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Abstract A test harness, in automated test generation, defines the set of
valid tests for a system, as well as their correctness properties. The difficulty
of writing test harnesses is a major obstacle to the adoption of automated
test generation and model checking. Languages for writing test harnesses are
usually tied to a particular tool and unfamiliar to programmers, and often limit
expressiveness. Writing test harnesses directly in the language of the Software
Under Test (SUT) is a tedious, repetitive, and error-prone task, offers little
or no support for test case manipulation and debugging, and produces hard-
to-read, hard-to-maintain code. Using existing harness languages or writing
directly in the language of the SUT also tends to limit users to one algorithm
for test generation, with little ability to explore alternative methods. In this
paper, we present TSTL, the Template Scripting Testing Language, a domain-
specific language (DSL) for writing test harnesses. TSTL compiles harness
definitions into an interface for testing, making generic test generation and
manipulation tools for all SUTs possible. TSTL includes tools for generating,
manipulating, and analyzing test cases, including simple model checkers. This
paper motivates TSTL via a large-scale testing effort, directed by an end-user,
to find faults in the most widely used Geographic Information Systems tool.
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This paper emphasizes a new approach to automated testing, where, rather
than focus on developing a monolithic tool to extend, the aim is to convert
a test harness into a language extension. This approach makes testing not a
separate activity to be performed using a tool, but as natural to users of the
language of the system under test as is the use of domain-specific libraries such
as ArcPy, NumPy, or QIIME, in their domains. TSTL is a language and tool
infrastructure, but is also a way to bring testing activities under the control
of an existing programming language in a simple, natural way.

Keywords Software testing · Domain-specific languages · Explicit-state
model checking · End-user testing · Geographic Information Systems

1 Introduction

Software test automation encompasses two challenges: (1) automated execu-
tion and determination of results for human-created tests, and (2) truly au-
tomatic generation of tests. Both are critical for effective, efficient software
testing, but only test generation offers the potential to discover faults without
human determination that a particular execution scenario has the potential to
behave incorrectly. Automated generation of tests relies on the construction of
test harnesses. A test harness defines the set of valid tests (and, usually, a set
of correctness properties for those tests) for the Software Under Test (SUT).
This paper presents a language and tools applying insights from the world
of explicit-state model checking to the problem of producing test harnesses
for automated test generation, whether tests are produced by a exhaustive
state-space exploration as in model checking, or via less systematic methods.

Building a test harness is a task that even experts in model checking and
automated testing often find painful [57,50]. The difficulty of harness gener-
ation is one reason for the limited adoption of automated testing and model
checking methods by the typical developer who writes unit tests. This is un-
fortunate, as even simple random testing can often uncover subtle faults.

The “natural” way to write a test harness is as code in the language of
the SUT. This is obviously how most unit tests are written, as witnessed by
the proliferation of tools like JUnit [39] and its imitators (e.g., PyUnit, HU-
nit, etc.). It is also how many industrial-strength random testing systems are
written [55,53]. A KLEE “test harness” [19] for symbolic execution is written
in C, with a few additional constructs to indicate which values are symbolic.
This approach is common in model checking as well: e.g., Java Pathfinder [3,
98] can easily be seen as offering a way to define a state space using Java itself
as the modeling language, and CBMC [73,74] performs a similar function in
C, using SAT/SMT-based bounded model checking instead of explicit-state
execution. JPF in particular has shown how writing a harness in the SUT’s
own language can make it easy to perform “apples to apples” comparisons of
various testing/model checking strategies [99].

Unfortunately, writing test harnesses this way is a highly repetitive and
error-prone programming task, with many conceptual “code clones” (e.g. Fig-
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ure 1). A user faces difficult choices in constructing such a harness. For ex-
ample, the example harness always assigns val2 even though call1 only uses
val1, to avoid having to repeat the choice code for calls 2 and 3. The harness is
almost certainly sub-optimal for random testing, where the lack of any memory
for previously chosen values can make it hard to exercise code behaviors that
rely on providing the same arguments to multiple method calls (e.g., insert
and delete for container classes). The construction of a harness becomes even
more complex in realistic cases, where the tested behaviors involve building up
complex types as inputs to method calls, rather than simple integer choices.
For example, consider the problem of testing a complex Python library. Fig-
ure 2 shows a portion of the Python documentation for one function in the
ArcPy [33] site package for Geographic Information Systems (GIS) automa-
tion. Rather than taking a single integer, this function call requires complex
inputs — a feature class or layer, an SQL expression, and other complex types
that we can assume are also difficult to construct. A harness testing a typical
real-world library must manage the creation of values of many such complex
types. Moreover, because building up function inputs is itself complicated and
requires complex method calls, these values cannot simply be produced on
each iteration, but must be stored and selected for use in future calls. The
code quickly becomes hard to read, hard to maintain, and hard to debug. In
some cases [53] the code for a sophisticated test harness approaches the SUT
in complexity and even size! The code’s structure also tends to lock in many
choices that would ideally be configurable.

One of the most important of these locked-in choices is the test generation
method. Writing a harness by hand usually makes it hard to try out new
strategies. Writing novel testing strategies in even such an extensible platform
as Java Pathfinder is hardly a task for the non-expert. The harness in Figure 1
may support random testing and some form of model checking, if it is written
in Java and can use JPF or a library for adaptation-based testing [52]. Such a
harness will likely be completely inflexible as to generation method if written
in Python, C, or another language without that level of tool support.

What the user really wants is to simply provide a concise version of the
information in Figure 2, some configuration details (e.g., how many feature
classes to keep track of at once), and then try different test generation methods.
While some automated testing tools for Java [38,85] can automatically extract
method signatures from source code and produces tests, using such a tool
locks a user into one test generation method. Completely automatic extraction

op = choice(operations);
val1 = choice(values);
val2 = choice(values);
if (op == op1 && guard1) {

call1(val1);
} else if (op == op2 && guard2) {

call2(val1,val2);
} else if (op == op3 && guard3) {

call3(val1,val2);
...

Fig. 1 A test harness in the SUT’s language.
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MakeFeatureLayer management(in features, out layer, where clause, workspace, field info)
Creates a feature layer from an input feature class or layer file. The layer
that is created by the tool is temporary and will not persist after the session
ends unless the layer is saved to disk or the map document is saved.

INPUTS:
in features (Feature Layer):

The input feature class or layer from which to make the new layer. Complex
feature classes, such as annotation and dimensions, are not valid inputs to this tool.

where clause {SQL Expression}:
An SQL expression used to select a subset of features. For more information on
SQL syntax see the help topic SQL reference for query expressions used in ArcGIS.

...

Fig. 2 Documentation for a function in Esri’s ArcPy site package.

also often fails to handle the subtle details of harness construction, such as
defining guards for some operations, or temporal constraints between API
calls that are not detectable by simple exception behavior. Understanding
problems with automatic extraction can be hard with large libraries, since the
extraction tends to either produce internal data structures only or produces
a huge, impenetrable mass of code. The user wants a declarative harness, but
often needs to program critical details of a harness, and build understanding
of the system by performing harness development in small, incremental steps.

1.1 Contributions

In this paper we describe a complete, Domain Specific Language (DSL)-based
approach that combines a simple means to produce a declarative harness with
the full power of a complete programming language. TSTL (the Template
Scripting Testing Language) compiles a declarative description of system state
and actions into a library in the language of the System Under Test (SUT).
This library allows the creation of objects providing an API for testing the
SUT, including support for state comparison, abstraction, backtracking, au-
tomatic test case reduction, code coverage, and support for sophisticated re-
gression testing.

Using an ongoing case study, we show how to apply TSTL and its tool suite
to a large, real-world software library used in critical applications. The test
effort has been driven and directed not by a software testing researcher (as is
the usual case), but by a domain expert in the Geographic Information Systems
(GIS) SUT. In the course of this effort, multiple faults and undocumented
restrictions of the library under test have been discovered, and the TSTL
language and tool suite have been transformed from a research prototype into
a complete system for software testing.

This paper presents the most complete presentation of the TSTL language
and tools, and we hope that it satisfies three critical goals:

– First, would-be users wanting to take advantage of automated test gen-
eration should be able to base their own testing efforts using TSTL on
the example code in this paper (and that available in the TSTL github
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repository [61]). This paper thus completely describes the concepts behind
TSTL, the semantics of the language, and the tools available in TSTL. Pre-
vious papers on TSTL [59,60] reported a much less full-featured version of
the language using a difficult-to-read syntax.

– Second, researchers should be able to use the information in this paper to
extend existing TSTL tools or build their own tools to explore novel test
generation strategies, automated debugging methods, and other research
prototypes. TSTL enables easy comparison of methods in a framework
reducing the burden of implementation and avoiding irrelevant differences
in performance due to underlying infrastructure. The growing set of SUTs
included in the TSTL distribution, which includes large and widely used
Python libraries, can provide benchmarks for experimental efforts.

