 50% of total reduction, and 20% of total reduction, respectively, for statement and
function coverage. In traditional delta debugging, it is usually worth spending the time to produce
1-minimal tests, given that human effort is very expensive compared to compute-time. For quick
tests, this is also probably the case, in that every lost opportunity for reduction results in a repeated
penalty to future test efficiency. However, in some applications, as discussed in Section 3, a quick
reduction without 1-minimality may be extremely useful.
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Figure 10. Time spent reducing vs. test case runtime, function coverage

2.5. YAFFS 2.0 Flash File System Case Study

YAFFS2 [37] is a popular open-source NAND flash file system for embedded use; it was the
default image format for early versions of the Android operating system. Due to the lack of a large
set of real faults in YAFFS2, mutation testing was used to check the claim that cause reduction
not only preserves source code coverage, but tends to preserve fault detection and other useful
properties of randomly generated test cases. The initial evaluation for the ICST 2014 paper [11]
used 1,992 mutants, randomly sampled from the space of all 15,246 valid YAFFS2 mutants, using
the C mutation software shown to provide a good proxy for fault detection [38], with a sampling
rate (13.1%) above the 10% threshold suggested in the literature [39]. Sampled mutants were not
guaranteed to be killable by the API calls and emulation mode tested. Table V shows how full and
quick test suites for YAFFS2 compared. MUT indicates the number of mutants killed by a suite.
Results for |BR| are omitted, as absolute prioritization by branch and statement coverage produced
equivalent test suites. Runtime reduction for YAFFS2 was not as high as with SpiderMonkey tests
(1/2 reduction vs. 3/4), due to a smaller change in test size and higher relative cost of test startup.
The average length of original test cases was 1,004 API calls, while reduced tests averaged 213.2
calls. The most likely cause of the smaller reduction is that the YAFFS2 tester uses a feedback [12]
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Table V. YAFFS2 Results for ICST 2014 Experiment

Size Statement Branch Function Mutants
Suite (# Tests) Time(s) Coverage Coverage Coverage Killed
Full 4,240 729.0 4,049 1,925 332 616
Min 4,240 402.5 4,049 1,924 332 611

Full 174.4 30.0 4,007.4 1,844.0 332.0 568.3
Full+∆ST 372.5 30.0 4,049.0 1,918.0 332.0 594.0
Full+∆BR 356 30.0 4,049.0 1,925.0 332.0 596.0
Full+|ST| 112.5 30.0 4,028.0 1,889.0 332.0 589.0

Min 315.8 30.0 4,019.7 1,860.5 332.0 559.0
Min+∆ST 514.7 30.0 4,049.0 1,912.0 332.0 571.0
Min+∆BR 500.0 30.0 4,049.0 1,924.0 332.0 575.0
Min+|ST| 255.0 30.0 4,028.0 1,879.0 332.0 552.0

Full 1,746.8 300.0 4,044.7 1,916.0 332.0 608.7
Full+∆ST 2,027.0 300.0 4,049.0 1,921.0 332.0 601.0
Full+∆BR 2,046.0 300.0 4,049.0 1,925.0 332.0 604.0
Full+|ST| 1,416.0 300.0 4,042.0 1,916.0 332.0 611.0

Min 3,156.6 300.0 4,048.1 1,920.0 332.0 607.1
Min+∆ST 3,346.0 300.0 4,049.0 1,924.0 332.0 601.0
Min+∆BR 3,330.0 300.0 4,049.0 1,924.0 332.0 605.0
Min+|ST| 2,881.7 300.0 4,049.0 1,924.0 332.0 611.0

model to reduce irrelevant test operations. Basic retention of desirable aspects of Full was, however,
excellent: only one branch was “lost”, function coverage was perfectly retained, and 99.1% as
many mutants were killed. The reduced suite killed 6 mutants not killed by the original suite.
It is not known whether mutant scores are good indicators of the ability of a suite to find, e.g.,
subtle optimization bugs in compilers. Mutant kills are, however, a plausible method for estimating
the ability of a suite to detect many of the shallow bugs a quick test aims to expose before code
is committed or subjected to more testing. Even with lesser efficiency gains, cause reduction
plus absolute coverage prioritization is by far the best way to produce a five minute quick test,
maximizing five-minute mutant kills without losing code coverage. All differences in methods were
significant, using a two-tailed U-test (in fact, the highest p-value was 0.0026).

