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Abstract. In the event that a system does not satisfy
a specification, a model checker will typically automati-
cally produce a counterexample trace that shows a par-
ticular instance of the undesirable behavior. Unfortu-
nately, the important steps that follow the discovery of
a counterexample are generally not automated. The user
must first decide if the counterexample shows genuinely
erroneous behavior or is an artifact of improper specifi-
cation or abstraction. In the event that the error is real,
there remains the difficult task of understanding the er-
ror well enough to isolate and modify the faulty aspects
of the system. This paper describes a (semi-)automated
approach for assisting users in understanding and isolat-
ing errors in ANSI C programs. The approach, derived
from David Lewis’ counterfactual approach to causal-
ity, is based on distance metrics for program executions.
Experimental results show that the power of the model
checking engine can be used to provide assistance in un-
derstanding errors and to isolate faulty portions of the
source code.

1 Introduction

In an ideal world, given a trace demonstrating that a sys-
tem violates a specification, a programmer or designer
would always be able in short order to identify and cor-
rect the faulty portion of the code, design, or specifica-
tion. In the real world, dealing with an error is often an
onerous task, even with a detailed failing run in hand.
Debugging is one of the most time consuming tasks in
the effort to improve software quality [9], and locating
an error is the most difficult aspect of the debugging
process [62]. This paper describes the application of a
technology traditionally used for discovering errors to
the problem of understanding and isolating errors.
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Fig. 1. Explaining an error using distance metrics

Error explanation describes approaches that aid users
in moving from a trace of a failure to an understanding
of the essence of the failure and, perhaps, to a correc-
tion for the problem. This is a psychological problem,
and it is unlikely that formal proof of the superiority of
any approach is possible. Fault localization is the more
specific task of identifying the faulty core of a system,
and is suitable for quantitative evaluation.

Model checking [19,49,21] tools explore the state-
space of a system to determine if it satisfies a specifica-
tion. When the system disagrees with the specification,
a counterexample trace [20] is produced. This paper ex-
plains how a model checker can provide error explanation
and fault localization information. For a program P , the
process (Figure 1) is as follows:

1. The bounded model checker CBMC uses loop un-
rolling and static single assignment to produce from
P and its specification a Boolean satisfiability (SAT)
problem, S. The satisfying assignments of S are finite
executions of P that violate the specification (coun-
terexamples).

2. CBMC uses a SAT solver to find a counterexample.
3. The explain tool produces a propositional formula,
S′. The satisfying assignments of S′ are executions
of P that do not violate the specification. explain
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extends S′ with constraints representing an optimiza-
tion problem: find a satisfying assignment that is as
similar as possible to the counterexample, as mea-
sured by a distance metric on executions of P .

4. explain uses the PBS [5] solver to find a successful
execution that is as close as possible to the coun-
terexample.

5. The differences (∆s) between the successful execu-
tion and the counterexample are computed.

6. A slicing step is applied to reduce the number of ∆s
the user must examine. The ∆s are then presented
to the user as explanation and localization.

If the explanation is unsatisfactory at this point, the
user may need to add assumptions and return to step
1 (see Section 6). The most important novel contribu-
tions of this work are the third, fourth, and sixth steps
of this process: previous approaches to error explana-
tion did not provide a means for producing a successful
execution guaranteed to be as similar as possible to a
counterexample, and lacked the notion of causal slicing.

There are many possible approaches to error expla-
nation. A basic notion shared by many researchers in this
area [10,31,65] and many philosophers [59] is that to ex-
plain something is to identify its causes. A second com-
mon intuition is that successful executions that closely
resemble a faulty run can shed considerable light on the
sources of the error (by an examination of the differences
in the successful and faulty runs) [31,52,66].

David Lewis [43] has proposed a theory of causality
that provides a justification for the second intuition if
we assume explanation is the analysis of causal relation-
ships. If explanation is, at heart, about causality, and, as
Lewis proposes, causality can be understood using a no-
tion of similarity (that is, a distance metric), it is logical
that successful executions resembling a counterexample
can be used to explain an error.

Following Hume [36,37,59] and others, Lewis holds
that a cause is something that makes a difference: if
the cause c had not been, the effect e would not have
been. Lewis equates causality to an evaluation based on
distance metrics between possible worlds (counterfactual
dependence) [44]. This provides a philosophical link be-
tween causality and distance metrics for program execu-
tions.