– Finally, unlike previous publications on TSTL, this paper emphasizes the
fact that TSTL, unlike other testing DSLs or tools, at heart transforms a
definition of valid tests (and properties) for a System Under Test into a
programming language interface for testing that system. Tests in TSTL are
not inaccessible entities internal to a tool, or only represented as unit tests
(i.e., programs) that cannot be easily manipulated and analyzed, but first-
class objects in the language of the System Under Test. To our knowledge,
this approach to testing has not been previously explored, and it was not
emphasized (or even clearly presented) in earlier publications on TSTL.

The organization of this paper is as follows. In Section 2 we present the
basic idea of a DSL for testing, and distinguish TSTL from other testing DSLs.
Section 3 provides background on the ArcPy GIS case study used throughout
the paper. Section 4 provides a full description, with examples, of the core
TSTL language and semantics. Section 5 describes the tools included with
TSTL, and Section 5.5 describes how researchers and developers can build their
own TSTL-based testing tools to support additional testing, debugging, or
regression strategies. Section 6 introduces the novel TSTL concept of making
testing a first-class activity in a programming language, similar to how other
libraries make GIS (ArcPy), scientific computing (NumPy [4], SciPy [6]) or
bioinformatics (QIIME [20], Biopython [2], scikit-bio [5]) activities simple to
use in either a scripted or interactive manner. Faults discovered using TSTL,
in ArcPy and other systems, are described briefly in Section 7. We survey
the most closely related work in Section 8, and summarize our conclusions in
Section 9.

2 Domain Specific Languages for Testing

The nature of test harness construction suggests the use of a domain-specific
language (DSL) for testing [51]. DSLs [37] provide abstractions and notations
to support a particular programming domain. The use of DSLs is a formaliza-
tion of the long-standing approach of using “little languages,” as advocated
by Jon Bentley in a Programming Pearls column [16] and exemplified in such
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system designs as UNIX. DSLs typically come in two forms: external and in-
ternal. An external DSL is a stand-alone language, with its own syntax. An
internal DSL, also known as a domain-specific embedded language (DSEL),
is hosted in a full-featured programming language, restricting it to the syn-
tax (and semantics) of that language. Many attempts to define harnesses can
be seen as internal DSLs [42,52,98,74,19]. Neither of these choices is quite
right for test harnesses. Simply adding operations for nondeterministic choice
still leaves most of the tedious work of harness definition to the user, and
makes changing testing approaches difficult. With an external DSL, the user
must learn a new language, and the easier it is to learn, the less likely it is to
support the full range of features needed.

A novel approach is taken in recent versions of the SPIN model checker
[68]. Version 4.0 of SPIN [66] exploited the fact that SPIN works by producing
a C program from a PROMELA model to allow users to include calls to the
C language in their PROMELA models. The ability to directly call C code
makes it much easier to model check large, complex C programs [53,67]. C
serves as a “DSEL” for SPIN, except that, rather than having a domain-specific
language inside a general-purpose one, here the domain-specific language hosts
a general-purpose language. A similar embedding is used in where clauses of
the LogScope language for testing Mars Science Laboratory software [54]. We
adopt this approach for our own language and embed the general-purpose
language (for expressiveness) in a DSL (for concision and ease-of-use).

The most significant difference between TSTL and other DSLs for test-
ing and verification, including SPIN, is that most such systems are primarily
intended to be used as stand-alone tools. Whether model checkers [68,98],
model-based testing tools [97], or random testing tools [85], these systems are
primarily designed as “things to run on the system under test.” TSTL can
operate in this manner, but at heart it transforms a definition of valid tests
into a library for creating, executing, manipulating, and analyzing test cases.
An experienced TSTL user can interact with TSTL at an interactive com-
mand prompt in the language of the SUT, creating, saving, and modifying
tests on-the-fly. TSTL tools are simply scripted formalizations of this mode of
use, automating repetitive tasks. Such an approach is not possible with any
other tool of which we are aware. Many tasks that are constrained to the func-
tionality provided by tools included in other systems (e.g., replay of regression
tests) in TSTL are simplified and made flexible by this approach.

2.1 TSTL: The Template Scripting Testing Language

TSTL is based on understanding a test harness as a declaration of the possible
actions the SUT can take, where these actions are defined in the language of the
SUT itself, with the full power of the programming language to define guards,
perform pre-processing, and implement oracles. Our particular approach is
based on what we call template scripting.
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@from arcpy import *

pools:
<fc> 3 CONST # A feature class contains only lines, points, or polygons
<newlayer> 3 CONST
<op> 2 CONST
<val> 2 CONST
<whereclause> 2 CONST # SQL clause to limit objects in new layers
<fieldname> 2 CONST # Extracted from the shape files
<fieldlist> 2

actions:

<fc> := <["d1.shp", "d2.shp", "d3.shp"]> # Just shapefiles for this example
<newlayer> := <["newl1", "newl2", "newl3"]>

{IOError} <fieldlist> := ListFields(<fc>) # Extract fields from a feature class
len(<fieldlist,1>) >= 1 -> <fieldname> := <fieldlist> [0].name
<fieldlist> = <fieldlist> [1:] # Skip to next field

<op> := <[">", "<", "<=", ">=", "=", "!="]>
<val> := <1..10>
<val> = <val> * 10
<val> = <val> + 1
<whereclause> := ’"’ + <fieldname> + ’" ’ + <op> + str(<val>)
<whereclause> = <whereclause> + ’ AND ’ + <whereclause>
<whereclause> = <whereclause> + ’ OR ’ + <whereclause>
<whereclause> = ’NOT’ + <whereclause>
{ExecuteError} MakeFeatureLayer management(<fc>,<newlayer>)
{ExecuteError} MakeFeatureLayer management(<fc>,<newlayer>,where clause=<whereclause>)

Fig. 3 A small TSTL file to test one ArcPy function.

The template part of the name captures the fact that our method proceeds
by processing a harness definition file to output code that enables testing,
much as SPIN processes PROMELA/C. The harness description file consists
of fragments of code in the SUT’s language that are expanded, via the TSTL
compiler, into a class that allows an independently written test generation or
manipulation tool to generate, execute, or replay tests, without knowing any
details of the SUT. A TSTL harness defines a template for action definition,
and the compiler instantiates the template exhaustively. The scripting aspect
indicates TSTL is designed to be very lightweight and as easy for users to pick
up as a popular scripting language. TSTL works best when the SUT language
is very concise, like most scripting languages, making “one-liners” of action
definition possible; our initial implementation [61] is therefore for Python1.

Figure 3 shows a simple TSTL harness for the function documented in
Figure 2. Even this short harness supports constructing SQL where clauses
of arbitrary length and selecting field names based on data files. Figure 4
shows a simple pure random test generator that can test any SUT (includ-
ing this one) with a TSTL-defined harness. This harness, in 20 lines of code,
not only provides automated test generation, but continuous reporting of in-
cremental branch coverage, delta-debugging [101] for reduction of failing tests,
and additional TSTL-specific post-processing that further reduces the size and
complexity of test cases for debugging. The brevity of the test generator, no

1 We also have released a beta version of TSTL for Java [70], to show that testing code
in non-scripting languages is also possible.
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import sut, random, time
rgen = random.Random()
sut = sut.sut()
NUM TESTS = 1000
TEST LENGTH = 200
for t in xrange(0,NUM TESTS):

sut.restart()
for s in xrange(0,TEST LENGTH):

action = sut.randomEnabled(rgen)
r = sut.safely(action)
if len(sut.newBranches()) > 0:

print time.time(),’NEW BRANCHES:’, sut.newBranches()
if (not r) or (not sut.check()):

pred = sut.failsCheck if r else sut.fails
print ’TEST FAILED:’, sut.error()
R = sut.reduce(sut.test(), pred)
N = sut.normalize(R, pred)
sut.generalize(N,pred)

Fig. 4 A simple random tester using the interface provided by TSTL.

matter how complex the SUT, is made possible by the common functionality of
all TSTL-generated testing interfaces. The TSTL compiler produces a Python
(or other target language) class that allows a test generation or manipulation
tool to view a testing problem as exploration of a (possibly infinite) graph
of states. Transitions in the graph are the available test actions, executed in
the underlying language, and are guarded by both TSTL restrictions on the
semantics of valid tests and user-defined guards on system behavior. States
include both the (possibly unknown) state of the SUT and the TSTL state,
including pools of values to be used in actions.

In this simple example, the only “oracle” is the implicit property that the
system should neither crash nor raise an unexpected exception. For testing
many systems, this is sufficient: we have discovered real bugs in many Python
libraries with only this level of checking, similar to most of what a tool such
as Randoop [85] or JCrasher [27] checks. TSTL also checks arbitrary asser-
tions/invariants defined in the language of the SUT, supporting traditional
property-based testing [24,78] (described in Section 4.2). Finally, TSTL in-
cludes sophisticated support for differential testing [81,55], where a system is
tested with respect to the behavior of a reference library. TSTL makes it easy
to wrap a reference system to account for expected differences, and supports
partial reference testing (see Section 4.3).

