
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Exploiting Traces in Static Program Analysis

Better Model Checking through printfs

Alex Groce, Rajeev Joshi

Laboratory for Reliable Software
Jet Propulsion Laboratory,
California Institute of Technology,
Pasadena, CA 91109, USA
e-mail: {Alex.D.Groce,Rajeev.Joshi}@jpl.nasa.gov
http://eis.jpl.nasa.gov/lars ⋆

The date of receipt and acceptance will be inserted by the editor

Abstract. From operating systems and web browsers
to spacecraft, many software systems maintain a log of
events that provides a partial history of execution, sup-
porting post-mortem (or post-reboot) analysis. Unfortu-
nately, bandwidth, storage limitations, and privacy con-
cerns limit the information content of logs, making it
difficult to fully reconstruct execution from these traces.
This paper presents a technique for modifying a pro-
gram such that it can produce exactly those executions
consistent with a given (partial) trace of events, enabling
efficient analysis of the reduced program. Our method re-
quires no additional history variables to track log events,
and it can slice away code that does not execute in
a given trace. We describe initial experiences with im-
plementing our ideas by extending the CBMC bounded
model checker for C programs. Applying our technique
to a small, 400-line file system written in C, we get more
than three orders of magnitude improvement in running
time over a näıve approach based on adding history vari-
ables, along with fifty- to eighty-fold reductions in the
sizes of the SAT problems solved.

1 Introduction

Analysis of systems that have failed after deployment is
a fact of life in all engineering fields. When a bridge col-
lapses or an engine explodes — or a computer program
crashes — it is important to understand what exactly
happened in order to avoid future failures arising from
the same causes. Petroski has argued that failure anal-
ysis is the royal road to progress in engineering: under-
standing past failures is the key to future successes [34].

⋆ The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

In the case of software engineering, a patch may be able
to correct the flaw and restore a system to working order,
making tools for analyzing failure even more valuable.

The motivation for trace-based analysis of programs
is straightforward: critical software systems, including
file systems, web servers, and even robots exploring the
surface of Mars, often produce traces of system activ-
ity that humans use to diagnose faulty behavior. Re-
constructing the full state or history of a program from
these traces or logs is difficult: the traces contain limited
information, due to the overhead of instrumentation, pri-
vacy concerns, and (in the case of space missions) lim-
ited storage space and communication bandwidth. Al-
most all programmers are familiar with the difficulty
of this detective work: after all, “printf-debugging” is
the most primitive form of dynamic analysis [4] and is
the world’s most widespread debugging technique [42].
At heart, printf-debugging is the production of failure
traces, in the hope of exploiting these traces for (manual)
program analysis.

The goal of our work is to exploit failure traces in
order to increase the scalability of precise program anal-
yses. Our approach is general enough to be applied as
a reduction method for programs, and thus usable for
any type of analysis, but our particular application and
implementation are targeted for (software) model check-
ing [7,36,9].

In particular, we show how restricting program be-
haviors given a trace can dramatically decrease the size
of the SAT formulas in bounded model checking [6].
Given the program source and a trace log, it should be
possible to use bounded model checking to find detailed,
concrete program executions compatible with the trace
— even in cases where the full program is too large to
be model checked.

Bounded model checking is a natural choice as a ver-
ification method to combine with trace analysis: BMC
works by converting a program into a SAT equation.

2 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

S

T

S Behaviors

Trace

Fig. 1: Reducing a program S by a trace

The solutions to the SAT equation are counterexam-
ples for the properties being model checked. This equa-
tional, execution-centered approach to verification inte-
grates cleanly with the algorithm described below, which
adds constraints and removes variables to make the SAT
problem more tractable. The existence of a program trace
may also help to mitigate one of the major limitations
of bounded model checking, the need to “guess” loop
bounds — a trace may provide important clues or even
exact information about loop behavior in the counterex-
ample.

Figure 1 shows the basic concept, which applies to
any static analysis technique, not just to bounded model
checking:

– We begin with a program S.
– We “restrict” S to a new program T , as described in

Section 2.

The behaviors (executions) of T are a subset of the
behaviors of S: in particular, the only behaviors of T

are those which produce the trace of S in question. We
expect that, as T has a smaller set of possible behaviors
and is likely to be syntactically smaller than S, T will
prove easier to analyze than the original program S. This
reduction can be seen as an unusual kind of program
slicing [40], an intermediate between static slicing and
dynamic slicing (see Section 5 for a discussion of related
work).

Because our ultimate goal is to provide tool support
for programmers dealing with anomalies in remote space-
craft, we refer to trace elements (or printfs) as EVRs,
after the JPL shorthand for Event Reporting [1]. An EVR

is a command which appends information to a running
log. The log is eventually downlinked to ground con-
trol as part of spacecraft telemetry. For our purposes,
an EVR may print a constant string and serve simply to
indicate the control flow of the program, or it may con-
tain the current values of critical variables. Event reports
are used to diagnose and troubleshoot mission anoma-

lies, including the famous “Spirit Flash anomaly” that
jeopardized the Mars Exploration Rover mission [38]1.

A secondary benefit of our work is that program
traces are useful as specifications. EVRs and printfs are
useful for debugging because they provide a high-level
description of program behavior. In many cases, a bug is
discovered by a programmer reading a trace and noticing
an event sequence that should not be possible. The tech-
niques that allow reconstruction of concrete executions
given a trace also make it possible to check properties
such as: “the system must not produce trace σ” or “the
system must be able to produce trace σ”. We extend
the language of traces to include hidden and wildcard
events, producing a restrictive but convenient property
language.

This paper extends “Exploiting Traces in Program
Analysis,” which appeared in TACAS 2006 [18]. We first
describe a general method for adding assume statements
to a deterministic program to restrict its behavior to
exactly those executions compatible with a given trace
— without introducing history variables or state. We
then make use of the information gathered in the assume
statement-generation to slice the program, removing por-
tions of the source code based on the information in the
program trace.

The first technique is best understood by noting that
EVR(a) can be seen as an operation that appends the
string a to a history variable, log. Adding assume(log =
σ) at the end of a program will restrict it to behaviors
matching the trace σ. For deterministic programs, our
analysis computes assumptions that are logically equiv-
alent but do not mention log2. This direct encoding in
terms of control flow and data values aids the SAT solver
in propagating constraints — and reduces the size of the
state space. The value of slicing may be observed in a
more concrete example: consider a program containing
complex fault-handling routines. If execution of these
routines always produces EVRs, and those EVRs do not
appear in the trace, the fault handling component(s) can
be completely eliminated during analysis, with a poten-
tial for a drastic reduction in the size of SAT instances
used in model checking.

Our approach addresses common variations of the
basic problem, including the case where only a suffix of
the full trace is known, as well as the presence of mul-
tiple, unsynchronized traces. The suffix variation is par-
ticularly important, both for handling cases where there
is an absence of trace information about early behavior
of the program and for potentially finding shorter traces
leading to the same failure. A program’s log may contain
execution history stretching over days or weeks of exe-
cution time, much of which is irrelevant to the exhibited

1 A lack of easy-to-access event telemetry for the relevant soft-
ware aspects is noted as a contributing factor to the near-mission
loss in the anomaly report.