For Lewis, an effect e is dependent on a cause c at a
world w iff at all worlds most similar to w in which ¬c,
it is also the case that ¬e. Causality does not depend
on the impossibility of ¬c and e being simultaneously
true of any possible world, but on what happens when
we alter w as little as possible, other than to remove the
possible cause c. This seems reasonable: when consid-
ering the question “Was Larry slipping on the banana
peel causally dependent on Curly dropping it?” we do
not, intuitively, take into account worlds in which an-
other alteration (such as Moe dropping a banana peel)
is introduced. This intuition also holds for causality in

programs, despite the more restricted context of possible
causes: when determining if a variable’s value is a cause
for a failed assertion, we wish to consider whether chang-
ing that value results in satisfying the assertion without
considering that there may be some other (unrelated)
way to cause the assertion to fail. Distance metrics be-
tween possible worlds are problematic, and Lewis’ pro-
posed criteria for such metrics have been criticized on
various grounds [34,40].

Program executions are much more amenable to mea-
surement and predication than possible worlds. The prob-
lems introduced by the very notion of counterfactuality
are also avoided: a counterfactual is a scenario contrary
to what actually happened. Understanding causality by
considering events that are, by nature, only hypothet-
ical may make theoretical sense, but imposes certain
methodological difficulties. On the other hand, when ex-
plaining features of program executions, this aspect of
counterfactuality is usually meaningless: any execution
we wish to consider is just as real, and just as easily in-
vestigated, as any other. A counterexample is in no way
privileged by actuality.

If we accept Lewis’ underlying notions, but replace
possible worlds with program executions and events with
propositions about those executions, a practically appli-
cable definition of causal dependence emerges1:

Definition 1 (causal dependence). A predicate e is
causally dependent on a predicate c in an execution a iff:

1. c and e are both true for a (we abbreviate this as
c(a) ∧ e(a))

2. There exists an execution b such that: ¬c(b)∧¬e(b)∧

(∀b′ . (¬c(b′) ∧ e(b′))⇒ (d(a, b) < d(a, b′)))

where d is a distance metric for program executions (de-
fined in Section 3). In other words, e is causally depen-
dent on c in an execution a iff executions in which the
removal of the cause also removes the effect are more like
a than executions in which the effect is present without
the cause.

Figure 2 shows two sets of executions. In each set, an
execution a, featuring both a potential cause c and an
effect e, is shown. Also shown in each set is an execution
b, such that (1) neither the cause c nor the effect e is
present in b and (2) that is as similar as possible to a.
That is, no execution which does not feature either c or
e is closer to a than b. Execution b′ in each group is, in
like manner, as close as possible to a, and features the
effect e but not the potential cause c. If b is closer to a
than b′ is (that is, d(a, b) < d(a, b′), as in the first set of
executions), we say that e is causally dependent on c. If
b′ is at least as close to a as b (as in the second set of
executions), we say that e is not causally dependent on
c.

1 Our causal dependence is actually Lewis’ counterfactual de-
pendence.
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Fig. 2. Causal dependence

This article describes a distance metric that allows
determination of causal dependencies and the implemen-
tation of that metric in a tool called explain [30] that
extends CBMC [1], a model checker for programs writ-
ten in ANSI C. The focus of the paper, however, is not
on computing causal dependence, which is only useful
after forming a hypothesis about a possible cause c, but
on helping a user find likely candidates for c2. Given a
good candidate for c, it is likely that code inspection
and experimentation are at least as useful as a check for
causal dependence.

The approach presented in this paper is automated
in that the generation of a closest successful execution
requires no intervention by the user; however, it may be
necessary in some cases for a user to add simple assump-
tions to improve the results produced by the tool. For
most of the instances seen in our case studies, this is a
result of the structure of the property, and can be fully
automated; more generally, however, it is not possible
to make use of a fully automated refinement, as an ex-
planation can only be evaluated by a human user: there
is no independent objective standard by which the tool
might determine if it has captured the right notion of the
incorrectness of an execution, in a sense useful for debug-
ging purposes. In particular, while the specification may
correctly capture the full notion of correct and incorrect
behavior of the program, it will not always establish suf-
ficient guidance to determine the correct executions that
are relevant to a particular failing execution. Assump-
tions are used, in a sense, to refine the distance metric
(instead of the specification) by removing some program
behaviors from consideration. The frequency of this need
is unknown: only one of our examples required the addi-
tion of a non-automatable assumption. See Section 6.1
for the details of this occasional need for additional guid-
ance.