3 Motivating Case Study: Esri ArcPy

Esri is the single largest GIS software vendor, with about 40% of global mar-
ket share. Esri’s ArcGIS tools are extremely widely used for GIS analysis, in
government, scientific research, commercial enterprises, and education. Au-
tomation of complex GIS analysis and data management is essential, and Esri
has long provided tools for programming their GIS software tools. The newest
such method, introduced in ArcGIS 10.0, is a Python site-package, ArcPy [33].
ArcPy is a complex library, with dozens of classes and hundreds of functions
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distributed over a variety of of toolboxes. Most of the code executed in carrying
out ArcPy functions is the code for the ArcGIS engine itself. This source code,
written in C++ (amounting to millions of lines), is not available. The source
code for the latest version (10.3) of the Python site-package alone, however,
which interfaces with the ArcGIS engine, is over 50,000 lines of code. This is a
very large system (especially given the compactness of Python code), compa-
rable in size to the largest software systems previously tested using automated
test generation, such as core Java and Apache libraries [38,85].

In order to improve the reliability of ArcPy, we are developing a framework
for automated testing of ArcPy itself, as well as libraries based on ArcPy.
The TSTL harness for ArcPy is already more than six times as large as the
next-largest such definition previously implemented in TSTL, even though
the harness so far only includes a small portion of ArcPy API (Application
Program Interface) calls. The first stage of testing has resulted in discovery of
multiple faults in ArcPy/ArcGIS, and has required modifications to the TSTL
language and, especially, to the tool chain supporting test replay, debugging,
and test case understanding.

Previous work on automated test generation for APIs has been largely car-
ried out by software testing researchers only, or (at most) by software testing
researchers working with individuals who are primarily software developers.
This paper describes TSTL in the context of a testing effort largely directed
(and coded) by the first author, who is not a software developer by profes-
sion or education, but a GIS analyst. The problem of end-user testing [17,
18,88] is long-standing. Previous work in the field has often focused on non-
traditional programming: e.g. spreadsheets [88], visual languages, or machine-
learning systems [58]. TSTL is partly designed to allow a user who is familiar
with a software library but not expert in software testing techniques to test a
traditional software API library. In one sense, this is a less difficult scenario
than spreadsheets or visual forms, in that the testing is directed by an indi-
vidual used to writing and thinking about code. The concepts in automated
software testing are most easily understood by those who are also familiar
with a conventional programming language. On the other hand, ArcPy is not
a small user-developed program but a large, complex system. ArcPy was also
not written by the end-user, or by any of the authors of this paper, nor have
the authors received any assistance in the effort from Esri.

Automated testing systems more advanced than a simple hand-written loop
generating a few random inputs to a handful of functions, or more complicated
to use than a fully push-button system are often considered too difficult for
practical use even by software developers or software QA staff [52]. Even “push-
button” tools for automated testing are sometimes difficult for expert users to
install, apply, and configure [53,56,52]. TSTL aims to be relatively easy to use
for anyone familiar with basic Python development. By avoiding the use of a
toy problem and presenting TSTL in the context of a more typical real-world
system (vs. e.g., a simple container class), we hope to make it easier to apply
to other real-world systems.
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4 The TSTL Harness Language

The TSTL compiler takes as input a harness template file, and produces as
output a Python class file that implements an interface other tools (or even
users working interactively) can use to perform testing on the SUT via an
SUT-independent interface.

The harness in Figure 2 shows many of the basic features of TSTL. The
basic structure of a TSTL harness consists of three parts, usually written in
order. First, harness code prefixed by an @ or enclosed in <@ @> is treated
as raw Python code, and essentially not interpreted by the TSTL compiler.
This code is reproduced almost literally in the output file2. Second, there is a
preamble that almost always defines a set of value pools for use in testing, but
also may include information on logging, correctness properties, source code
locations for code coverage analysis, and other basic information that applies
to the entire harness. Finally, the bulk of a TSTL harness (and the only non-
optional element) is a set of action definitions. Actions are the possible steps
to be taken in testing, and define the set of possible tests.

The original version of TSTL [59] required cumbersome use of Python
functions to implement many simple operations, including guards. Current
TSTL extends the language to make it possible to define very complex test
spaces using only pools and actions, with helper functions only required for
the usual reasons of abstraction and readability.

4.1 The Essentials of Pools and Actions

In TSTL, tests usually consist of assignments to value pools and function calls
making use of those values. These are the most common forms of actions. Value
pools are meta-variables in the target language, and support the complete set
of types of the underlying language. A pool can contain simple types such
as integers, or more complex types such as functions, container classes, file
handlers, or even TSTL testing objects (to support testing TSTL itself). The
notion of an action in TSTL is similarly completely general: any fragment of
code in the host language can be an action. Usually, it is most convenient to
encapsulate complex actions by defining functions that perform the desired
behavior, and making the action a call to such a function, but this is not
required. As Andrews et al. have shown [9], this pool-and-action approach is
sufficient to express the full generality of unit tests, in any language3.

In order to make the core ideas clear, consider part of the harness shown
in Figure 2, defining how to generate values used in SQL where clauses. The
following, by itself, is a valid TSTL harness (albeit one that cannot discover
any faults, since it performs no actions beyond simple integer addition):

2 TSTL does have to scan imports to re-load modules, and also pre-processes function
definitions to support pre- and post-conditions.

3 In fact, TSTL tests are somewhat more general than this already very general and
expressive form, in that we do not disallow loops and conditions in actions.
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pools:
<val> 2 CONST

actions:

<val> := <1..10>
<val> = <val> + 1

There is only one pool, named val (optionally labeled as CONST to indicate
that its value does not change unless it appears on the left hand side of an
assignment). The pool has room to store two values. The state of the SUT is
defined by the state of all pools. Initially, all pools are set to a special value
(None) indicating the pool has not been initialized. For the most part, we can
think of the val pool as two Python variables val0 and val1. Another way
to think about a pool is as a kind of informal “named type,” with a limited
set of variables that can contain the “type” and all possible action sequences
that assign to its pool values serving as its specification. In Python it is not
necessary to specify the actual type of a value pool, though an optional :

type notation enables TSTL to perform runtime type-checking and ensure
pools never contain incorrect types.

In this simple example, the only actions are initialization of a val and
incrementing a val. Again, we emphasize that an action can in general be an
arbitrary Python statement. Actions that include the := form of assignment (a
TSTL, not Python, operation) initialize pool values. When <val> appears in
an action, that represents all possible pool values with that name: for our sim-
ple example, either val0 or val1. An integer range is represented by <i..j>,
and TSTL expands such ranges to produce an action with each possible choice.
The first line in the actions section of this harness translates to 20 different
possible actions:

val0 = 1
val0 = 2 ...
val0 = 10
val1 = 1 ...
val1 = 10

From the initial state of the system, only these 20 actions are enabled. En-
abled actions are those that can be executed in the current state; the complete
set of actions defined by a TSTL harness is always finite, and the enabled set
is always a subset of that finite set. The first concept that is essential to under-
standing TSTL semantics is that at any state of the system, the only actions
that are enabled are those that do not use any non-initialized pool values. Any
appearance of a pool value is considered a use, with the single exception of
the left-hand-side of a := initialization (not normal assignment)4. The second
concept is that a value that has been initialized cannot be initialized (appear
on the lhs of :=) until after at least one action that uses it has been executed.
Figure 5 shows the consequences of these rules for the simple value assign-
ment harness above. The nodes in the graph are labeled with (state(val0),
state(val1)), where state is either None (uninitialized), Unused (initialized

4 The definition of use is the only distinction between := and normal Python assignment;
:= is implemented as Python assignment, and appears as such when test cases are printed.
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Fig. 5 Constraints on actions in a test, based on pool states

but never used) or Used (initialized and used at least once). Starting from the
initial state (None, None), a valid test is any path through the graph.

Tests that can be produced by this harness include, therefore, sequences
like val0 = 3; val0 = val0 + 1; val1 = 4; val1 = val0 + 2 and val1

= 10; val0 = 6; val0 = val1 + 1; val0 = 2; val1 = 15. However, val0
= val0 + 1; val0 = 2 and val0 = 1; val1 = 1; val1 = 4 are not valid
tests, because they either use an uninitialized pool value, or re-initialize an
unused pool (a clearly useless action sequence).

4.2 Guards, Post-Conditions, and Properties

The example TSTL harness in Figure 2 shows a few other important core ele-
ments of TSTL. First, choice templates are not limited to integer ranges, but
can include arbitrary items in a list, e.g, <fc> := <["d1.shp", "d2.shp",

"d3.shp"]>. Note that while in the example these items are (string) constants,
they can be arbitrary expressions to be computed at runtime, or even incom-
plete code fragments that are only valid when combined with the rest of the
action. Second, when an action raises an uncaught exception, this is normally
considered a test failure. Prefixing an action with a set of exception names in
curly braces (e.g., {IOError}) indicates that some exceptions are expected,
and do not indicate a failure.