For this paper, an additional set of experiments were performed on YAFFS2, using a new set of
5,000 randomly generated test cases and a much larger set of 10,078 mutants. The new experiment
added function coverage minimization and the GE-Min algorithm application as well. Table VI
shows the results of this experiment. The results are somewhat strange. As before, the reduced Min
suite has a little over half the runtime of the Full suite, but preserves statement and function coverage
perfectly (of course) and only loses 1 branch. It fails to kill as many mutants as the Full suite,
however, though only by 1.4% of total killed mutants. The MinFN suite produces good coverage
for such a short runtime, but loses 15% of mutation killing power and more than 20 branches. The
GEST and GE-Min suites are extremely efficient; the inadequacy of the MinFN suite can be seen by
the fact that the GEST (Full) and GE-Min suites both kill more mutants, in less than 5 seconds (just
1 second for GE-Min). Incidentally, GE-Min also added, as a result of reduction, one additional
statement covered by no test in the original 5,000 tests (remember, delta debugging only guarantees
preservation, but can in principle increase the effect of a test case).

The disparity between GE-Min’s lower branch coverage and higher mutation kill rate compared
to GEST (Min) brings us to an interesting point: YAFFS2 results are somewhat difficult to
understand because, unusually [32], coverage (across multiple measures) and mutation kill are not in
agreement for many suite pairs. This disparity is most evident in the results for 30s and 5m quick test
suites, with random sampling. For these, Min-based suites consistently, if narrowly, perform better

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
Prepared using stvrauth.cls DOI: 10.1002/stvr



CAUSE REDUCTION: DELTA DEBUGGING, EVEN WITHOUT BUGS 21

Table VI. YAFFS2 Results: New Experiment

Size Statement Branch Function Mutants Average
Suite (# Tests) Time(s) Coverage Coverage Coverage Killed Length
Full 5,000 798.7 4,098 1,925 337 2,990 1,000
Min 5,000 443.2 4,098 1,924 337 2,949 213

MinFN 5,000 275.5 4,091 1,902 337 2,518 86.6
GEST (Full) 13 4.6 4,098 1,914 337 2,882 1,000
GEST (Min) 13 2.1 4,098 1,906 337 2,440 213

GE-Min 13 1.0 4,099 1,893 337 2,630 44

Full 153.1 30.0 4,055.1 1,843.6 337 2,842.5 1,000
Full+∆ST 155 30.0 4,098 1,918 337 2,889 1,000
Full+|ST| 110 30.0 4,078 1,889 337 2,818 1,000

Min 267.7 30.0 4,068.6 1,856.2 337 2,787.7 213.0
Min+∆ST 260 30.0 4,098 1,912 337 2,887 213.0
Min+|ST| 211 30.0 4,078 1,879 337 2,828 213.0

Full 1,676.5 300.0 4,094.1 1,915.6 337 2,971.0 1,000
Full+∆ST 1,685 300.0 4,098 1,925 337 2,967 1,000
Full+|ST| 1,336 300.0 4,092 1,916 337 2,950 1,000

Min 3,012 300.0 4,097 1,921.3 337 2,941.7 213.0
Min+∆ST 2,689 300.0 4,098 1,921 337 2,935 213.0
Min+|ST| 2,346 300.0 4,098 1,924 337 2,933 213.0

Table VII. Time to reduce test cases, YAFFS2

Average time (s) to obtain % of total reduction
Reduction criteria Measure 100% (1-minimal) 80% 50% 20%