2 As noted below, the restriction to determinized programs with
inputs is not a significant limitation for model checking

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 3

failure. Using a suffix of a trace allows us to experiment
with reproducing the failure from only the evidence in
the (more likely to be relevant) tail of the full trace.

We implemented our approach as an extension to
CBMC [24], a bounded model checker for ANSI-C pro-
grams (see Section 3 for details of the implementation
and for the analysis of a small program). Analyzing a
trace with known length allows us to avoid considering
loops and non-terminating execution, simplifying the im-
plementation. CBMC determinizes C programs by mak-
ing all external inputs explicit (a common approach in
software model checking).

Section 4 presents our experimental results. We ana-
lyzed a model of a small file system (Section 4.1) and a
resource arbitration algorithm based on that used in the
Mars Exploration Rovers Spirit and Opportunity (Sec-
tion 4.2). As expected, using a trace to guide exploration
improved the performance of model checking over a näıve
approach based on adding history variables, providing
more than three orders of magnitude improvement in
running times as well as a fifty- to eighty-fold reduction
in the sizes of the SAT problems produced. The improve-
ment over model checking without a trace to restrict the
program is from over 17,000 seconds to 105 seconds3.

2 Reducing a Program with Respect to a Trace

We now formalize the notion of reducing a statement S

with respect to a trace σ4. The motivation for reduction
is improving the scalability of tool-based program anal-
ysis. Ideally, we would like to construct a new statement
T such that T has exactly those executions of S match-
ing σ — i.e., (i) all executions of S that produce σ are
executions of T , (ii) all executions of T are executions
of S, and (iii) all executions of T produce σ. Here, (i)
ensures that we miss no executions that produce σ, (ii)
ensures that the verifier produces no “false alarms”, and
(iii) ensures that we ignore executions that do not pro-
duce σ. Of these, (i) is critical: soundness is essential to
further analysis; (ii) and (iii) are desirable but not nec-
essary. Constructing a reduced statement T satisfying
all three conditions is difficult in general, but is possible
given restrictions on S. In this section, we describe these
restrictions, and show how a reduced statement T may
be constructed given S satisfying these restrictions.

2.1 Notation

To simplify the exposition, we describe our approach in
the context of a simple do-od language with assume and

3 This is for an incomplete trace lacking the critical event; with
a full trace, the model checking time is reduced to less than a
second.

4 We consider reduction of statements rather than programs per

se as in our language, these are roughly equivalent – a program is
a (compound) statement, a set of variables, and an event language.

<S> ::= v := E

| IF E THEN S [ELSE S] FI

| WHILE E DO S END

| S ; S

| SKIP

| assert(E)
| assume(E)
| EVR(a)

Fig. 2: Language syntax

EVR statements. A program is a tuple (V , Σ, S) where V
is a set of typed program variables that contains a spe-
cial variable log of type Σ∗, Σ is a finite alphabet of
symbols, and S is a statement according to the syntax
shown in Figure 2. In this figure, the nonterminal v de-
notes a variable name in V , the nonterminal E denotes
an expression (whose syntax we do not elaborate in this
paper), and a denotes a symbol in Σ. A statement is
said to be “well-formed” when it does not mention the
variable log.

The meaning of a program is given in terms of pre-
and post-condition semantics in the usual way. We ex-
pect that readers are familiar with most of the constructs
of this language, and thus omit a full semantics. The se-
mantics of an assume statement is given by the following
weakest precondition equation: for any predicates P, Q

wp(assume(P), Q) = (P ⇒ Q) (1)

The statement assume(P) always terminates, thus:

wp(assume(P), Q) = wlp(assume(P), Q)

Operationally, if we view program statements as rela-
tions on pre- and post-states, assume(P) is a subset of
the identity relation (i.e., SKIP), defined only on those
pre-states satisfying the predicate P . Note — this means
that assume(P) is not total (and hence does not satisfy
Dijkstra’s Law of the Excluded Miracle [33]). In partic-
ular, assume(false) corresponds to the empty relation,
which establishes any postcondition (and is therefore
sometimes referred to as a “miracle” [31])

The semantics of the remaining construct, the EVR

statement, is given as follows: for any symbol a in Σ,
EVR(a) is equivalent to “log := log• a”. That is, EVR(a)
appends the symbol a to the variable log.

2.2 A Simple Construction

Suppose that we are given a program (V , Σ, S) and a
string σ over Σ. As described above, we want to con-
struct a reduced program (V , Σ, T) satisfying conditions
(i), (ii) and (iii) above5. It is not hard to show that

5 In practice, we might wish to construct a program (V ′, Σ, T),
in which variables not appearing in T are not included.

4 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

the desired statement T satisfies the following statement
equality:

T = assume (log = 〈〉) ; S ; assume (log = σ) (2)

That is, T consists of exactly those executions of S that,
started in a state in which the log is empty, either termi-
nate in a state in which the log is σ, or do not terminate
at all6. This equation suggests a simple construction: re-
place occurrences of EVR(a) in S with code for append-
ing a to log, and add the two assume statements shown
above.

As discussed in Section 4, experience with this sim-
ple construction for model checking C programs shows
that the addition of such assume statements sometimes
reduces analysis time significantly (in one instance, time
to find an error improves from 17,608 seconds to 105 sec-
onds). Unfortunately, this construction does not suffice
to analyze large programs (see Table 3 in Section 4). The
limitations of this construction are twofold: (a) knowl-
edge of σ is not exploited in order to simplify the pro-
gram, and (b) the introduction of log as a new program
variable adds additional state, which increases the size
of the state space to be explored. We now discuss how
we avoid these limitations.

2.3 Pushing assume Statements Through a Program

Consider the program shown in Figure 3a, where f and
g denote complex computations involving x and y. Sup-
pose that we want to analyze this program given the sin-
gleton trace 〈1〉. We see that this trace is produced only
if x is assigned a positive value; since the second branch
of the first IF statement does not modify x, knowledge
of the trace should allow us to discard the (complex)
details of the computation of g in our analysis.

One way to achieve this is by pushing assume state-
ments through a program. As illustrated in Figure 3b,
we can push the final assume statement with the predi-
cate (log = 〈1〉) backwards through the program. This
allows us to add an assume statement with the predicate
(x > 0) between the two IF statements; in turn, this al-
lows us to introduce an assume(P) at the beginning of
the program and thus remove the first ELSE branch.

We are therefore interested in conditions under which
we can push assumes through a program. To this end,
we consider the following equation: for given statement
S and predicate Q, solve for P in

solve P : S ; assume(Q) ⊆ assume(P) ; S (3)

where we write S ⊆ T to mean that all executions of S

are executions of T . Note that this equation has many
solutions in general — e.g., P = true. This is related to

6 Alternatively, we could require that T only have terminating
executions. Since CBMC produces unrolled (hence terminating)
programs, we do not explore this alternative in this paper.

the observation that one can always push weak assump-
tions through a program. However, because we want T

to include as few unnecessary executions as possible, we
are usually interested in the strongest solution in P to
this equation. It is not hard to show that the strongest
solution to this equation exists, and can be expressed
in terms of Dijkstra’s weakest-precondition transformer
as ¬wp(S,¬Q). Recall that wp(S, Q) denotes the set of
states from which all executions of S terminate in states
satisfying Q, whereas wlp(S, Q) denotes states from which
all terminating executions of S end in states satisfying
Q. Therefore, the dual expression ¬wp(S,¬Q) denotes
the set of states from which either there is an execution
of S that terminates in Q, or an execution of S that fails
to terminate.