More critically, actions can also be prefixed by arbitrary guards, using the
syntax guard -> action. The simple ArcPy harness chooses field names for
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SQL by first extracting a list of all fields in some feature class. It then allows a
field name to be chosen by taking the name of the first field in the list. However,
since the harness also allows the list of fields to be stepped through by discard-
ing the initial element, the name extraction has to be guarded to ensure that
tests won’t try to extract names from an empty field list: len(<fieldlist,1>)
>= 1 -> <fieldname> := <fieldlist> [0].name. The <fieldlist,1> con-
struct, which can also be used outside of a guard, indicates that this pool value
should not be produced using normal template expansion (instantiated as both
fieldname0 and fieldname1) but rather that it should copy (textually, not a
copy of the object but the same variable use) the comma indexed appearance
of that pool in each expansion (indexing starts from 1). This makes sure the
guard is over the same pool value that is used in the action.

TSTL also supports post-conditions on actions, in the form action =>

post-condition, where the post-condition is checked after the action is per-
formed. For example, because some known ArcPy bugs involve addition of
incorrect characters to field names in a database, we could add code to check
that field names in feature classes never change from their initial values. We
can make sure that a library call to add a field to a feature class adds it to a
database of all field names collected at the start of testing, and collect the set
of fields in each feature class file at the beginning of each test, storing these
in a dictionary. This example code shows two more features of TSTL: TSTL
supports init: code in the preamble, which is called before each test starts.
Ending a line in a backslash indicates the action continues on the next line of
the file.

init: <fieldnames> = getAllFieldNames(getFeatureClasses())
{ExecuteError} not (<fc,1> in <hascursor>) -> \

AddField management(<fc>,<fieldname>,<fieldtype>); \
<fieldnames> [<fc,1>].add([<fieldname,1>])

{IOError} <fieldlist> := ListFields(<fc>) \
=> sorted(<fieldlist,1>) == sorted(list(<fieldnames> [<fc,1>]))

Note the additional guard on adding fields — we have discovered that
adding a field to a feature class that has any database cursors active tends to
crash ArcPy. For more complicated post-conditions, the construct pre<(expr)>
allows access to values of expressions from before the action was executed, as
a further convenience for expressing properties.

When an assertion is an invariant on all post-action states, it can be
included in the preamble. To check field names we would write property:

sorted(ListFields(<fc>))==sorted(list(<fieldnames> [<fc,1>].
This property checks all feature classes, not just those whose fields are

extracted. The advantage is that the property will catch problems even if we
never construct a fieldlist; the disadvantage is that testing slows to check
all field names for all feature classes, after every action.

4.3 Differential Testing Support

Another useful feature of TSTL is the ability to create reference pools, where
every action on pool values is mirrored by an action on a reference version
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of that pool. This makes it possible to perform differential testing [81] on a
per-pool basis, rather than at the whole-system level, allowing complex partial
specifications. The idea is that the behavior of some pool (which could be the
entire SUT state, in the extreme) can be compared to a reference implemen-
tation that provides the same observable behavior. The classic example is the
idea of testing a C compiler by checking that the output of running a deter-
ministic, well-defined C program compiled under two different compilers (or
optimization levels) is the same. If the systems differ, one must be incorrect. A
simpler example is checking a set-like data structure against a well-tested ref-
erence implementation. The TSTL distribution includes an example where an
AVL tree implementation is checked against the Python set implementation.

Differential testing can also be useful for applications other than testing
complete systems against each other; the SUT may provide different imple-
mentations of essentially the same functionality, serving as a reference for itself
(compilers are often tested against their own code, with optimization turned
off). In ArcPy we may want to ensure that operations are deterministic: no
GIS operations produce different results, given the same underlying starting
feature class data. Assuming in raw Python in the preamble we have defined
identityFunction as an identity function and copyFCName as a function that
takes a feature class name and transforms it into a generated name for a ref-
erence copy of the feature class, the following mirrors all actions on feature
classes on a reference copy, and checks that the feature class and its reference
always have the same fields.

pools:
<basefc> 2 CONST
<fc> 2 CONST REF

<basefc> := <[‘‘d1.shp’’, ‘‘d2.shp’’, ‘‘d3.shp’’]>; \
CopyFeatures management(<basefc,1>,copyFCName(<basefc,1>)

<fc> := identityFunction(<basefc>)
{IOError} <fieldlist> := ListFields(<fc>)
references:

identityFunction ==> copyFCName
compares:

ListFields

When instantiating the action templates, TSTL always produces a copy of
every action containing any reference pool values. First, the pools are replaced
with their reference copies; second, all the syntactic transformations (which
can include arbitrary Python regular expressions) in the references declara-
tion are applied, to produce the appropriate Python expression to evaluate to
perform the action using the reference implementation. Finally, if any string
matches a regular expression in a compares declaration, the return values or
assigned values in the action are compared with those for the reference version,
and a fault is raised if the results are not equivalent. In the ArcPy case, if our
copyFCName is correctly defined, we can even check that behavior is equivalent
for different underlying data file formats for feature classes, by treating, e.g.,
shapefiles as a reference for a personal geodatabase. In addition to such simple
(and modular) reference checking, TSTL allows properties to use the value of
a reference pool, with syntax like:

property: str(<expr>) == str(REF:<expr,1>)
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4.4 How to Build a TSTL Harness

In the introduction, we noted that one problem with automatic extraction of
harnesses by testing tools is that in order to effectively test complex systems, it
is important to incrementally build testing capability. Often, as with software
development, understanding the effort as it slowly increases in scope is essen-
tial. TSTL naturally supports this methodology. The ArcPy harness, though
complex, was developed by starting with a small number of ArcPy functions,
and determining their parameters. These functions were chosen because they
were involved in unusual or problematic behavior experienced by the authors of
the paper. Once functions have been chosen, and their parameters are known,
developing a harness can often be a clean, iterative process:

1. Choose a new function (or set of related functions) to include in the harness.
2. Determine all parameter types for these functions.
3. If there is no pool that can produce these types, determine how to produce

these types, and add pools and pool initialization actions for those pools.
This may require adding some additional functions (in which case, go to
step 1 and start with those functions, recursively).

4. Add an action to call the function(s) being added. If relevant, allow any
expected exceptions, guards, and post-conditions to check.

5. Run testing, examine code coverage and failures to evaluate the added
harness features, and repeat from step 1.

These steps, combined with occasional refactoring or generalization of parts
of the harness, can effectively test even a large library, while maintaining
tester understanding and control. In the ArcPy test harness development,
most of the effort was spent in this cycle, with major exceptions being the
implementation of a method allowing users to provide their own GIS data as
a basis for testing, and efforts to improve the TSTL tool infrastructure to
support testing a complex application in a Windows environment.

Note that because TSTL defines the structure of a potentially infinite num-
ber of tests, users are expected to define correctness of a system via property-
based testing [24]. As in model checking, the correctness of the system is not
specified via users determining the specific output for each test sequence, but
by defining general properties over all executions. TSTL includes idiomatic
support for common forms of property-based specification, including invari-
ants, post-conditions on actions, and comparison with the outputs of a refer-
ence implementation [81].

4.5 TSTL and Other Languages

At heart, the TSTL “language” consists of the syntax and semantics for pools,
nondeterministic choice5, guards, pre-conditions, pre- values, and a few other

5 Nondeterministic choice [30,80,35,50] is both inherent in the notion of a TSTL action,
and represented more concretely by the syntactic sugar of the <[...]> notations. Arguably,
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elements on top of an existing language: the abstract basis of TSTL has a
conceptually small footprint.

While the implementation effort to compile to an SUT interface in a differ-
ent language is considerable, there is no difficulty (beyond engineering effort) in
mapping TSTL to languages other than Python. In one summer, an advanced
high school student was able to produce a working version for Java [70]. Im-
plementing TSTL for Scala, Ruby, or even C/C++ would require effort but
no research breakthroughs. As with the Python and Java TSTL implemen-
tations, there is no need (due to the intentional template structure) to even
parse the underlying language. The primary development effort is translating
the TSTL “runtime” of utility functions to a new language. For Scala, Ruby,
or Swift we believe this would be quite trivial. For C/C++ the relative lack of
functional language features would be frustrating, but certainly not a blocking
difficult. The ideas behind TSTL are abstract and generally applicable, even
if the current implementation is built for Python.

5 TSTL Tools

The following tools are provided in the TSTL distribution on github [61].
Installing the TSTL module allows the compiler, called tstl, to be used at
the command line. Other tools are included in the generators and utilities

directories of the distribution as Python scripts.