Statements Runtime 627.9 627.9 612.9 215.9
Statements Length 611.0 563.6 265.3 91.7
Functions Length 84.4 58.9 18.2 3.4

than Full suites for statement and branch coverage, but perform consistently worse for mutation
kills. Similarly, ordering by absolute statement coverage decreased mutation kill rates in all but one
case, despite (as expected) increasing coverage. Using Full suites misses more code, but seems to
find more faults, in these settings. In fact, the un-prioritized Full suite was the worst 30s quick test
for statement and branch coverage, and the third best for 5m, but killed the most mutants for 5m
tests, and performed better than all but the ∆ prioritized suites for 30s. This somewhat unexpected
result merits examination in future work: perhaps coverage alone is particularly weak in its ability
to produce varied behavior in YAFFS2, due to the complex state of the file system itself, and the
advantage longer tests have in producing complex state [18]. Some other peculiar interaction of
coverage and mutation testing (since there aren’t enough real YAFFS2 faults to investigate) [40]
may also be involved. For now, it seems that while cause reduction is not ideal for YAFFS2 quick
testing, the basic preservation of most properties holds even here. Most results in the table are
statistically significant at a much lower than 0.001 p-value by U-test; the exception is the difference
in branch coverage for randomly sampled 30s quick tests, which only has a p-value of 0.0518.

YAFFS2 reduction rate data was also of interest. Because runtimes for YAFFS2 tests are more
similar, there was no clear curve (and for function reduction, runtimes were almost immediately too
small to either measure well or to make much difference to test suite runtime). However, examining
test case length, the data was more interesting, as shown in Table VII. Again, the time to 50%
reduction (by API calls, not runtime) is considerably less than half of the total time for reduction.
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Table VIII. C Compiler Results

GCC
Size (bytes) Compile time (s) Time (m) to obtain % of reduction

Unreduced Reduced Reduction Unreduced Reduced Reduction 100% 80% 50% 20%
66930 14673 78.1 % 0.15 0.14 6.9 % 740.6 93.7 3.3 0.8

126187 17942 85.8 % 0.15 0.15 4.5 % 1705.0 200.7 28.8 3.7
135585 52488 61.3 % 0.33 0.23 29.3 % 3032.1 357.9 24.8 2.1
192307 39291 79.6 % 0.64 0.37 41.6 % 1629.1 134.9 47.0 5.3
220127 66856 69.6 % 1.18 0.82 30.3 % 1781.4 440.0 77.2 7.6
236253 38107 83.9 % 0.73 0.37 49.2 % 1046.7 169.4 48.7 6.4
258698 19019 92.6 % 0.36 0.20 43.1 % 1298.3 257.0 49.0 7.9
279633 36899 86.8 % 0.48 0.43 10.2 % 2648.9 593.0 77.4 8.3

LLVM
Size (bytes) Compile time (s) Time (m) to obtain % of reduction

Unreduced Reduced Reduction Unreduced Reduced Reduction 100% 80% 50% 20%
84660 33473 60.5 % 0.30 0.08 73.7 % 1555.4 345.7 62.5 6.1

112469 44436 60.5 % 0.32 0.08 74.7 % 3855.8 409.9 91.9 10.2
118224 34680 70.7 % 0.30 0.08 72.9 % 3512.8 260.3 96.0 17.1
118342 23166 80.4 % 0.26 0.08 69.5 % 3107.9 192.2 81.7 13.7

2.6. GCC: The Potentially High Cost of Reduction

The SpiderMonkey and YAFFS case studies both featured systems where reduction is a simple
matter of off-the-shelf delta debugging and computing coverage on tests is not much of a burden,
due to source simplicity. This section reports on some preliminary experiments in applying cause
reduction to test cases produced by Csmith [17] using an older version of GCC (4.3.0), the most
recent version (4.9.0), and also an LLVM development snapshot from June 19 2014 (used because
recent released versions failed to build with code coverage enabled). C programs are harder to reduce
effectively without using more sophisticated delta debugging methods, and coverage extraction
imposes a higher overhead. Each Csmith output was reduced using C-Reduce [8] modified to
support coverage constraints, which turned out to be expensive, often requiring more than 24 hours
on a modern Core i7. Several factors explain this poor reduction performance. First, an individual
run of a C compiler takes longer than a corresponding run of SpiderMonkey or YAFFS2, and
produces hundreds of coverage files that must be processed. Second, the test cases themselves are
larger: an average of 3,659 reduction units (lines) vs. about 1,000 for SpiderMonkey and YAFFS.