Unfortunately, although the strongest solution to equa-
tion (3) satisfies conditions (i) and (ii) above, it does not
guarantee (iii), because there may be executions of the
RHS that are not in the LHS. To derive assumptions
guaranteeing (iii), we need to solve for P in the follow-
ing equation:

solve P : S ; assume(Q) = assume(P) ; S (4)

This equation is a strict equality. Thus, for any solution
P , the right-hand side denotes exactly those computa-
tions of S that end in states satisfying Q.

The problem with this strict condition is that solu-
tions do not exist in general. The difficulty is illustrated
by the following simple example. With denoting non-
deterministic choice, consider the statement S given by

(x := x+1) (x := x+2)

and let Q be the predicate (x=2). Clearly, this equation
has no solution for P .

It is not hard to show that for programs that are
total7(in the sense that they can be executed from any
state), equation (4) has at most one solution. The more
interesting question is when the equation has at least one
solution in P . This is addressed by the following result.

Lemma 1 Let S be a total, deterministic statement. For
any predicate Q, equation (4) has a unique solution in
P , given by wlp(S, Q), the weakest liberal precondition of
Q with respect to S.

Proof of Lemma 1. We use the fact that a total, deter-
ministic program S satisfies the following conditions [11],
for all predicates Q, R:

wp(S, R) = ¬wlp(S,¬R) (5)

wp(S, Q ∨ R) = wp(S, Q) ∨ wp(S, R) (6)

Recall that the statement of the lemma requires us to
show:

assume(wlp(S, Q)) ; S = S ; assume(Q)

7 Such programs are sometimes called “non-miraculous” since
they satisfy Dijkstra’s Law of the Excluded Miracle [10]

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 5

x := 0 ; y := 0 ;

IF P THEN

x := f(x,y)

ELSE

y := g(x,y)

FI ;

IF x>0 THEN

EVR(1)

ELSE

EVR(2)

FI

(a) Original program

P ∧ f(0,0)>0

x := 0 ; y := 0 ;

IF P THEN

x := f(x,y)

ELSE

y := g(x,y)

FI ; x>0

IF x>0 THEN

EVR(1)

ELSE

EVR(2)

FI

log = 〈1〉

(b) With assumes

P ∧ f(0,0)>0

x := 0 ; y := 0 ;

x := f(x,y)

SKIP

(c) After slicing

Fig. 3: Example program for trace reduction. Shaded expressions are assumptions.

Now this is an equality between programs, so it suf-
fices to show that the formulas for weakest precondi-
tions of each side with respect to an arbitrary predicate
R are identical. This follows from the following calcula-
tion, starting with the weakest precondition of the LHS
above:

wp(assume(wlp(S, Q)) ; S, R)
≡ { Since wp(assume(Q), R) = (¬Q ∨ R) }

¬wlp(S, Q) ∨ wp(S, R)
≡ { From condition (5) above }

wp(S,¬Q) ∨ wp(S, R)
≡ { From condition (6) above }

wp(S,¬Q ∨ R)
≡ { Weakest precondition of assume }

wp(S ; assume(Q), R)

(End of Proof.)
This lemma states that for total, deterministic pro-

grams, pushing assumes through the program is equiva-
lent to computing wlp.

We can also ask when it is possible to push assumes
forward through a program. In this case, we are inter-
ested in solutions for Q in

solve Q : assume(P) ; S ⊆ S ; assume(Q) (7)

It is not hard to show that the strongest solution for Q

in this equation is sp(S, P), the strongest postcondition
of P with respect to S. On the other hand, the strict
equation (4) has a solution in Q for arbitrary P only
if S is invertible8. In general, while determinism is not
too strict a requirement (for instance, all sequential C
programs are deterministic), invertibility is typically too
restrictive. For instance, constant initializations, such as
x := 1, are not invertible. (To see this, try solving for
Q in equation (7) with S being x:=1 and P being x=0.)

8 To see this, replace S with its relational converse ∼S, and solve
for Q instead of P in equation (4). The equation is then identical
to (4) but with S replaced by ∼S. The condition above then states
that ∼S should be deterministic, which is the same as saying that
S is invertible.

However, there are situations in which forward prop-
agation is useful. For instance, passive programs which
consist only of assume statements are trivially invert-
ible. Such programs are often encountered in verifica-
tion [16,27]. Because CBMC generates passive programs
(based on a modified version of Static Single Assignment
(SSA) [3] form), we use forward propagation in our im-
plementation9.

2.3.1 Slicing the Program

Once assumes have been pushed through the program
(either forward or backward), they can be used to re-
move branches whose guards are refuted by the assump-
tions. Note that this requires a check to determine which
guards are refuted by each assumption. In our implemen-
tation, we achieve this with a simple heuristic: for any
assume(p) appearing before a conditional IF q THEN S1

ELSE S2 FI, if p ⇒ q then we may replace the condi-
tional with S1 without altering the semantics of the pas-
sive program. In a passive program, any assumption may
be considered to appear before a given IF, as the tem-
poral direction of assignments, conveniently, no longer
applies. The amount of slicing obtained depends on the
amount of computational effort given to these implica-
tions. Our experience so far is that even simple syntactic
tests produce effective slicing.

2.4 Removing Trace Variables

By pushing assumptions through a program, we can de-
termine that certain guards are always false, and thus
remove certain branches from the code, thereby reduc-
ing the size of the program being analyzed. However,
since the desired postcondition is (log = σ), a naive ap-
plication of this method requires explicit introduction of

9 We have also implemented a backwards propagation version of
the algorithm; the results do not substantially differ from forward
propagation for the examples we have considered; we report on the
more mature forward propagation implementation below.

6 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

the variable log. In general, if the alphabet Σ has k sym-
bols, and the given trace σ has length n, addition of log
adds roughly n · log2(k) bits to the state space. Since this
is linear in n, the length of the trace, the overhead can be
considerable when σ is long. In this subsection, we dis-
cuss a technique that allows us to work with predicates
that do not mention the variable log, thus avoiding any
overhead.

The idea is to consider predicates in a “log-canonical”
form. Let σ be a given trace of length n over Σ, and let
σ ↑ i (“σ up to i”) denote the first10 i characters of the
string σ. We say that a predicate R is in log-canonical
form provided there is a vector t of predicates, such that
R can be expressed as

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log = σ ↑ i) (8)

where none of the predicates ti mention the variable log.
Because σ is fixed, this predicate is compactly repre-
sented by storing only the vector t (which does not men-
tion log). For any such vector t, we write t̂ to denote the
predicate shown in (8). As an example, consider the pro-
gram in Figure 3. The desired log is 〈1〉. The vector t

representing the conditions under which some portion of
σ has been produced at this point in execution is there-
fore [true, false] at the beginning of the program, and
remains so at all program points until the EVR state-
ments. At the end of the program, the vector t may be
given as [false , x > 0] — under no conditions can execu-
tion reach the end of the program without producing any
EVRs, and the trace 〈1〉 will be produced at this point iff
x > 0. After SSA-transformation, using substitution, we
may slice away the assignment to y, since x > 0 implies
that P must hold in the initial state (and that f(x,y) >

0, though this fact is not useful in slicing). Section 3.1
shows in more detail how this construction is used in
analyzing a program.