5.1 The TSTL Compiler

Given a harness file defined in the language discussed above, the TSTL com-
piler generates a stand-alone Python class that allows testing of the SUT. This
generated code does not depend on the TSTL system being installed, only on
any modules the testing itself uses, and on whether code coverage is requested.
By default, the compiler produces a class supporting code coverage using the
coverage.py module [15], and assumes this is installed. The TSTL compiler
also allows a user to control some fine-grained coverage measures (e.g, is cov-
erage measured during initialization and module reloads?), and force a system
to use replay-based backtracking by default.

5.2 Test Generators

TSTL comes with a complex, highly configurable, pure random tester (sup-
porting numerous command-line options). The included random tester pro-
vides a number of useful options, of which a subset are shown in Figure 6.

building the language and semantics around nondeterministic choice to represent a transition
system/state space is the core idea of TSTL.
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– depth <int>: Determines the length of generated tests.
– timeout <int>: Determines the maximum time spent generating tests, in seconds.
– seed <int>: Determines the random seed for testing.
– maxTests <int>: Determines the maximum number of tests to be generated.
– running: Produce on-the-fly, time-stamped code coverage information, for analyzing perfor-

mance of testing algorithms.
– replayable: Produce a log of the current test, so even it crashes Python the test can be

reproduced, delta-debugged, made stand-alone, or otherwise analyzed.
– total: Produce a total log of all test activity, including across resets, for systems where reset

is not complete (so tests across resets can be delta-debugged).
– quickTests: Produce “quick test” files [48], each containing a minimal test to cover a set of

branches of the SUT.
– normalize: Apply additional, custom term-rewriting based simplifications of test cases that

often further minimize delta-debugged test cases.
– generalize: Apply generalization that elaborates each failing test with annotations showing

similar tests that also fail.
– swarm: Apply swarm testing [63] to test generation.

Fig. 6 Some options for the TSTL random test generator.

To our knowledge, TSTL’s random tester is the first general-purpose ran-
dom testing tool to incorporate the powerful swarm testing [63] algorithm,
which has previously been used to test compilers [41,76] and file systems.
TSTL’s version of swarm testing is more sophisticated than previously pub-
lished versions, in that it analyzes the dependency graph of TSTL actions to
avoid producing degenerate test configurations, improving performance over
näıve swarm testing. In addition to these stable, commonly used options, the
random tester includes novel experimental options, such as the ability to guide
random testing by a user supplied Markov model or operational profile [64].
TSTL makes implementing novel test generation methods simple, as discussed
below.

The base TSTL tools also use the TSTL interface to support explicit-state
model-checking [25,68], using either Depth-First-Search (DFS) or Breadth-
First-Search (BFS) strategies. TSTL uses Python’s deepcopy tools to pro-
vide a simple, easy to use interface for automatically storing and restoring
pool states, making these algorithms trivial to implement. There is no fun-
damental technical difference between performing (theoretically exhaustive)
systematic searches of a well-defined transition system or random exploration.
Using the same transition system definition for both purposes has consider-
able advantages, as pointed out in previous work [57], especially for effectively
infinite-state systems where random walks will never saturate and exhaustive
searches will never complete. TSTL can (unlike SPIN or most explicit-state
model checkers) apply BFS or DFS search even to systems without support
for backtracking. TSTL’s abstract interface to an SUT (transition system)
can be configured to provide replay-based simulation of state storage and re-
trieval. This is required when, for example, a library uses a C extension and
so Python’s deepcopy does not allow full copying of the state of pool objects,
or when the system has hidden global state that cannot be captured in a pool
value. While state storage and backtracking is usually faster than replay, we
find that for some systems the opposite is true, particularly for shallow search
depths (which are typical for BFS of a complex system).



18 Josie Holmes et al.

TSTL also supports custom abstraction of pools. If a pool is declared with
an ABSTRACT annotation, the function after the ABSTRACT keyword is used to
abstract all values for state-matching purposes during exhaustive exploration
methods, via the abstract function. The state method returns the concrete
state of the system (since these are required for backtracking), but applying
the abstract function to this state returns an abstract version of the state to
be used in state matching. The core of a BFS, for example, can be expressed
quite simply, irrespective of whether the system is using state storage and
backtracking or replay (or has an abstraction or not) as:

old = sut.state()
for act in sut.enabled():

sut.safely(act)
new = sut.state()
# repr produces a hashable string representation
absNew = repr(sut.abstract(new))
if absNew not in visited:

queue.append(new)
visited[absNew] = True
...

sut.backtrack(old)

This loop iterates through all enabled actions from the current state, and
adds any not previously visited to the search queue. Similar code works as the
core of a DFS. Implementing heuristic model checking searches is also trivial,
whether those searches are SUT/error specific [32] or structural [62].

While not required for any of our testing efforts thus far, encoding tempo-
ral logic checking is also simple. A Büchi automata can be encoded in Python,
querying the SUT state and action choices to determine transitions. Com-
posing this with the SUT state is trivial. We managed to implement the
well-known nested DFS algorithm [26] in less than 40 lines of code, taking
the property automata as a tuple input (initial, trans, accept), where
trans: (state, action, sut state) -> state.

5.3 Utilities for Test Case Manipulation

TSTL provides the tools sandboxreducer and standalone for manipulating
saved test cases produced by the random tester or the simple model checkers.
These were developed as part of the ArcPy testing process. ArcPy faults tend
to crash the system (this is also the reason the total option was introduced),
and thus cannot be simplified for debugging inside the test generator. The
sandbox reducer takes a testing log and, using subprocesses to handle crashes,
produces delta-debugged and normalized test cases. It is also useful to report
failing tests not as TSTL’s internal test file format, but as standalone Python
programs that cause a failure. The standalone utility takes a test log or a
saved test case and produces a complete, stand-alone Python program that
requires neither the generated TSTL interface nor any other TSTL tools.

However, use of these tools is often not required. Figure 7 shows a simple,
but complete, Python script for running regression tests generated using TSTL
for a system. This script examines the regressions directory, replays each test
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import sut
import glob
sut = sut.sut()
failed = 0
total = 0
for testFile in glob(’regressions\*.test’):

t = sut.loadTest(testFile)
total += 1
if sut.failsAny(t):

failed += 1
print testFile,’FAILED:’,sut.failure()

print total,’TESTS EXECUTED’
print failed,’TESTS FAILED’
print len(sut.allBranches()),’BRANCHES COVERED’
print len(sut.allStatements()),’STATEMENTS COVERED’
print sut.report(’coverage.txt’),’% STATEMENTS COVERED’

Fig. 7 A small script to run stored regression tests

in the directory, and reports on failing tests and code coverage. Such a script
can easily be customized to provide different tests for different budgets (e.g.,
prioritized by time, coverage, or to execute coverage-based ’quick tests’).

5.3.1 ArcPy Regression Generation

One difficulty for ArcPy users is ensuring that their existing scripts and tools
work on new versions of ArcGIS. Each recent major release (10.2 and 10.3)
after ArcPy’s introduction has potentially included some changes in the be-
havior of API calls. Detecting when such changes cause a script to break is
difficult. A first step would be an automatic way to find when the return values
for calls differ between ArcPy versions. Because installing multiple versions of
ArcGIS on the same system is difficult or impossible, our method for finding
differences relies on choosing a reference version (10.3 in our current efforts),
and generating a set of standalone tests that 1) cover a large amount of ArcPy
functionality, including invalid inputs to functions and 2) record the return
values and exceptions raised by calls. These tests can be run on any ArcPy
version, and will report differences between the tests and version 10.3. Per-
forming this kind of differential testing [81] on old or new major releases, or
across 64 bit and 32 bit versions, is easy. In the long run, we also want to en-
able TSTL to produce Python 3.0+ code, for use with ArcGIS Pro, which uses
Python 3.4 instead of 2.7. This has motivated a branch to TSTL to support
Python 3.0 (unfortunately, Python 3.0 is not fully backwards compatible with
earlier versions, Python 2.7 is still the most widely used Python, and non-pro
versions of ArcPy only work with 2.7).

We generate coverage-based regression tests using an approach called quick
testing [48,49], which takes a set of tests produced by random testing or model
checking, and applies a test case reduction algorithm [101] to produce smaller
tests that have the same code coverage as the very large, highly redundant,
original set of test cases. Automatic quick-testing was added to TSTL’s ran-
dom test generator to support ArcPy testing. Combined with standalone test
generation, this allows us to produce test cases that can be run on any version
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Fig. 8 Start depth 20, depth 8, width 3 trace visualization for ArcPy testing.

of ArcPy, and explore a large variety of behavior of the code. With ArcPy,
coverage alone, unlike previous quick testing efforts, is insufficient to ensure
a useful regression test. Because coverage only considers the Python behavior
of ArcPy (since we do not have access to the source for the ArcGIS engine),
it may group behaviors that are not similar together. We added the ability to
combine coverage preservation with preservation of all ArcPy messages indi-
cating a successful GIS engine operation, after abstracting away such details
as the runtime of the operation, and so forth.