The first experiment, using GCC 4.3.0, started with 12 test cases (C programs generated by
Csmith) that triggered five different bugs in GCC 4.3.0 that cause the compiler to crash. For this
experiment only C-Reduce’s line-based reduction passes were enabled, disabling its finer-grained
components. Even so, the test cases were reduced in size by an average of 37%. After reduction,
each test case still crashed the compiler. However, none of the reduced or unreduced test cases in
this set crashed the next major release of GCC, 4.4.0, although they did manage to cause 419 more
lines of GCC code to be covered while being compiled by the newer version. Turning to branch
coverage, an even more surprising result appears: the reduced test cases cover an additional 1,034
branches in GCC 4.3.0 and an additional 297 in 4.4.0, relative to the unreduced test cases. Function
coverage is also slightly improved in the minimized suite for GCC 4.4.0: 7,692 functions covered by
the 12 minimized tests vs. only 7,664 for the original suite. In this experiment, test case efficiency
improved only marginally: the total compilation time for the 12 reduced programs was 3.23 seconds
vs. 3.53 seconds for the original tests.

The results of the experiment with newer compilers—the latest GCC and a recent LLVM
snapshot—are summarized in Table VIII. In this case C-Reduce was not restricted to use only its
line-based reduction passes, and consequently the reduction ratio improved, to an average of 75%,
meaning that the average reduced test case was a quarter of its unreduced size. Reduction improved
test case execution time by an average of 42%. The right-most columns of Table VIII show that most
of C-Reduce’s reduction occurs early. For example, 50% of its total reduction is usually obtained
within the first 90 minutes. The last 20% of the reduction benefit, on the other hand, requires many
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hours. Since this experiment used very recent versions of GCC and LLVM, it was not possible to
explore the effect of reduced test cases on later versions of the compilers.

In the end it is not entirely clear that large and complex artifacts such as GCC and LLVM
can be adequately smoke-tested within a five-minute budget, even after test case reduction and
prioritization.

2.7. Threats to Validity

First, cause reduction by coverage for quick tests is intended to be used on the highly redundant,
inefficient tests produced by aggressive random testing. While random testing is sometimes highly
effective for finding subtle flaws in software systems, and essential to security-testing, by its nature
it produces test cases open to extreme reduction. It is possible that human-produced test cases (or
test cases from directed testing that aims to produce short tests) would not reduce well enough
to make the effort worthwhile, or that the effort to maintain test validity would be too onerous in
many settings. The quick test problem is formulated specifically for random testing, though many
of the same arguments also hold for model checking traces produced by SAT or depth-first-search,
which also tend to be long, redundant, and have independent components. The primary threat to
validity is external: experimental results are based on one large case study on a large code base
over time, one mutation analysis of a smaller but also important and widely used program, and a
few indicative tests on two extremely critical larger systems: the GCC and LLVM compilers. The
primary internal threat to validity is that the code is in error; however, the experiments produce a
number of easy opportunities for sanity checks, including the output of test case execution, and the
authors have taken care to avoid implementation errors. Moreover, much of the implementation is
taken from existing code for jsfunfuzz and the delta debugging scripts provided online, or has
been used and tested for years. There is also a construct threat in the method for counting faults
for SpiderMonkey, but the raw failure rates and coverage values alone support a belief that cause
reduction is useful.

3. CAUSE REDUCTION FOR EFFECTIVE SEEDED SYMBOLIC EXECUTION

Quick testing is primarily intended to improve the efficiency of highly redundant randomly
generated test cases, based on a reduction in test case runtime. Can cause reduction serve any
purpose for human-generated tests, and/or when actual runtime reduction is minimal? In fact, the
accidents of a test case can be costly, even when their impact on test case execution time is small,
and such accidents exist even in human-produced tests [10].

Seeded dynamic symbolic execution is a variation of symbolic testing [2] that uses existing
test cases as a basis for symbolic exploration [41, 42, 43, 44]. For example, the zesti (Zero-
Effort Symbolic Test Improvement) extension of KLEE is based on the observation that symbolic-
execution can take advantage of regression test cases [45]. While seeded symbolic execution is
generally more scalable than non-seeded symbolic execution, it still faces the fundamental problems
of path explosion and complex constraints. Seeded symbolic execution takes a test case and attempts
to cover new program behavior based on it; for example, if a conditional is false in the original test
case, and the symbolic engine finds the true branch to be feasible, it explores to find a test case
covering the true branch. The essential quality of the seed test suite is therefore its code coverage.
In general, given two test cases similar other than in length, symbolic execution has more difficulty
with the longer test case: longer tests have more nearby paths to explore, and constraint complexity
accumulates over an execution. Therefore, given two test cases with the same code coverage, it
seems likely that symbolic exploration based on the “smaller” test case will be more effective,
though it is possible that such a change could reduce the value of the seed test case (for example
constraints may change and branch feasibility in context may change).