The usefulness of this notion is due to the following:

Lemma 2 Let S be a well-formed deterministic program
as defined above, and let P be a predicate in log-canonical
form. Then wp(S, P) is also in log-canonical form.

The proof of Lemma (2) is by induction over the gram-
mar shown in Figure 2. Since S is deterministic, wp(S,)
distributes over the existential quantification in P . For
the first five constructs, the proof is straightforward, us-
ing the assumption that none of the guards or expres-
sions in the program mention log, since S is well-formed.
For the remaining case, EVR(a), we calculate

wp(EVR(a), t̂)

≡ { definition of t̂ }
wp(EVR(a), (∃ i : 0 ≤ i ≤ n ∧ ti ∧ log = σ ↑ i))

≡ { semantics of EVR(a); ti are well-formed }
(∃ i : 0 ≤ i ≤ n ∧ ti ∧ wp(EVR(a), log = σ ↑ i))

≡ { meaning of EVR(a) as appending to log }

10 Thus, σ ↑ 0 denotes the empty string.

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log • a = σ ↑ i)
≡ { properties of •; σ[i − 1] = ith char. in σ }

(∃ i : 0 < i ≤ n ∧ ti ∧ σ[i − 1] = a

∧ log = σ ↑ (i − 1))
≡ { introducing u; replace i with j + 1 }

(∃ j : 0 ≤ j ≤ n ∧ uj ∧ log = σ ↑ j)
≡ { definition of û }

û

where we have introduced the vector of predicates u,
defined as

uj ≡ (tj+1 ∧ σ[j] = a) for 0 ≤ j < n and un ≡ false

Since σ is a fixed string, the predicate σ[j] = a is a
constant predicate (either true or false). Furthermore,
by assumption, no tj mentions log. Thus the uj don’t
mention log either, and hence û is also in log-canonical
form.

Finally, recall that we are interested in constructing
a statement T satisfying equation (2). Note that both
the initial predicate (log = 〈〉) and the final predicate
(log = σ) can be written in log-canonical form using
appropriate vectors of predicates; for instance, (log =
〈〉) corresponds to the vector [true, false , . . . , false] (. As
shown in this section, we can push these predicates through
a program (either backwards or forwards as appropri-
ate). In doing so, we keep track of only vectors of predi-
cates ti that do not mention the variable log. Thus the
assumes added to the reduced statement T do not men-
tion log.

2.5 Extension to Suffixes

Because a trace may have a bounded length, discarding
old events after a buffer fills, it is important to handle
the case where σ is a suffix of the program’s execution
history. A useful benefit of handling suffixes is the po-
tential to produce a shorter trace matching the suffix;
this may be critical when the actual execution extended
over a long period of time – both for reasons of analysis
scalability and human understanding. In this case, the
problem definition is: given a program (V , Σ, S) and a
finite string σ of length n over Σ, construct a statement
T such that,

T = assume(log = 〈〉) ; S ; assume(log ↓ n = σ)
(9)

where we write log ↓ i to mean the last i characters of
log. In this case, we define t̂ to mean the following:

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log ↓ i = σ ↑ i)

We leave it to the reader to check that this canoni-
cal form is preserved by wp computations as discussed
above.

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 7

exact

RESET EVR(‘‘RESET’’);

FORMAT EVR(‘‘FORMAT’’);

MOUNT SUCC EVR(‘‘MOUNT SUCC’’);

PICK 0 EVR value(‘‘PICK’’,fd);

CREAT SUCC EVR(‘‘CREAT SUCC’’);

PICK 0 EVR value(‘‘PICK’’,fd);

WRITE SUCC EVR(‘‘WRITE SUCC’’);

PICK 0 EVR value(‘‘PICK’’,fd);

CLOSE SUCC EVR(‘‘CLOSE SUCC’’);

PICK 1 EVR value(‘‘PICK’’,fd);

RESET

MOUNT SUCC EVR(‘‘MOUNT SUCC’’);

PICK 0 EVR value(‘‘PICK’’,fd);

OPEN SUCC EVR(‘‘OPEN SUCC’’);

PICK 0 EVR value(‘‘PICK’’,fd);

READ FAIL EVR(‘‘READ FAIL’’);

PICK 0 EVR value(‘‘PICK’’,fd);

Fig. 4: A file system trace

3 Implementation

The analysis described above is implemented as an ex-
tension to CBMC [24], a bounded model checker [6] for
ANSI-C programs. Given a program and a set of un-
winding depths U (the maximum number of times each
loop may be executed), CBMC produces constraints en-
coding all executions of the program not exceeding loop
bounds. CBMC converts constraints into CNF and calls
a Boolean satisfiability solver, such as zChaff [32], Lim-
mat [5], or MiniSAT [13]. A satisfying solution is a coun-
terexample showing a property violation, whereas a proof
of unsatisfiability indicates that the code cannot, within
the given loop bounds, violate any properties. CBMC
handles all ANSI C types and pointer operations, includ-
ing pointer arithmetic, and checks safety properties such
as assertion violations, null pointer dereferences, mem-
ory safety, arithmetic overflow, and array bound errors.
CBMC supports assume statements in C source, with
the expected semantics.

In order to support analysis of traces, we extended
CBMC to recognize two event reporting functions in C
source: EVR takes as argument a constant string (an
identifier for the event, e.g., EVR(‘‘timeout’’)) and
EVR value takes an event identifier and an expression
(typically an event-relevant program variable, e.g., EVR
(‘‘timeout’’,thread id)). A trace, for CBMC, is a
sequence of event identifiers, where each identifier pro-
duced by an EVR value call includes a value. Our trace
language also allows event alphabet restrictions and the
use of sets of events in the sequence.

As an example, Figure 4 shows a complete trace that
might be produced by our simple file system, in the for-
mat in which CBMC stores trace files, with the calls
that would produce the trace on the right. The first line,

exact, indicates that this trace is a complete trace, not a
suffix of a longer log. This semantic choice can be over-
ridden by changing options when calling CBMC or by
altering the file (we might wish to treat a complete trace
as a suffix or vice versa, in some cases). PICK events de-
note the selection of a file descriptor variable to operate
on, and the other events indicate system reset or success
or failure on basic file system operation calls. The exam-
ple trace is a failure in which a file is created, written
to, and closed, but not available for reading after a well-
placed system reset. We will revisit this counterexample
in the experimental results.

3.1 Analyzing a Simple Program

Consider the program in Figure 5. The program is atyp-
ical in that a trace allows near-total reconstruction of
the program inputs (though p and q cannot be pre-
cisely determined). For example, if the trace is σ =
〈foo 2, foo 1〉, we know the value of input and con-
straints on the values of p and q. It is this knowledge
that our analysis will exploit in analyzing the program.

As discussed in Section 2.3, our implementation uses
a forward analysis to compute assumptions and slices as
CBMC generates the equational (SSA-like) form of the
program. This avoids a second pass over the transformed
source code. The right side of Figure 5 shows the pas-
sive equational form of example.c (the effects of calls
to foo and bar are inlined). In the remainder, we will
omit the renamings of p and q, as these inputs are never
reassigned.