However, just producing these coverage-and-engine-behavior preserving stan-
dalone tests is not sufficient for good version comparison, since standalone test
cases as produced only check for properties defined in TSTL. An additional
option was added to the standalone test generator, allowing it to record the ac-
tual return values of all calls, the set of exceptions thrown, the success/failure
messages from the ArcPy engine, and so forth to more precisely record a test’s
behavior on an ArcPy version.

5.4 Visualization of Action Spaces

Understanding the structure of the action graph produced by even a relatively
simple TSTL harness can be difficult. The structure is often infinite, and even
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– restart(): resets the system state and aborts the current test.
– test(): returns the current test.
– replay(test): replays a test, and returns a Boolean indicating success or failure of the test.
– enabled(): returns a list of all currently enabled actions.
– randomEnabled(random): given a Python random number generator object, returns a

random enabled action, efficiently (avoiding unnecessary guard evaluations).
– safely(action): performs action (usually changing SUT state) and returns a Boolean indi-

cating whether the action performed raised any uncaught exceptions.
– check(): returns a Boolean indicating whether any properties fail for the current state.
– error(): returns either None (no error for the last action or check), or a Python object repre-

senting an uncaught exception or failed property’s backtrace.
– state(): returns the current SUT state, as a set of values for all pools; for systems where

state cannot be restored by pool values, or deepcopy does not work, returns the current test.
– backtrack(state): takes a state or test produced by state and restores the system to it.
– reduce(test,predicate): takes a test and a predicate (function from test to boolean), and

returns a (possibly smaller) test also satisfying the predicate.
– allBranches(): returns the set of branches covered during all testing.
– newBranches(): returns the set of branches covered during the last action executed that

had not previously been covered.
– currBranches(): returns the set of branches covered during the current test.
– saveTest(test, filename): saves a test in a file.
– loadTest(filename): loads a test from a file (and returns that test as the function’s return

value).

Fig. 9 Some core methods for testing an SUT.

in cases where there is a finite state space (perhaps introduced by abstraction)
the graph is usually far too large for a convenient display. However, we have
found that a visual representation of typical trajectories through the system
can be very helpful for understanding a complex test system. The makegraph

utility takes as input a number of traces to produce, a starting depth, ad-
ditional depth, and a test width. It then produces in pdf form a number of
graphs for traces like the one shown in Figure 8. These trace graphs show, in
bold, the actual action sequence chosen by a pure random tester, starting after
a number of actions not shown (represented by the “...” node) and continuing
up to the depth limit. In addition to the actions taken, the graph also shows a
random subset of additional enabled actions, with each step showing a number
of actions equal to the width. Because many actions are extremely similar, the
graphing utility also summarizes actions that are the same, except for pool
choice or integer constant, using the <[i..j]> notation of TSTL.

5.5 Building Your Own Testing Tools in TSTL

Describing the full interface provided by TSTL for use in testing tools is be-
yond the scope of this paper. However, examining the source code of the in-
cluded testers can provide a good starting point. Implementing new test case
manipulations usually involves understanding TSTL internal structures and
how tests are stored. Implementing novel test generation algorithms can often
rely on just a handful of methods, shown in Figure 9 (TSTL provides nearly
100 methods for generating and manipulating tests, but this minimal set can
implement many test generation algorithms).
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goodTests = []
startTime = time.time()
while (time.time() - startTime <= TIMEOUT):

if (len(goodTests) > 0) and (rgen.random() < PEXTEND):
sut.backtrack(rgen.choice(goodTests)[1])

else:
sut.restart()

for s in xrange(0,TEST LENGTH):
action = sut.randomEnabled(rgen)
r = sut.safely(action)
if len(sut.newBranches()) > 0:

print time.time(),len(sut.allBranches()),’NEW BRANCHES:’, sut.newBranches()
if MEMORY > 0:

goodTests.append((sut.currBranches(), sut.state()))
goodTests = sorted(goodTests, reverse=True)[:MEMORY]

Fig. 10 Implementing a very simple novel testing algorithm.

For example, a researcher aware of the literature showing that for many
systems it is difficult to outperform random testing, due to its very low over-
head [52,63], may consider simple modifications of random testing that do not
greatly increase overhead. One such example, with implementation, is shown
in the original TSTL paper [59]. We present another here. Since the focus of
this paper is on showing how to use TSTL, not novel test generation methods,
we leave a complete development and statistically valid evaluation of our pro-
posed approach to future work, but discuss briefly how to go about prototyping
and evaluation using TSTL.

The idea is to perform random testing, but keep the final state of tests with
unusually high coverage as potential starting points for future tests, potentially
extending them far beyond the normal test length limit. The approach is
parameterized by MEMORY, the number of “good” tests to store, by PEXTEND,
the probability of choosing to extend a “good” test rather than start a new
test, by the TEST LENGTH and by a TIMEOUT parameter. Leaving out imports
and other boilerplate, the entire implementation is shown in Figure 10.

The implementation is trivial, relying only on the TSTL API and some
very simple Python tools (sorting with automatic lexical ordering, time li-
brary, etc.). We omit handling of failed tests, assuming the goal of this al-
gorithm is simply to improve code coverage in fault-free systems for experi-
mental evaluation. This simple tool can be applied to any TSTL harness and
will produce output showing when, in time, new branches were covered by the
system. This data can be used to produce Average-Percent-Branches-Detected
(APBD) values and discovery curves [102,90,89]. Comparison with simple ran-
dom testing is easy, since setting MEMORY to 0 gives pure memoryless random
testing (alternatively, to avoid the overhead of the comparisons with 0, a ded-
icated version for random testing can be written). A major threat to validity
in many comparisons of testing or explicit-state model checking algorithms is
that different underlying infrastructure for different algorithms may end up
outweighing even moderately sized effects due to the underlying algorithms.
With TSTL, fair comparisons are much easier, since the TSTL interface does
most of the computational work that is common to multiple algorithms, with
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Fig. 11 Comparing branch coverage for 10 minute runs of two test generation methods.

the same overhead. Evaluating an algorithm can be as simple as finding a large
number of suitable programs without failures (or where failures don’t make
coverage values invalid) and performing enough trials to establish statistical
validity for comparisons with APBD values for known algorithms. Evaluation
in terms of discovered faults or time-until-discovery of a fault is nearly as
simple. This algorithm is of some interest, in that while it requires backtrack-
ing, the frequency of backtracking is low enough to be potentially applicable
even to systems like ArcPy where backtracking is only possible via expensive
test replay. While a mature version of this method would require many SUTs
and experiments, as well as investigation of suitable values for MEMORY and
PEXTEND, Figure 11 shows that average branch discovery curves for ArcPy can
sometimes be improved, even using the arbitrarily chosen parameters of a size
5 memory and a 20% probability of using a “good” test as a starting point.
The simplicity of the Python implementation makes performing automatic ex-
periments with different parameters and test lengths trivial. Experiments can
also take advantage of Python libraries for automatic statistical analysis and
plotting of results.

6 TSTL as a Testing Library Generator

While TSTL is easily used as “just another tool” that allows testing of an
SUT, plus a “construction kit” to build your own testing tools, TSTL can
also be understood as a generator of libraries. ArcPy is a site package that
makes it easy to perform GIS tasks using Python. NumPy [4] and SciPy [6] are
libraries that make performing scientific computing tasks easy with Python.
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QIIME [20], Biopython [2], and scikit-bio [5] are libraries that make perform-
ing bioinformatics tasks easy using Python. Such libraries can be of great
importance in their subject domains: ArcPy is extremely widely used, and
the subject of university courses in many GIS programs; the Nature Methods
paper introducing QIIME has been cited more than 5,000 times to date, ac-
cording to Google Scholar. TSTL, also, can be seen as a tool that generates
a library making it easy to perform testing tasks for a specific SUT, using
Python.

ArcPy, NumPy, QIIME and the other libraries can be seen as introducing
the entities essential to their respective tasks as first-class, easily manipulable
objects in the Python language. TSTL makes tests (for a specific SUT, but
using a common interface across all SUTs) first-class, easily manipulable ob-
jects. TSTL does for tests, SUT state, and code coverage what ArcPy does
for feature classes, spatial references, and other GIS concepts, what NumPy
does for efficiently represented arrays and matrices, and what QIIME does for
protein sequences.

The key to understanding TSTL as a library generator is the idea of a
test. A TSTL test is a list of actions6. The individuals of the action type
are dependent on the SUT. TSTL allows the user to generate, manipulate,
and inspect tests in the same way NumPy lets a user explore the behavior of
arrays. This means that TSTL can also be used interactively, as the following
example (using some TSTL-supplied methods not shown in Table 9) shows:

>>> import sut, random
>>> sut = sut.sut()
>>> r = random.Random()
>>> (t1, ok) = sut.makeTest(100,r)
>>> print ok
True
>>> sut.prettyPrintTest(t1)
fieldname1 = "newf1" # STEP 0
polytable0 = arcpy.env.workspace + "\polyneig.dbf" # STEP 1

...
arcpy.Erase analysis(classorlayer0,classorlayer1,featureclass0); report() # STEP 98
arcpy.Buffer analysis(classorlayer3,featureclass0,dist1); report() # STEP 99

Here, a user generates a length 100 test for ArcPy, and then prints it. The
user can also modify the test slightly, using standard Python list modification,
generate another test, produce a third test that is the composition of the first
two tests, and reduce that third test to remove any redundant (with respect
to code coverage) steps in it.