In order to test the hypothesis that cause reduction can improve the efficiency of seeded symbolic
execution, this paper relies on reduced test suites for six C programs (five taken from the SIR
repository [46]), with respect to statement coverage, and compares the additional branch coverage
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Table IX. Subject programs used in the evaluation

Subject NBNC LLVM # test cases runtime (s)instructions
Sed 13,359 48,684 370 15
Space 6,200 24,843 500 16
Grep 10,056 43,325 469 9
Gzip 5,677 21,307 214 85
Vim 107,926 339,292 1,950 65
YAFFS2 10,357 30,319 500 11

Table X. Reduction rates

Subject
Path length Path length Reduction rate (%)before reduction after reduction

Min Median Max Min Median Max Min Median Max
Sed 6 88,723 496,723 6 6,167 80,418 0 94 99
Space 530 4,154 24,147 530 3,798 18,199 0 8 80
Grep 740 103,097 622,223 691 26,466 424,388 0 75 99
Gzip 24 752,257 36,351,281 24 231,629 1,732,247 0 60 100
Vim 201,222 221,219 481,749 201,083 213,957 475,421 0 2 50
YAFFS2 32,632 53,139 91,252 23,719 40,339 71,942 2 23 50

obtained by running KLEE make-zesti [45] on the reduced tests vs. the original tests [10]. In
order to make the comparison fair, the runtime of cause reduction was counted against the total time
budget for symbolically exploring each test case using a timeout of 20% of the budget instead of
reducing to 1-minimality. Table IX shows the subject programs and data on their test pools. For
these tests, the startup cost for each test case dominated individual runtimes. For most programs the
difference in test suite execution time before and after reduction was negligible, less than 1/10th of
a second; for vim the reduction was on the order of three seconds. However, test case runtime is
not the full story; for symbolic execution, the number of branch choices made during a run is the
more important cost of a test case. Table X shows how cause reduction affected path lengths (total
branch choices during execution) for these programs, with a two-minute timeout. The test cases in
these pools, with the exception of YAFFS and space, are human-generated tests taken from the
SIR [46]. For YAFFS and space test cases are produced randomly, for YAFFS as described above,
and for space the SIR tests are random.

Path length or runtime reduction itself, however, is not the goal. Table XI shows how cause
reduction affected additional branches explored by symbolic execution, using four of KLEE’s
symbolic search strategies, the actual goal of seeded testing. In almost all cases differences were
significant by a U-test, with p-value ≤ 0.02; the few exceptions are shown in italics. Figure 11 shows
graphically how reduction improved coverage for the sed program with a 10 minute budget for
symbolic exploration of each test case. In several cases, test reduction resulted in an improvement
in additional branch coverage of over 100%, and in the three cases where reduction gave worse
results, the penalty in lost branches was small (less than 10%). Cause reduction more than pays for
itself. Additionally, the effectiveness of reduction with a timeout shows the practical implications
of the majority of reduction occurring long before 1-minimality is reached. Even where reduction
needs to be performed on-the-fly and included in the testing budget, reduction can be feasible.

∗The reason branch coverage for 10 minutes is higher than for 20 minutes is that KLEE crashed in some 20 minute runs,
losing some coverage data.
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Table XI. Branch coverage increment (mean values over 150 test suites) on 100 random tests (Before: Before
test case reduction, After: test case reduction)

Subject Time
DFS Random path Random state MD2U Combined

Before After Before After Before After Before After Before After

Sed
10m 150.66 211.73 265.03 274.46 213.75 248.56 211.42 249.59 279.65 289.00
20m 163.15 229.53 298.83 292.77 229.23 267.65 239.15 265.14 311.49 302.33