2 Computing causal dependence using two bounded model
checking queries is described elsewhere [29].

The basic approach, presented in Section 4, is to ex-
plain an error by finding an answer to an apparently
different question about an execution a: “How much of
a must be changed in order for the error e not to occur?”
— explain answers this question by searching for an ex-
ecution, b, that is as similar as possible to a, except that
e is not true for b. Typically, a will be a counterexample
produced by model checking, and e will be the negation
of the specification. Section 4.2 provides a proof of a
link between the answer to this question about changes
to a and the definition of causal dependence. The guid-
ing principle in both cases is to explore the implications
of a change (in a cause or an effect) by altering as little
else as possible: differences will be relevant if irrelevant
differences are suppressed.

2 Related Work

This paper is an extension of the TACAS 2004 paper
[28] which originally presented error explanation based
on distance metrics: we introduce further case study and
experimental results and a new slicing method, shedding
light on the need for user-introduced assumptions. The
explain tool is described in a CAV 2004 paper [30].

Recent work by Chechik, Tan, and others has de-
scribed proof-like and evidence-based counterexamples
[17,60]. Automatically generating assumptions for veri-
fication [23] can also be seen as a kind of error expla-
nation: an assumption describes the conditions under
which a system avoids error. These approaches appear
to be unlikely to result in succinct explanations, as they
may encode the complexity of the transition system; one
measure of a useful explanation lies in how much it re-
duces the information the user must consider.

Error explanation facilities are now featured in Mi-
crosoft’s SLAM [11] model checker [10] and NASA’s Java
PathFinder 2 (JPF) [63] model checker [31]. Jin, Ravi,
and Somenzi proposed a game-like explanation (directed
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more at hardware than software systems) in which an
adversary tries to force the system into error [38]. Of
these, only JPF uses a (weak) notion of distance be-
tween traces, and it cannot solve for nearest successful
executions.

Sharygina and Peled [57] propose the notion of the
neighborhood of a counterexample and suggest that an
exploration of this region may be useful in understand-
ing an error. However, the exploration, while aided by
a testing tool, is essentially manual and offers no auto-
matic analysis.

Temporal queries [16] use a model checker to fill in
a hole in a temporal logic formula with the strongest
formula that holds for a model. Chan and others [16,32]
have proposed using these queries to provide feedback in
the event that a property does not hold on a model.

Simmons and Pecheur noted in 2000 that explana-
tion of counterexamples was important for incorporating
formal verification into the design cycle for autonomous
systems, and suggested the use of truth maintenance sys-
tems (TMS) [48] for explanation [58].

Analyses of causality from the field of artificial intel-
ligence appear to rely on causal theories or more precise
logical models of relationships between components than
are available in model checking of software systems [27,
45,51], but may be applicable in some cases. The JADE
system for diagnosing errors in Java programs makes use
of model-based techniques [46]. The program model is
extracted automatically, but requires a programmer to
answer queries to manually identify whether variables
have correct values at points that are candidates for di-
agnosis. Wotawa has discussed the relationship between
model-based debugging and program slicing [64].

Shapiro [56] introduced a technique for debugging
logic programs that relies on interaction with a user as
an oracle. Further developments based on this technique
have reduced the number of user queries (in part by use
of slicing) [41]. Related techniques for debugging of pro-
grams in functional languages, such as Haskell, rely on
similar models or queries and a semantics of the conse-
quences of computations [7].

Fault localization and visualization techniques based
on testing, rather than verification, differ from the veri-
fication or model-based approaches in that they rely on
(and exploit) the availability of a good test suite. When
an error discovered by a model checker is not covered
by a test suite, these techniques may be of little use.
Dodoo, Donovan, Lin and Ernst [25] use the Daikon in-
variant detector [26] to discover differences in invariants
between passing and failing test cases, but propose no
means to restrict the cases to similar executions relevant
for analysis or to generate them from a counterexample.
The JPF implementation of error explanation also com-
putes differences in invariants between sets of successful
executions and counterexamples using Daikon. Program
spectra [53,33] and profiles provide the basis for a num-
ber of testing based approaches, which rely on the pres-

ence of anomalies in summaries of test executions. The
Tarantula tool [39] uses a visualization technique to il-
luminate (likely) faults statements in programs, as does
χSlice [4].