CBMC produces predicate vectors (as described in
Section 2.4) as it converts the program equations into
SAT equations. If we restrict behavior to match σ, the
vector has three elements, corresponding to the condi-
tions under which 0, 1, or all elements of the trace have
been consumed. As shown in eq. (8), the interpreta-
tion of [t0, t1, t2] is (t0 ∧ log = 〈〉) ∨ (t1 ∧ log =
〈foo 1〉) ∨ (t2 ∧ log = 〈foo 2, foo 1〉).

Table 1 shows the elements of the vectors at 8 pro-
gram locations (labeled as 1-8 in Figure 5. When pushing
assumptions forward, we begin with a vector interpreted
as constraining the log to be empty: [true, false, false]
(the first row of Table 1). At location 2 the modified vec-
tor requires that x’s value at the location of the EVR call
match the value in σ. Restriction by variable values is
not discussed in earlier sections, but can be considered
as a simple case of alphabet matching: the expression
producing the trace value is constrained to match the
observed value as part of the condition for the event.

The use of references to expressions appearing ear-
lier in the table makes clear the pattern by which the
constraints “march across” the program with each event,
including propagation into branches of conditional state-
ments and a “merge” at the end of each conditional
structure. The implementation also makes use of ref-

8 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

void foo () { void bar() {
x--; x++;

EVR value("foo",x); EVR("bar");

} }

int main (int input, bool p, bool q) {
x = input; x#1 == input#0

1 if (p) x#2 == x#1 - 1;

foo(); 2 x#3 == (p#0 ? x#2 : x#1)

3 if (q) x#4 == x#3 - 1;

foo(); 4 x#5 == (q#0 ? x#4 : x#3)

5 if (p && q)

bar(); 6 x#6 == x#5 + 1;

else x#7 == x#5 - 1;

foo(); 7 x#8 == (p#0 ∧ q#0 ? x#6 : x#7)

8 assert ((x+1) == input); assert ((x#8 + 1) == input#0)

}

Fig. 5: example.c

Loc Events Consumed

A B C

〈〉 〈foo 2〉 〈foo 2, foo 1〉

1 true false false

2 false x#2 == 2 false

3 ¬p p ∧ x#2 == 2 false

4 false 3A ∧ x#4 == 2 3B ∧ x#2 == 2 ∧ x#4 == 1

5 ¬q ∧ ¬p (q ∧ 4B) ∨ (¬q ∧ 3B) q ∧ 4C

6 false false false

7 false 5A ∧ x#7 == 2 5B ∧ x#7 == 1

8 false ¬(p ∧ q) ∧ 7B ¬(p ∧ q) ∧ 7C

Table 1: Vectors as example.c is analyzed with σ. We refer to previous vector entries in a row-column format (i.e., 3B is row
3, column B: p ∧ x#2 == 2).

erences to previously generated expressions in order to
conserve memory (and speed the translation to CNF).

Consider the derivation of the values in row 5. The
first column (5A) gives conditions under which no input
symbols have been consumed: when both p and q are
false (and thus neither location 2 nor location 4 has been
reached — note that 2A and 4A are both false). This
condition is derived from the disjunction (q ∧ 4A) ∨
(¬q ∧ the implied ¬p for the implicit else-branch). The
left side of the disjunction simplifies to false, leaving us
with ¬q ∧ ¬p. We could write this as ¬q ∧ 3A to show
that the condition on p originates in the earlier branch
over p. The condition at 5B makes this a bit clearer:
at the end of the conditional on q, the condition for
consumption of one input symbol is a disjunction of (1)
the positive valuation of the guard conjoined with the
condition for consumption of one input symbol inside
the branch (4B) and (2) the negative valuation of the
guard conjoined with the condition for consumption of
one input symbol if the guard is not taken (3B since the
else-branch is empty).

Observe that the vector for location 6 is false : if this
branch is taken, the sequence of events cannot possibly
match σ. When the vector for a branch is false, that
branch can be sliced away (we slice away branches in
other conditions as well, as discussed below). We “slice”
the program by changing the equational form and relying
on the model checker’s ability to prevent un-referenced
variables from appearing in the SAT constraints (a kind
of cone-of-influence reduction). The final assumption will
force the program to take the ELSE-branch, which makes
it safe to simplify the conditional expression for x#8

to (false ? x#6 : x#7), which simplifies to x#7. The
equation for x#6 can then be discarded. The sliced ver-
sion of the program produces a SAT problem with 696
variables and 2,312 clauses. Without slicing (leaving the
irrelevant then-branch in place), the program requires
834 variables and 2,701 clauses.

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 9

exact

RESET,FORMAT,MOUNT SUCC,MOUNT FAIL,CREAT SUCC

CREAT FAIL,OPEN SUCC,OPEN FAIL,WRITE SUCC

WRITE FAIL,READ SUCC,READ FAIL

end

RESET EVR(‘‘RESET’’);

FORMAT EVR(‘‘FORMAT’’);

MOUNT SUCC EVR(‘‘MOUNT SUCC’’);

CREAT SUCC EVR(‘‘CREAT SUCC’’);

WRITE SUCC EVR(‘‘WRITE SUCC’’);

CLOSE SUCC EVR(‘‘CLOSE SUCC’’);

-RESET Any EVR other than a RESET

-RESET

-RESET

MOUNT SUCC EVR(‘‘MOUNT SUCC’’);

OPEN SUCC,OPEN FAIL EVR(‘‘OPEN *’’);

READ FAIL EVR(‘‘READ FAIL’’);

Fig. 6: A “specification” trace with alphabet restriction and
negated events

3.2 Analyzing with Only a Suffix of a Trace

If we allow σ to be a suffix of the complete trace, the al-
lowed program behaviors are the same (in this example,
though not in general), but the analysis is altered. The
first row of each vector is always true, as it is always pos-
sible to begin consuming events. The then-branch of the
third conditional cannot be sliced away in the initial pass
through the program — any events may appear before σ

begins. The bar-branch can still be sliced away, as it is
easy to note that the final condition (8C) implies ¬(p ∧
q) — all allowed executions of the program will have to
take the else-branch. Our analysis does not attempt to
extract all such implications, but slices based on those
that are trivially implied by the assumption (appearing
on both sides of a disjunction, or either side of a con-
junction, recursively), which has provided near-optimal
slicing in our experience. Determining the “best” slice
is as hard as the model checking problem, although it
is possible that a more aggressive and computationally
expensive approach than our syntactic analysis (using a
SAT solver, for instance) might be valuable for certain
programs and traces.

3.3 Using Traces as Specifications

Traces can be also be used as specifications. In order
to use a trace as a specification, CBMC performs the
same analysis as above, but searches for any execution
of the program, rather than searching for property viola-
tions. We allow for multiple traces, alphabet restriction,
and sets of events. Figure 6 shows a file system trace
of this type: the elements after the semantic indicator
exact and before the end are the alphabet to be used.
Other events are simply ignored. In the absence of an

alphabet, the tool defaults to observing all events. Here,
ignoring the PICK events provides a more general (and
false) specification than the original property that writ-
ten files should be readable, as the read can apply to a
file descriptor that has not been opened. The -RESET ac-
tion indicates that any action except a RESET is allowable
at this point in the trace, and the OPEN SUCC,OPEN FAIL

allows either a failed or successful open operation.
With multiple traces, the tool maintains vectors for

each trace and assumes the conjunction of all final con-
ditions. This feature can be useful for post-mortem anal-
ysis as well as specification, e. g., in the case of traces
over different events produced by independent threads
without time-stamps. Restricting which EVRs are taken
into account is useful for specification: many events may
be irrelevant to the property in question, although they
appear in the actual code and traces. The utility of sets
of events for specification should be obvious — e.g., for
specifying that a file should be written to disk when
either a close or sync operation occurs (see below in
the experimental results). Handling alphabet restriction
and event sets requires only a small modification of the
mechanism for checking whether the ith event of a trace
matches a particular alphabet symbol in an EVR call.