Space∗
10m 3.21 9.18 5.00 5.33 3.58 6.77 3.58 7.24 5.00 9.26
20m 2.24 10.81 4.23 5.13 2.75 6.78 2.75 6.71 4.23 10.82

Grep
10m 20.73 160.37 120.70 139.35 116.22 183.65 112.65 189.71 157.87 212.66
20m 21.13 185.68 177.65 201.23 114.07 205.58 110.14 209.36 194.85 232.85

Gzip
10m 93.35 103.95 220.55 226.33 113.10 129.07 134.71 158.12 222.59 228.77
20m 153.66 157.25 233.47 236.50 176.10 182.41 193.81 193.89 239.44 242.59

Vim
10m 312.17 310.36 111.71 116.44 302.77 308.35 357.60 365.79 540.42 542.99
20m 513.45 558.27 118.60 123.79 345.81 358.17 421.97 442.37 769.95 821.35

YAFFS2
10m 78.14 76.28 98.21 100.18 93.40 104.80 93.99 105.27 115.47 125.35
20m 78.54 79.51 99.15 100.47 94.58 103.89 95.09 104.33 117.98 126.39
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Figure 11. Additional branch coverage on sed program during seeded symbolic execution with unreduced
tests and reduced tests (test cases are in random order)

4. CAUSE REDUCTION FOR BUILDING SPECIALIZED TEST SUITES

The previous applications of cause reduction have primarily been aimed at improving the
effectiveness or efficiency of an entire test suite, for general testing purposes. It is also possible
to target specific behaviors tested by a suite. For example, a developer may wish to produce a quick
test that is focused only on assertions related to their own code. Given a suite of general-purpose
tests, the aim is to produce what is essentially a unit test for some subset of system functionality.

Of course, cause reduction by coverage could be applied with only a single statement, or a
small set of statements, as the reduction criteria, as in producing the GE-Min suite. However,
such reduction only preserves structural coverage; while a test case reduced by this approach may
cover an assertion, the behavior that preceded the execution and determined the success or failure
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of the assertion may be discarded. As a concrete example, consider the assertion on line 3,934 of
jsregexp.c in SpiderMonkey 1.6:

JS ASSERT((size t)(ncp - nstart) == length);

This assertion is executed by 264 of the 13,323 test cases in the Full suite. Executing these
tests takes just over five minutes, which is potentially far too much time if testing for multiple
assertions is needed. However, the set of 264 tests is highly redundant: only 10 different values of
ncp - nstart and length actually are represented in these tests. Reducing 10 tests covering
these values with respect to coverage only unfortunately loses some covered values. However, this
can be avoided by changing the reduction criteria to require that the candidate test (1) execute
the assertion and (2) have the same values for the tuple (ncp - nstart, length) when the
assertion executes. Performing reduction by these criteria results in 10 tests, three of which contain
5 semantic units, two of which contain 2 semantic units, and five of which contain only 1 semantic
unit. It is the additional semantic units beyond the call to the RegExp operator in the longer tests
that are lost by coverage-only reduction. Running these tests, which represent all values reaching
the assertion, requires only 1.6 seconds. Moreover, these tests had the same ability to detect three
hand-seeded faults in the regexp compile function as the whole set of 264 tests.

Program slicing [47] is a technique that determines all statements that might affect the value of
a variable at some point in execution; dynamic slicing [48] only returns statements that did affect
the value in a given program execution. At first glance, dynamic slicing appears to be an alternative
method to address the problem of not only preserving the execution of an assertion, but of the
exact values that reach it. In fact, slicing seems to be an attractive alternative for cause reduction
in general. Leitner et al. [49] applied slicing to standard delta debugging, to dramatically speed
reduction for unit tests for Eiffel programs; their technique would presumably work just as well for
cause reduction, including for the purpose of specialized test suites (if variable values are used in
addition to reachability). However, slicing can aid delta debugging or cause reduction only when the
test case itself is in the executable language that is the target of slicing. This works fine for unit tests
consisting of API calls in the language of the SUT, as in the work of Leitner et al., but many testing
systems generate input values for a program, and are thus outside the domain of slicing. When the
test case is not in the object language, slicing can only report what portions of the SUT can be
ignored, not which portions of the test case are irrelevant. Of the testing systems considered in this
paper, only YAFFS2 could easily incorporate slicing-based cause reduction. In the SpiderMonkey
case, while jsfunfuzz tests are technically written in JavaScript itself, the fact that the JavaScript
for the test is a string given to the tryItOut function would likely frustrate most static slicing
approaches. Dynamic slicing, however, could still be useful in this case (though not, as far as the
authors can tell, for C compiler inputs or most of the SIR subjects). Unfortunately slicing tools are
not generally as widely available or easily used as delta debugging tools, and can require capturing
the entire execution trace for analysis, which is likely to be very expensive for typical SpiderMonkey
test cases, and the dynamic slice may be much larger than the behavior required by preserving the
reaching values with cause reduction.