Our work was partly inspired by the success of An-
dreas Zeller’s delta debugging technique [66], which ex-
trapolates between failing and successful test cases to
find similar executions. The original delta-debugging work
applied to test inputs only, but was later extended to
minimize differences in thread interleavings [18]. Delta-
debugging for deriving cause-effect chains [65] takes state
variables into account, but requires user choice of instru-
mentation points and does not provide true minimality
or always preserve validity of execution traces. The Ask-
Igor project [2] makes cause-effect chain debugging avail-
able via the web.

Renieris and Reiss [52] describe an approach that is
quite similar in spirit to the one described here, with
the advantages and limitations of a testing rather than
model checking basis. They use a distance metric to se-
lect a successful test run from among a given set rather
than, as in this paper, to automatically generate a suc-
cessful run that resembles a given failing run as much as
is possible. Experimental results show that this makes
their fault localization highly dependent on test case
quality. Section 6.3 makes use of a quantitative method
for evaluating fault localization approaches proposed by
Renieris and Reiss.

The “slicing” technique presented in Section 5 should
be understood in the context of both work on program
slicing [61,67,4] and some work on counterexample min-
imization [50,29]. The technique presented here can be
distinguished from these approaches in that it is not a
true slice, but the result of a causal analysis that can
only be performed between two executions which differ
on a predicate (in this application, the presence of an
error).

Distance metrics can also be used to explain abstract
counterexamples [15], in which ∆s (deltas) are presented
in terms of changes to predicates on program variables,
rather than in terms of concrete values. The methodol-
ogy presented in this paper is applied to the MAGIC [14]
model checker, and the resulting gains in the generality
of explanations are described. The distance metric used
differs from that presented in this paper in that it does
not rely on static single assignment. The resulting met-
ric is possibly more intuitive than the one described in
Section 3; however, the use of alignments sometimes re-
sults in serious performance problems and occasionally
produces less satisfactory explanations.

The explain tool has been extended to automati-
cally generate and test hypotheses about causal depen-
dence (as defined in Section 1), in order to provide some
of the automatic generalization supplied by abstract ex-
planation [29].

This paper presents a new distance metric for pro-
gram executions, and uses this metric to provide error
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explanations based on David Lewis’ counterfactual anal-
ysis of causality. While previous approaches have taken
into account the similarity of executions, our approach is
the first to automatically generate a successful execution
that is maximally similar to a counterexample. Solving
this optimization problem produces a set of differences
that is as succinct as possible. Our novel slicing algo-
rithm then makes use of the program semantics and the
fact that we are only interested in causal differences to
further reduce the amount of information that must be
understood by a user.

3 Distance Metrics for Program Executions

A distance metric [55] for program executions is a func-
tion d(a, b) (where a and b are executions of the same
program) that satisfies the following properties:

1. Nonnegative property: ∀a . ∀b . d(a, b) ≥ 0
2. Zero property: ∀a . ∀b . d(a, b) = 0⇔ a = b
3. Symmetry: ∀a . ∀b . d(a, b) = d(b, a)
4. Triangle inequality: ∀a . ∀b . ∀c . d(a, b) + d(b, c) ≥
d(a, c)

In order to compute distances between program exe-
cutions, we need a single, well-defined representation for
those executions.

3.1 Representing Program Executions

Bounded model checking (BMC) [13] also relies on a rep-
resentation for executions: in BMC, the model checking
problem is translated into a SAT formula whose satisfy-
ing assignments represent counterexamples of a certain
length.

CBMC [42] is a BMC tool for ANSI C programs.
Given an ANSI C program and a set of unwinding depths
U (the maximum number of times each loop may be ex-
ecuted), CBMC produces a set of constraints that en-
code all executions of the program in which loops have
finite unwindings. CBMC uses unwinding assertions to
notify the user if counterexamples with more loop ex-
ecutions are possible. The representation used is based
on static single assignment (SSA) form [6] and loop un-
rolling. CBMC and explain handle the full set of ANSI
C types, structures, and pointer operations including
pointer arithmetic. CBMC only checks safety properties,
although in principle BMC (and the explain approach)
can handle full LTL [12]3.