>>> t1[1] = sut.playable(t1[1][0].replace("newf1","newf2"))
>>> (t2,ok) = sut.makeTest(100,r)
>>> print ok
True
>>> t3 = t1 + t2
>>> sut.replay(t3)
>>> bc = sut.currBranches()
>>> t4 = sut.reduce(t3, sut.coversBranches(bc))
>>> len(t4)
78

...

6 We expect this type to be the same for any TSTL version for any language: a list is the
simplest way to express pure sequence, which is the essence of a test.



TSTL: The Template Scripting Testing Language 25

The user is causing ArcGIS to perform GIS operations, but without speci-
fying those operations; the GIS tasks are conceptually reduced to the actions
of an arbitrary SUT, but the printed test makes it clear what is going on at
the SUT level. While this example shows the makeTest interface being used
with the default generator (pure random testing), a user can supply a more
complex generator as a function. For example, to implement testing such that
if the last action resulted in any new coverage, it is repeated, a user could
first define a generator function (assume that r is a random number generator
defined globally, as above):

def repeatGen(state,sut):
(lastAction, r) = state
if (lastAction != None) and (len(sut.newBranches()) > 0) and (lastAction[1]()):

return (lastAction, lastAction)
newAction = sut.randomEnabled(r)
return ((newAction, r), newAction)

and then generate a length 100 test using this strategy easily:

>>> (t5, ok) = sut.makeTest(100, sgenerator=repeatGen, initial=(None,r))

The function repeatGen takes a state consisting of a single action (or None
initially) and a random number generator. It then, if there is a lastAction,
and the last step of testing increased branch coverage, and the action is still
enabled, returns that action as both the next action to perform and the new
state of the generator. Otherwise, it generates a random action, and returns
that as the state and the action.

We do not believe such an interactive approach to testing is natural with
most other tools that generate either model checking traces or method-call
sequence tests. In fact, the very idea of test case composition as shown in the
first interactive code fragment may seem quite strange to users of either model
checking or conventional unit tests. Although TSTL tests are sequences of
actions — essentially small, deterministic programs with no inputs — they can
be interacted with and generated like tests in QuickCheck [24] or Hypothesis
[78], where tests are usually just function inputs (lists, data structures, etc.).
This ease-of-use for exploratory testing is a primary reason TSTL was first
implemented for Python, rather than a compiled language such as Java or
C (hence the “Scripting” part of “Template Scripting Testing Language”). A
Swift, Ruby, or Scala version would also provide a way to interact with tests
in a simple, immediate, and basically “functional” way.

7 Faults Discovered Using TSTL

7.1 ArcPy Faults

In the process of testing ArcPy with TSTL, we discovered at least five distinct
faults (thus far) that can cause an ArcPy script to crash. While we have (as
discussed in Section 4) some properties that check for data corruption and
determinism of GIS analysis, we are not focusing on these until we have a
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shapefilelist0 = glob.glob("C:\Arctmp\*.shp") # STEP 0
#[
shapefile0 = shapefilelist0 [0] # STEP 1
newlayer0 = "l1" # STEP 2
# or newlayer0 = "l2"
# or newlayer0 = "l3"
# swaps with steps 3 4 5 6 7
#] (steps in [] can be in any order)
#[
featureclass0 = shapefile0 # STEP 3
# swaps with step 2
fieldname0 = "newf1" # STEP 4
# or fieldname0 = "newf2"
# or fieldname0 = "newf3"
# swaps with steps 2 8
selectiontype0 = "SWITCH SELECTION" # STEP 5
# or selectiontype0 = "NEW SELECTION"
# or selectiontype0 = "ADD TO SELECTION"
# or selectiontype0 = "REMOVE FROM SELECTION"
# or selectiontype0 = "SUBSET SELECTION"
# or selectiontype0 = "CLEAR SELECTION"
# swaps with steps 2 8
op0 = ">" # STEP 6
# or op0 = "<"
# swaps with steps 2 8
val0 = "100" # STEP 7
# or val0 = "1000"
# swaps with steps 2 8
#] (steps in [] can be in any order)
arcpy.MakeFeatureLayer management(featureclass0, newlayer0) # STEP 8
# swaps with steps 4 5 6 7
arcpy.SelectLayerByAttribute management(newlayer0,selectiontype0,

’ "’+fieldname0+’" ’+op0+val0) # STEP 9
arcpy.Delete management(featureclass0) # STEP 10
arcpy.SelectLayerByAttribute management(newlayer0,selectiontype0,

’ "’+ fieldname0+’" ’+op0+val0) # STEP 11

Fig. 12 Deleting a feature class does not invalidate or delete layers that depend on it.

reliable way to avoid system crashes. In order to give an idea of what TSTL
test cases look like, we discuss briefly one of these ArcPy crashes.

ArcPy crashes when the feature class from which a layer is produced is
deleted, and the layer is used in a SelectLayer call (this version shows an
attribute-based selection, but location selection will cause the same problem):
(Figure 12). The underlying issue seems to be that while operations on a
deleted feature class properly notify a user the feature class does not exist,
ArcPy or ArcGIS does not track that layers produced from a feature class
should also be deleted/invalidated when the feature class is deleted. Layers
are not copies of a feature class, but essentially new views of a feature class.
This means that when the underlying feature class is modified or deleted, the
view needs to be updated to reflect that change, and this is not correctly im-
plemented. Figure 12 shows part of an annotated, reduced, normalized, and
generalized test stand-alone test case (with the boilerplate, function defini-
tions, and imports removed) for this fault. The final line of code crashes Ar-
cPy and the Python interpreter. Comments indicate alternative similar tests
that also fail. In this case, TSTL’s additional reduction steps (based on term
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rewriting in the action language) remove almost half the steps in the original,
delta-debugged test case.

Other faults (or documentation lapses) in ArcPy we have discovered in-
clude crashes when computing statistics over database fields of a layer using
a deleted field and crashes due to seemingly reasonable modifications of fea-
ture classes while a database cursor is active. In order to deal with the latter,
which seems more in the line of an undocumented behavioral restriction than a
“bug,” we now drastically limit database modification when a cursor is active.
We have reported these problems to Esri, but have not received a response.
The problems discovered may be previously known to Esri, but are not gener-
ally known to the ArcPy user community, and those that could be considered
API limitations (that cause unexplained crashes when violated) are not doc-
umented.

7.2 Faults in Other Systems

TSTL is only slightly less than two years old, and a stable, mature, non-
prototype version has only existed for about a year. However, TSTL has al-
ready been used to find important bugs in real systems.

Using TSTL’s support for differential testing, we were able to quickly find
and report issues with the widely-used gmpy2 interface to the GMP (GNU
Multiple Precision [36] arithmetic library), as well as (surprisingly) in the core
CPython bignum implementation [46,47].

TSTL was also able to discover at least 15 previously undiscovered faults
in the widely used SymPy library for symbolic mathematics in Python [96].
We have reported these faults, and hope to collaborate with the SymPy team
to provide assistance in localizing and fixing them using TSTL. The SymPy
effort was able to move from decision-to-test to first discovered fault in the
course of a single day, due to the much higher ease-of-use for the post-ArcPy
version of TSTL used. For a straightforward testing task like SymPy, building
a TSTL harness is now quite simple, largely a matter of thinking about what
the user wishes to test.

Students using TSTL in graduate classes on software testing have already,
with minimal assistance, discovered faults in some real-world systems. Not
all of these are confirmed and reported yet. TSTL testing revealed a fault
in either the widely-used PyOpenCL library [72], the even more widely-used
OpenCL infrastructure [71], or (possibly) the NVIDIA hardware being used. We
are still investigating this problem, but it appears to be a genuine fault, though
debugging and assigning blame is complex due to the layers of software and
hardware involved. Second, TSTL testing found cases where distance metrics
that were supposed to be symmetric in the popular fuzzy-string-matching
library FuzzyWuzzy [44] were asymmetric, if the default Python string match
library was used instead of a Levenshtein-distance library. Third, TSTL testing
revealed numerous problems with the astropy.table module of the AstroPy
library [1], used by many professional astronomers and astrophysicists. TSTL
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has also been used to discover faults in the TSTL API itself. The github
repository for the graduate class in question (https://github.com/agroce/
cs562w16) contains the TSTL code for testing these systems (and many other
student projects).