5. CAUSE REDUCTION FOR QUANTITATIVE RELATIONSHIPS

Cause reduction can be used to aim for small test cases with “unreasonable” behavior. For example,
given a large random test that produces unusually large peak memory usage, cause reduction can
attempt to find a smaller test case with the same peak memory usage. In addition to preserving such
a feature, cause reduction could be used to search for test cases that increase some quantifiable
property of execution beyond the original test.

C++ compilers sometimes produce unreasonably lengthy error messages for invalid programs;
this problem is well known enough and irritating enough that it inspired a contest (http:
//tgceec.tumblr.com/) for the shortest program producing the longest error message using
version 4.8.1 of the GNU C++ compiler. The authors took four C++ files from open source projects
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and used C-Reduce to reduce them with an effect designed to maximize the ratio of error message
length to source code length. In one case, C-Reduce eventually produced this C++ fragment:

struct x0 struct A<x0(x0(x0(x0(x0(x0(x0(x0(x0(x0(_T1,x0(_T1>
<_T1*, x0(_T1*_T2> binary_function<_T1*, _T2, x0{ }

The version of g++ specified by the contest, and all subsequent versions as of June 2014, produce
about 4.6 MB of error output when asked to compile this program. Furthermore, the size of the error
output approximately doubles for each additional occurrence of the (x0 substring. This result—
exponential error message size even in the absence of templates (the usual cause for huge errors
from C++ compilers)—is a bit surprising. A cleaned up version of C-Reduce’s output was entered
into the contest where it was declared to be one of seven winning entries.

6. RELATED WORK

This paper extends results originally presented in conference papers, primarily the ICST 2014
paper [11] introducing cause reduction for quick testing, as well as summarizing and providing
additional details on some results from the ISSTA 2014 paper [10] on using test case reduction and
prioritization in seeded symbolic execution.

This paper follows previous work on delta debugging [9, 6, 50] and other methods for reducing
failing test cases. While previous work has attempted to generalize the circumstances to which delta
debugging can be applied [51, 52, 53], this paper replaces preserving failure with any chosen effect.
Surveying the full scope of the work on failure reduction in both testing [8, 54] and model checking
[55, 56] is beyond the scope of this paper. The most relevant work considers delta debugging in
random testing [7, 12, 13, 49], which tends to produce complex, essentially unreadable, failing
test cases [7]. Random test cases are also highly redundant, and the typical reduction for random
test cases in the literature ranges from 75% to well over an order of magnitude [7, 49, 12, 8, 23].
Reducing highly-redundant test cases to enable debugging is an essential enough component of
random testing that some form of automated reduction seems to have been applied even before the
publication of the ddmin algorithm, e.g. in McKeeman’s early work [57], and reduction for compiler
testing is an active research area [8]. Recent work has shown that reduction has other uses: Chen et.
al showed that reduction was required for using machine learning to rank failing test cases to help
users sort out different underlying faults in a large set of failures [23].

In a larger sense, all work on causality [58] in testing and debugging is relevant to this paper’s
approach, which is explicitly focused on a notion of a cause (the test case) inducing effects [59].
The notion of causes in testing can focus on inputs, code, or program state (see Chapter 12 of
Zeller’s book on debugging [59]); this paper locates causes in inputs, though these inputs can be
test code. The validity of Zeller’s claim that “among all scientific disciplines, debugging is the one
that can best claim to deal with actual causality” is less important in this application, as there is
no expectation that any human will attempt to verify the relationship of an input to a particular
coverage target: the set of effects is too large for human conceptualization.