4 Experimental Results

In principle, it is possible that a reduction in the size of
a program, or even in its state-space, may not result in
better scalability for verification. In order to empirically
justify the usefulness of our approach, we applied the
technique to real programs and observed a dramatic im-
provement in verification times. Given the small number
of examples, it is impossible to draw definite conclusions,
other than that further study, with larger examples, is
warranted. We expect that a re-implementation in the
latest version of CBMC would serve as a good baseline
for such a confirmation, in that some problems we ob-
served with CBMC stability when encoding large C pro-
grams with considerable library usage appear to have
been mitigated in recent versions of the tool11.

All experiments were performed on a dual-core Xeon
(3.2 GHz) with 8 GB of RAM, under Red Hat Enterprise
Linux 4.0.2-8. We used Limmat version 1.3 as our SAT
solver in all cases, in order to provide some uniformity in
results, as it worked best on the largest and most difficult
file system instances.

4.1 Simple File System Model

We applied the technique to a small file system model,
consisting of about 400 lines of C code. The model al-
lows basic operations such as opening, closing, reading

11 The conversion to GOTO programs introduced in recent ver-
sions of CBMC unfortunately prevents a naive adaptation of our
original extension.

10 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

0.1

1

10

100

1000

9 10 11 12 13 14 15 16 17 18

Time(s)

Unwindings

Sliced

3 3 3 3 3 3 3 3 3 3

3

Assumes Only

+
+

+ + + + + + + +

+
Trace History Array

2
2

2

2

2 2 2
2 2 2

2

Fig. 7: Results for 8 maximum files, without blind search

and writing files; it also supports reset events, which
re-initialize all data structures except the disk contents
(which is modeled as an array).

As written, the system is not robust across resets:
a file can be opened, written to, and closed; if a reset
happens at this point, the data in the file can be lost
(the sync to disk in the close operation is faulty). We
first consider the use of a partial trace as a specification.
Using a trace with an open, write, close, a sequence of
wildcard actions (not allowing a delete), and an open

followed by a failed read12, we can specify that data
should not be lost across any file system event sequence
(of a bounded length), even if resets are present. Find-
ing a counterexample (an execution matching this bad
trace) requires 105 seconds, when using our technique
and this trace as a specification. The utility of guid-
ing the search with a trace is evident: CBMC requires
17,608 seconds to find a counterexample when check-
ing the same property using a hand-coded monitor au-
tomaton (“blind” search) as a specification but without
even a partial trace of execution. Because the wildcard
actions limit the amount of slicing possible, the reduc-
tion in the size of the SAT problem is less impressive
than the decrease in running time: the monitor-based ap-
proach produces a SAT instance with 613,857 variables
and 2,108,934 clauses; our approach brings this down to
328,142 variables and 1,128,272 clauses.

A more significant reduction in the size of the SAT
problem is seen when examining the same trace with
reset in place of wildcards (Figure 4 is a slightly sim-
plified version of the actual failure trace used). Figure 7
provides a logscale graph of SAT run-times, given a com-

12 In the log, success or failure is recorded in addition to which
operation is performed.

plete trace for the file system in the smallest configura-
tion we examined. For comparison, although the results
are not strictly comparable (the replacement of wild-
cards with resets provides a more constrained problem,
as noted above), we also show a graph comparing run-
ning times for a smaller set of instances with the blind
monitor-based search mentioned above (Figure 8) and
more detailed SAT instance information for the same
set of experiments (Table 4.1). In this table, TO indi-
cates that the SAT solver did not complete its search
within 8 hours. We omit blind/monitor results in subse-
quent tables. The results were always timeouts, the SAT
variables and clauses for the monitor-based search fol-
lowed a predictable linear pattern as in Table 4.1, and
the searches themselves are not really comparable to the
EVR-constrained model checking problems.

Across a range of unwinding depths, full application
of our approach results in a reduction of running time
by several orders of magnitude. Applying our analysis
to produce an assumption but using no slicing produces
a smaller, but still quite significant, reduction over us-
ing a trace array semantics. Table 3 shows timing and
SAT instance sizes for other configurations of the file
system. Checking the property on the largest configu-
ration and unwinding depth requires only 26,916 SAT
variables when slicing is used; the smallest configura-
tion uses 899,989 variables if slicing is not applied, and
uses 3,266,123 variables in the largest configuration; run-
ning times for the sliced version are uniformly less than
one second; over a thousand seconds are needed without
slicing. Blind search — without a trace array, using a
monitor — was consistently roughly an order of magni-
tude (or more) slower than search using a trace array,

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 11

0.1

1

10

100

1000

10000

9 10 11 12 13 14 15

Time(s)

Unwindings

Sliced

3 3 3 3

3

Assumes Only

+

+
+

+

+
Trace History Array

2

2 2 2

2

Blind/Monitor

×
×

×
×

×

Fig. 8: Results for 8 maximum files, including blind search

Sliced Assumes Only Trace Array Blind/Monitor

U Vars Clauses Time Vars Clauses Time Vars Clauses Time Vars Clauses Time

9 14850 54774 0.24 588253 2014890 34 631134 2323868 312 613857 2108934 17609
11 15626 57154 0.26 752229 2576685 82 805164 2999913 560 784071 2694364 11247
13 16402 59534 0.29 916205 3139500 114 989491 3739004 653 954239 3281105 5943
15 17178 61914 0.29 1080181 3703335 161 1165265 4456961 781 1124408 3869253 11787
17 17954 64294 0.30 1244208 4268275 225 1341090 5191959 1003 1294576 4458802 TO

Table 2: Some more detailed results for 8 maximum files.

and did not complete within a timeout period for larger
system configurations such as those shown in Table 3.

4.2 Resource Arbiter Model

Applying trace-based analysis to a small model of the
core of the resource arbitration algorithm for the Mars
Exploration Rovers also improved SAT problem sizes
and running times significantly. Adding assumptions to
match a failure trace (providing only requests and re-
sponses, but not the actual resources — a serious under-
constraint on the actual error path), the SAT instance
grew slightly, but the search time decreased. Applying
slicing to remove unreachable portions of the source code
reduced the running time to 0.12 seconds. Scaling up to a
more complex version of the same model with more prop-
erties (including some bounded liveness properties re-
quiring that certain critical resources be acquired within
a time period after request, unless the request was re-
scinded), blind search required 33 seconds, unsliced as-
sumptions needed a little over a second, and with slicing
the search time was only 0.29 seconds.

For both the resource arbiter and the file system, the
additional overhead for trace-based analysis (performed

while computing the passive form of the programs and
unrolling loops) prior to calling the SAT solver was neg-
ligible (indistinguishable from the “noise” of CBMC’s
parsing and pre-processing steps). We omit this essen-
tially constant factor from the results.