8 Related Work

There is a vast amount of previous work on automated generation of tests for
(API-based) software systems [85,38,43] and random testing in particular [55,
85,12,22,13,94,65,64,24,23,14,57,11,10,31], some dating back to the early
1980s. It is far beyond the scope of this paper to explore that literature in
detail. The interested reader is directed to the cited papers, as well as general
surveys of automated test generation in particular [8] or recent software testing
research in general [84].

TSTL is a domain-specific-language (DSL) [37] for testing, in the spirit of
the famous QuickCheck tool for Haskell [24] that inspired much current interest
in property-based testing. To our knowledge, there has been no previous pro-
posal of a concise DSL like TSTL, to assist users in building test harnesses for
API-call sequences, and to make test generation and manipulation first-class
activities in a language. QuickCheck itself produces tests that are simply val-
ues input to functions, not sequences of actions. Some QuickCheck-like tools,
such as ScalaCheck [83] or the excellent Python tool Hypothesis [78] include
limited, and rather cumbersome to use, state-machine-based tools for generat-
ing call-sequence tests. These tools are also generally limited to the included
methods for generating such tests, and make building novel sequence genera-
tion algorithms based on state-exploration and backtracking (model checking
methods) or feedback from coverage difficult at best.

There is limited previous work on building common frameworks for random
testing and model checking [57], or proposing common terminology for imper-
ative harnesses [50]. Earlier publications on TSTL itself [59,60] presented a
language considerably more limited in functionality and with a more difficult-
to-read syntax. These publications omitted details of the tools provided in
the TSTL distribution for off-the-shelf testing [61], and provided little prac-
tical guidance to potential users of TSTL. More critically, these papers did
not describe the long-term core concept of TSTL as primarily making testing
and explicit-state verification a first-class, library-supported activity for any
programming language. Some technical details of the current TSTL imple-
mentation were presented in the NASA Formal Methods paper [59] that we
omit in the interest of space (and because implementation details are subject
to change).

There exist various testing tools and languages of a somewhat different
flavor than TSTL that address the problem of helping users generate tests.
Korat [82], for example, has a much more fixed input domain specification, as
do the tools built to support the Next Generation Air Transportation System
(NextGen) software [40]. The model-based TestStories approach of Felderer et
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al. [34], the software-as-a-service oriented approach of Santiago et al. [92], and
the use-case-based DSL for extracting tests proposed by Im et al. [69] similarly
aim at a fairly restricted (and simply different) goal of turning certain inputs
(in a DSL tied to a model or documentation) into tests or test skeletons. Utting
et al. survey the wide variety of specifically model-based testing approaches,
including many tools [97]; while TSTL is not specifically model-based, it can be
used to facilitate model-based testing in theory. Behavior-driven-development
(BDD) [21] is often supported by extracting formally meaningful parts of a
specification document to (partially) instantiate a test.

Perhaps the most similar system to TSTL is the UDITA language [42], an
extension of Java with non-deterministic choice operators and assume, which
yields a very different language but shares our goal of making it easy to de-
fine the set of valid tests for a system. TSTL aims more at the generation of
tests than the filtering of tests (as defined in the UDITA paper), while UDITA
supports both approaches. This goal of UDITA (and resulting need for first-
class assume statements) means that it must be hosted inside a complex (and
sometimes non-trivial to install/use) tool, JPF [98], rather than generating a
stand-alone simple interface to a test space, as with TSTL. Building “UDITA”
for a new language is far more challenging than porting TSTL. UDITA sup-
ports many fewer constructs to assist harness development. It is impossible to
“interact” with a UDITA test harness in a simple way, as with TSTL; UDITA
is a tool, while TSTL has tools that are built on top of a common library
interface.

The design of the SPIN model checker [68] and its model-driven extension
to include native C code [66] inspired the flavor of TSTL’s domain-specific lan-
guage, though our approach is more declarative than the “imperative” model
checker produced by SPIN, and our system less tied to a particular method of
exploration. Work at JPL on languages for analyzing spacecraft telemetry logs
in testing [54] provided a working example of a Python-based declarative lan-
guage useful in testing. The pool approach to test case construction is derived
from work on canonical forms and enumeration of unit tests [9], and common
to some other test generators [85].

A primary difference between all such systems and TSTL is that TSTL is
meant to be much more general, without focusing on a particular system model
or specification method. TSTL, unlike any other system of which we are aware,
aims to make test cases first-class objects, and provides tools for development
of code that manipulates, executes, and analyzes test cases. In a sense, TSTL is
less a tool for creating tests than a method for generating a language extension
(custom to each SUT, but with a common interface) that makes test activities
as well supported as, e.g., ArcPy makes GIS operations, or NumPy makes
numeric operations. Because testing is intimately tied to a particular SUT,
this process is more involved than in typical libraries, requiring the step of
compiling a TSTL model, but the end-goal is similar. No such language-based
interface is possible in more traditional testing or model checking tools, to our
knowledge. Extending even a highly extensible system such as Java PathFinder
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[98] is much more like extending an existing complex software system than
simply using a library API.

A second aspect of TSTL is that while it is intended to be useful to re-
searchers in software testing and model checking, and help prototype new
algorithms, it is primarily designed to be a practical tool and language ex-
tension for users. Some other recent work on automated test generation has
given more attention to practical, rather than primarily algorithmic or “pure”
research, issues than in the past. We suspect this shows a growing techno-
logical maturity for automated test case generation. E.g., the papers by the
NASA/JPL group on testing the Curiosity rover’s file system [55,56,53] have
a largely practical focus, and the work of Lei and Andrews [77] emphasizes the
need for delta-debugging in realistic random testing. Pike’s SmartCheck [87] is
not intended to increase fault detection so much as to improve the usability of
test cases produced by QuickCheck. We found that test case readability was
important in our efforts, and recent academic work [29,28] has introduced prin-
cipled methods for improving the readability of test cases for humans, even
though this does not improve fault detection, coverage, or other traditional
measures of test effectiveness.

The literature on testing GIS (Geographic Information Systems) software
in particular seems to consist of one paper proposing a very limited application
of automated testing to assist GIS users, primarily in model development [79].
That work does not target the reliability or correctness of the underlying GIS
engine, or GIS libraries. There is also some discussion of automated testing for
GIS in various blog posts and discussion groups (e.g., [100,7]), but no formal
academic case studies. These discussions also tend to focus on application
testing or GUI testing, rather than testing of library code used across GIS
applications. There is a simple extension to Python unit testing modules for the
GRASS open source GIS system [45], but this does not provide any automated
test generation.

There is a significant body of work on end-user testing of software, part
of the larger field of end-user software engineering [17,18]. End-user software
engineering examines how software can best be produced by developers who do
not have a traditional computer science background, and are often primarily
interested in an application of programming, rather than software development
as a profession. GIS developers are (we believe) a typical example [93]: they
are technically skilled individuals whose primary expertise is not in software
development, but who, in order to pursue their goals, must develop, maintain,
and test significant software systems.

The earliest work focusing on software testing for end-user software engi-
neers explored how to test spreadsheets [88,91]. Other work has focused on
errors end-users make in specifying systems [86], and how end-users of ma-
chine learning systems (who may be machine learning experts, or individuals
with no programming knowledge at all) can test such systems [58,75,95]. To
our knowledge, no previous work considers function call sequence testing for
end-users. Previous work on such testing has often been performed only by
software testing researchers, not even including traditional developers.
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9 Conclusions

This paper presents the latest version of the TSTL [59–61] domain-specific
language for testing, which enables a declarative style of test harness devel-
opment, where the focus is on defining the actions in valid tests, not deter-
mining exactly how tests are generated. Because TSTL, inspired by the SPIN
model checker, produces a software-under-test-independent interface for test-
ing, TSTL makes it possible for users to easily apply different test generation
methods to the same system without undue effort. The same approach makes
it possible for researchers to rapidly prototype novel test generation methods,
and evaluate them in a context where differences in test infrastructure not
relevant to the algorithms at hand can be minimized.

TSTL has, in the year since its initial introduction, already been used to
discover previously unknown (to our knowledge) faults in multiple Python li-
braries, including the very widely-used ArcPy site package for GIS scripting.
As future work, we plan to continue to use TSTL to explore novel testing algo-
rithms, investigate the relative strengths of systematic, stochastic, and directed
test generation methods, and apply TSTL to look for faults in widely used li-
braries. Finally, we plan to port TSTL to additional programming languages
beyond Python and Java, and add automatic support for new properties, in-
cluding information-flow based security checks.

More generally, TSTL takes the approach to GIS embodied in ArcPy, or
to biology embodied in QIIME [20], and applies it to testing: TSTL makes it
possible for users to create, manipulate, and execute test cases in the context of
an easily learned programming language. Just as ArcPy makes the automation
of GIS tasks easier, TSTL aims to make the automation of all testing tasks
easier, by supporting the functionality common to most testing tasks. The
choice of System Under Test in TSTL is analogous to the choice of using GIS
to analyze epidemiological data or urban traffic routes using ArcPy; ArcPy
provides features that are common across all such applications. TSTL provides
the same functionality with respect to software testing.
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