Second, this paper proposes an orthogonal approach to test suite minimization, selection and
prioritization from that taken in previous work, which is covered at length in a survey by Yoo
and Harman [3]. Namely, while other approaches have focused on minimization [60, 61, 62, 35],
selection [24] and prioritization [36, 63, 64] at the granularity of entire test suites, this paper
proposes reducing the size of the test cases composing the suite, a “finer-grained” approach that can
be combined with previous approaches. Previous work on suite minimization has shown a tendency
of minimization techniques to lose fault detection effectiveness [65]. While the experiments in this
paper are not intended to directly compare cause reduction and suite-level techniques, it is true that
for SpiderMonkey, at the 30 second and 5 minute levels, fault detection was much better preserved
by the proposed approach than by prioritizations based on suite minimization techniques.

The idea of a quick test proposed here also follows on work considering not just the effectiveness
of a test suite, but its efficiency: coverage/fault detection per unit time [19, 20]. Finally, as an
alternative to minimizing or prioritizing a test suite, tests can be constructed with brevity as a criteria,
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as in evolutionary testing and bounded exhaustive testing [27, 28, 29, 30]. However, the applications
where random testing is most used tend to be precisely those where “small by construction” methods
have not been shown to be as successful, possibly for combinatorial reasons.

Seeded dynamic symbolic execution takes an initial test case and tries to cover a branch that test
has not covered. This initial test case is called the seed. In the literature, the seed is usually chosen
arbitrarily from a pool of test cases, which are not modified in the process [2, 66, 67, 68]. The most
relevant literature on symbolic execution for this paper is the ISSTA 2014 paper extended [10]; that
approach makes use of the zesti variation of the KLEE tool [45].

Cause reduction can be viewed as an imprecise, non-unique, kind of “dynamic slice” [48] with
respect to an arbitrary property of execution, but slicing a test case rather than a program. The
underlying approach, however, is radically different than any program slicing method [47, 69]. The
closest related work is that using slicing methods to improve fault localization and error explanation
in model checking [70], as it was also inspired by delta debugging and a causal view [56, 71] of
model checking counterexamples (which are essentially test cases).

7. CONCLUSIONS AND FUTURE WORK

This paper shows that generalizing the idea of delta debugging from an algorithm to reduce the
size of failing test cases to an algorithm to reduce the size of test cases with respect to any
interesting effect, called cause reduction, is a useful concept. This paper provides detailed data
on the application of cause reduction to the quick test problem, which proposes generating highly
efficient test suites based on inefficient randomly generated tests. Reducing a test case with respect
to statement coverage not only (obviously) preserves statement and function coverage; it also
approximately preserves branch coverage, test failure, fault detection, and mutation killing ability,
for two realistic case studies (and a small number of test cases for C compilers). Combining
cause reduction by statement coverage with test case prioritization by additional statement coverage
produced, across 30 second and five minute test budgets and multiple versions of the SpiderMonkey
JavaScript engine, an effective quick test, with better fault detection and coverage than performing
new random tests or prioritizing a previously produced random test suite. The efficiency and
effectiveness of reduced tests persists across versions of SpiderMonkey and the GCC compiler that
are up to a year later in development time, a long period for such actively developed projects. Cause
reduction also has other potential applications, discussed in brief in this paper; in all cases, the
central idea is that a test causes some desired behavior, not necessarily meaning program failure.
Reducing the size of the cause while preserving the effect has many benefits, such as decreased
execution time.

As future work, the authors hope to explore other uses of cause reduction. For example, reduction
could be applied to a program itself, rather than a test. A set of tests (or model checking runs) could
be used as an effect, reducing the program with respect to its ability to pass tests/satisfy properties.
If the program can be significantly reduced, it may suggest a weak suite or oracle, and identify code
that is under-specified, rather than just not executed.

Delta debugging is widely used and appreciated because it applies the insight that short test cases
are usually more useful than long test cases to the special case of failing test cases. Cause reduction
takes that insight and generalizes it to the wide variety of other “purposes” for test cases seen in
both research and practice: code coverage, dynamic behavior, “stress properties,” and so forth.
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