4.3 Context-bounded Model Checking via Trace
Analysis

We speculated that trace-based analysis might be use-
ful for context-bounded model checking [35]: if context-
switches invoke an EVR call, a trace of exactly n switches
can be used to restrict a concurrent program to a context-
bounded set of executions. CBMC lacks native support
for concurrency, forcing us to explicitly model thread
program counters and context-switching. Our test case
was a model of a flawed mutual exclusion protocol based
on atomic store and load operations on a processor (de-
rived from methods used to implement reference count-
ing pointers on the processor).

Unfortunately, the slicing provided by the EVR rep-
resentation of context-switches is negligible, when com-
pared to a version using assume statements to enforce
context-bounding: the sliced SAT instance needs 234,617

12 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

Sliced Assumes Only Trace Array

U Vars Clauses Time Vars Clauses Time Vars Clauses Time

File System Results (System Size = 10)

11 17884 65816 0.29 899989 3085814 91.83 952924 3509042 334.04
12 18280 67031 0.30 998527 3423893 119.28 1067554 3960332 412.91
13 18676 68246 0.32 1097065 3762227 146.00 1172149 4370541 550.51
14 19072 69461 0.32 1195603 4100816 181.05 1276744 4784989 1152.70
15 19468 70676 0.32 1294141 4439660 206.25 1381339 5203676 624.28
16 19864 71891 0.33 1392727 4778839 248.86 1485982 5626682 806.59
17 20260 73106 0.34 1491268 5118198 269.77 1590580 6053852 1495.01
18 20656 74321 0.34 1589809 5457812 331.40 1695178 6485261 2115.49

File System Results (System Size = 12)

30 26916 94931 0.57 3266123 11291540 1216.78 3451137 13761421 2889.41

Resource Arbiter Results (Safety)

Sliced Assumes Only Blind

U Vars Clauses Time Vars Clauses Time Vars Clauses Time

40 10497 34118 0.12 39273 142399 1.19 38936 141388 1.77

Resource Arbiter Results (Liveness)

Sliced Assumes Only Blind

U Vars Clauses Time Vars Clauses Time Vars Clauses Time

40 21311 72142 0.29 73244 259308 1.30 72099 255639 32.96

Table 3: Results for file system and arbiter. U indicates the unwinding depth for loops. Note: the final set of vars/clauses/time
for the Resource Arbiter properties is for a blind search, not for a trace array search.

variables and 753,541 clauses, while the version using as-
sumptions only (and no trace analysis) requires 241,819
variables and 804,298 clauses. More importantly, Lim-
mat solves the larger instance in only 39 seconds, but
requires 83 seconds for the smaller instance. The rel-
atively small reduction in SAT problem size indicates
that (at least in this example) context-switching does
not constrain the control flow of the system sufficiently
to obtain significant benefits. It is also possible that these
results are influenced by an inefficient representation of
concurrency. More conclusive results must await integra-
tion with a native representation of concurrency (e.g.,
that of Rabinovitz and Grumberg [37] or the in-progress
extension of CBMC).

5 Related Work

This paper extends a 2006 TACAS paper [18] on the
use of traces in program analysis — as slicing criteria
and specification method — that differs in both motiva-
tion and technique from most previous work on related
topics.

Assumptions and never-claims are used in many pro-
gram verifiers [21,41,15] to restrict explored system be-
havior; this kind of restriction is more general than what
is described here, but does not provide any a-priori state-
space reduction — the model checker may explore fewer

states in an on-the-fly manner, but these techniques do
not preclude exploration of input choices that cannot
match a given trace. Such methods are considerably less
convenient than our approach for expressing the con-
straint that system behavior must be able (or not able)
to produce a given sequence of events, and doing so will
often require the introduction of a history variable, in-
creasing the size of the state space.

Removing code irrelevant to a given program trace
is an extension of the idea of program slicing [40] — in
particular dynamic slicing [2]. Static slicing removes the
portions of a program that are not relevant to the analy-
sis of a particular program point, under any set of inputs.
Dynamic slicing performs the same kind of reduction, for
a known set of inputs. Parametric program slicing [14]
makes use of a more general constraint, allowing for only
partial knowledge of inputs. Static slicing’s utility is lim-
ited by aliasing and error handling paths (it is often the
case that under some set of conditions, almost every
line of a program is relevant to a given property). Un-
fortunately, dynamic slicing is of little utility when many
program traces must be considered — for verification or
bug hunting. A failure trace is very unlikely to allow full
reconstruction of program inputs.

The path slicing [23] of BLAST [20] removes por-
tions of an abstract counterexample that are irrelevant
to the feasibility of the path. Path slicing resembles our
approach in that both are hybrids of purely static slic-

Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis 13

ing and true dynamic slicing. The approaches differ in
purpose: we apply slicing before model checking in order
to limit system behaviors, while path slicing is a step
in a counterexample-refinement loop. Our approach ad-
dresses both concrete execution paths and event traces
while BLAST’s slicing is based on a fixed control flow.

More generally, the cone-of-influence reduction used
in model checking is a kind of static slicing13. Millett
and Teitelbaum applied more traditional program slicing
to Promela models [30], Clarke et al. have proposed to
use slicing for hardware description languages [8], and
the Bandera project has devoted considerable effort to
static slicing as an aid to software model checking [19,
12]. Ours is, to our knowledge, the first work to provide
slicing based on a given event trace, in a model checking
(or general program analysis) context.

Howard et al. [22] use model checking to analyze
traces produced by software, Roger and Goubault-Larrecq
propose similar techniques for use in log auditing for
intrusion detection [39], and Gannod and Murthy [17]
describe the use of model checking to reverse engineer
software architectures from a set of log files, in a largely
non-automated approach. These works are all either rel-
atively limited in scope or lacking in automation. Our
approach is an automated general-purpose program slic-
ing method, and does not limit itself to any particular
domain of application, despite the motivation in space-
craft event reporting.

More closely related to our efforts is Postmortem
Symbolic Evaluation (PSE) [29], which makes use of
static analysis to produce possible program traces given
only a failure’s location and type. This approach uses
(and produces) less information than our slicing method,
but is intended to scale to very large programs and in-
the-field bug reports which may not even include a stack
trace.

PSE builds on the work of Liblit and Aiken on the
use of backtraces in debugging [28]. The work of Liblit
and Aiken is closely related to our approach, in that they
consider event traces derived from “printf debugging,”
including the suffix and multiple trace variations. Their
work focuses on producing all CFL-reachable paths to
a failure, rather than producing only feasible complete
concrete executions. It is interesting to note that Lib-
lit and Aiken come to similar conclusions to ours about
the advantages of backwards over forwards analysis, for
largely independent reasons. More recent work addresses
optimizing path lengths in a similar context (though ap-
plication to event logs is not the primary goal, the au-
thors note that a small modification allows for use simi-
lar to that in Liblit and Aiken’s earlier work) [26].

13 It is unclear who first devised or published the cone-of-
influence reduction, though Kurshan [25] is a plausible candidate.

6 Summary and Future Work

We have addressed the problem of analyzing a given pro-
gram given one of its traces, and demonstrated the util-
ity of our approach for small examples such as the file
system and the resource arbiter.

Avenues of future research include determining if the
failure of context-bounded model checking to combine
well with our approach is fundamental, or only a limita-
tion of the hand-coding of concurrency, and investigation
of the tradeoffs between aggressive slicing and expensive
pre-SAT computation. We are also interested in apply-
ing a variation of our approach to explicit-state model
checking in SPIN [21].

A larger concern is how to optimize placement of
EVRs in order to allow maximal slicing while retaining
(or improving) EVR utility to humans in diagnosing
problems. The placement of EVRs is at present largely
an ad-hoc process: developing a methodology for plac-
ing EVRs is critical if we are to analyze larger programs,
and there are concerns that the current approach may be
less than ideal for human analysis [38]. We are pursuing
these problems while applying our method to a larger,
in-development, flight-quality Flash file system with over
4,000 lines of C source.

Acknowledgements: The authors would like to thank
Daniel Kroening for assistance with CBMC and Thomas
Reps for related work suggestions.

References

1. http://stardust.jpl.nasa.gov/acronyms.html.
2. Hiralal Agrawal and Jospeh R. Horgan. Dynamic pro-

gram slicing. In Programming Language Design and Im-
plementation, pages 246–256, 1990.

3. Bowen Alpern, Mark N. Wegman, and F. Kenneth
Zadeck. Detecting equality of variables in programs. In
Principles of Programming Languages, pages 1–11, 1988.

4. Thomas Ball. The concept of dynamic analysis. In Eu-
ropean Software Engineering Conference/Foundations of
Software Engineering, pages 216–234, 1999.

5. Armin Biere. The evolution from Limmat to Nanosat.
Technical Report 444, Dept. of Computer Science, ETH
Zŭrich, 2004.

6. Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
and Yunshan Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 193–207, 1999.

7. Edmund M. Clarke and E. Emerson. The design and syn-
thesis of synchronization skeletons using temporal logic.
In Workshop on Logics of Programs, pages 52–71, 1981.

8. Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Ra-
jan, Thomas W. Reps, Subash Shankar, and Tim Teit-
elbaum. Program slicing of hardware description lan-
guages. In Correct Hardware Design and Verification
Methods (CHARME), pages 298–312, 1999.

9. Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. MIT Press, 2000.

14 Alex Groce, Rajeev Joshi: Exploiting Traces in Static Program Analysis

10. Edsger W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

11. Edsger W. Dijkstra and C. S. Scholten. Predicate Calcu-
lus and Program Semantics. Texts and Monographs in
Computer Science. Springer-Verlag, 1990.

12. Matthew B. Dwyer, John Hatcliff, Matthew Hoosier,
Venkatesh Prasad Ranganath, Robby, and Todd Wallen-
tine. Evaluating the effectiveness of slicing for model re-
duction of concurrent object-oriented programs. In Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 73–89, 2006.

13. Niklas Een and Niklas Sorensson. An extensible SAT-
solver. In Symposium on the Theory and Applications of
Satisfiability Testing (SAT), pages 502–518, 2003.

14. John Field, Ganesan Ramalingam, and Frank Tip. Para-
metric program slicing. In Principles of Programming
Languages, pages 379–392, 1995.

15. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Ex-
tended static checking for Java. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 234–
245, May 2002.

16. Cormac Flanagan and James B. Saxe. Avoiding expo-
nential explosion: Generating compact verification con-
ditions. In Principles of Programming Languages, pages
193–205, 2002.

17. Gerald Gannod and Shilpa Murthy. Using log files
to reconstruct state-based software architectures. In
WCRE’02 Workshop on Software Architecture Recon-
struction, 2002.

18. Alex Groce and Rajeev Joshi. Exploiting traces in pro-
gram analysis. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 379–393, 2006.

19. John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng.
Slicing software for model construction. Higher-Order
and Symbolic Computation, 13(4):315–353, 2000.

20. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
and Gregoire Sutre. Lazy abstraction. In Principles of
Programming Languages, pages 58–70, 2002.

21. Gerard J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
2003.

22. Yvonne Howard, Stefan Gruner, Andrew M. Gravell,
Carla Ferreira, and Juan Carlos Augusto. Model-based
trace-checking. In SoftTest: UK Software Testing Re-
search Workshop II, 2003.

23. Ranjit Jhala and Rupak Majumdar. Path slicing. In Pro-
gramming Language Design and Implementation, pages
38–47, 2005.

24. Daniel Kroening, Edmund M. Clarke, and Flavio Lerda.
A tool for checking ANSI-C programs. In Tools and Al-
gorithms for the Construction and Analysis of Systems,
pages 168–176, 2004.

25. R. P. Kurshan. Computer-Aided Verification of Coor-
dinating Processes: The Automata- Theoretic Approach.
Princeton University Press, 1995.

26. Akash Lal, Junghee Lim, Marina Polishchuk, and Ben
Liblit. Path optimization in programs and its application
to debugging. In European Symposium on Programming,
pages 246–263, 2006.

27. K. Rustan M. Leino. Efficient weakest preconditions.
Information Processing Letters, 93(6), 2005.

28. Ben Liblit and Alex Aiken. Building a better backtrace:
Techniques for postmortem program analysis. Technical
Report UCB CSD-02-1203, Computer Science Division,
University of California at Berkeley, 2002.

29. Roman Manevich, Manu Sridharan, Stephen Adams,
Manuvir Das, and Zhe Yang. PSE: explaining program
failures via postmortem static analysis. In Foundations
of Software Engineering, pages 63–72, 2004.

30. Lynette I. Millett and Tim Teitelbaum. Slicing Promela
and its applications to model checking, simulation, and
protocol understanding. In SPIN Workshop on Model
Checking of Software, pages 75–83, 1998.

31. Carroll Morgan. The specification statement. ACM
Trans. Program. Lang. Syst., 10(3):403–419, 1988.

32. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Linao Zhang, and Sharad Malik. Chaff: Engineering an
Efficient SAT Solver. In Design Automation Conference,
pages 530–535, 2001.

33. Greg Nelson. A Generalization of Dijkstra’s Calculus.
TOPLAS, 11(4):517–561, Oct. 1989.

34. Henry Petroski. To Engineer is Human: The Role of
Failure in Successful Design. St. Martin’s Press, 1985.

35. Shaz Qadeer and Jakob Rehof. Context-bounded model
checking of concurrent software. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 93–
107, April 2005.

36. Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in CESAR. In Interna-
tional Symposium on Programming, pages 337–351, 1982.

37. Ishai Rabinovitz and Orna Grumberg. Bounded model
checking of concurrent programs. In Computer-Aided
Verification, pages 82–97, 2005.

38. Glenn Reeves and Tracy Neilson. The Mars Rover Spirit
Flash anomaly. In IEEE Aerospace Conference, 2005.

39. Muriel Roger and Jean Goubault-Larrecq. Log auditing
through model-checking. In IEEE Workshop on Com-
puter Security Foundations, page 220, 2001.

40. Frank Tip. A survey of program slicing techniques. Jour-
nal of programming languages, 3:121–189, 1995.

41. Willem Visser, Klaus Havelund, Guillaume Brat, Se-
ungJoon Park, and Flavio Lerda. Model checking pro-
grams. Automated Software Engineering, 10(2):203–232,
April 2003.

42. Andreas Zeller. Why Programs Fail: A Guide to System-
atic Debugging. Morgan Kaufmann, 2005.