Given the example program minmax.c (Figure 3),
CBMC produces the constraints shown in Figure 4 (U
is not needed, as minmax.c is loop-free)4. The renamed

3 Explanation for LTL properties has been implemented for er-
ror explanation in MAGIC [15].

4 Output is slightly simplified for readability.

1 int main () {
2 int input1, input2, input3; //input values
3 int least = input1; //least#0
4 int most = input1; //most#0
5 if (most < input2) //guard#1
6 most = input2; //most#1,2
7 if (most < input3) //guard#2
8 most = input3; //most#3,4
9 if (least > input2) //guard#3
10 most = input2; //most#5,6 (ERROR!)
11 if (least > input3) //guard#4
12 least = input3; //least#1,2
13 assert (least <= most); //specification
14 }

Fig. 3. minmax.c

variables describe unique assignment points: most#1 de-
notes the second possible assignment to most, least#2
denotes the third possible assignment to least, and so
forth. CBMC assigns uninitialized (#0) values nondeter-
ministically — thus input1, input2, and input3 will
be unconstrained 32 bit integer values. The \guard vari-
ables encode the control flow of the program (\guard#1
is the value of the conditional on line 5, etc.), and are
used when presenting the counterexample to the user
(and in the distance metric). Control flow is handled by
using φ functions, as usual in SSA form: the constraint
{-10}, for instance, assigns most#2 to either most#1 or
most#0, depending on the conditional (\guard#1) for the
assignment to most#1 (the syntax is that of the C con-
ditional expression). Thus most#2 is the value assigned
to most at the point before the execution of line 7 of
minmax.c. The property/specification is represented by
the claim, {1}, which appears below the line, indicating
that the conjunction of these constraints should imply
the truth of the claim(s). A solution to the set of con-
straints {-1}-{-14} is an execution of minmax.c. If the
solution satisfies the claim, {1} (least#2 <= most#6),
it is a successful execution of minmax.c; if it satisfies the
negation of the claim, ¬{1} (least#2 > most#6), it is a
counterexample.

CBMC generates CNF clauses representing the con-
junction of ({-1}∧{-2}∧ . . . {-14}) with the negation of
the claim (¬{1}). CBMC calls zChaff [47], which pro-
duces a satisfying assignment in less than a second. The
satisfying assignment encodes an execution of minmax.c
in which the assertion is violated (Figure 5).

Figure 6 shows the counterexample from Figure 5 in
terms of the SSA form assignments (the internal repre-
sentation used by CBMC for an execution).

In the counterexample, the three inputs have values
of 1, 0, and 1, respectively. The initial values of least
and most (least#0 and most#0) are both 1, as a result
of the assignments at lines 3 and 4. Execution then pro-
ceeds through the various comparisons: at line 5, most#0
is compared to input2#0 (this is \guard#1). The guard
is not satisfied, and so line 6 is not executed. Lines 8 and
12 are also not executed because the conditions of the
if statements (\guard#2 and \guard#4 respectively) are
not satisfied. The only conditional that is satisfied is at
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{-14} least#0 == input1#0
{-13} most#0 == input1#0
{-12} \guard#1 == (most#0 < input2#0)
{-11} most#1 == input2#0
{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)
{-8} most#3 == input3#0
{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)
{-5} most#5 == input2#0
{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)
{-2} least#1 == input3#0
{-1} least#2 == (\guard#4 ? least#1 : least#0)
|--------------------------
{1} least#2 <= most#6

Fig. 4. Constraints generated for minmax.c

Initial State
----------------------------------------------------

State 1 line 2 function c::main
---------------------------------------------------- (input1#0)

input1 = 1

State 2 line 2 function c::main
---------------------------------------------------- (input2#0)

input2 = 0

State 3 line 2 function c::main
---------------------------------------------------- (input3#0)

input3 = 1

State 4 line 3 function c::main
---------------------------------------------------- (least#0)

least = 1

State 5 line 4 function c::main
---------------------------------------------------- (most#0)

most = 1

State 12 line 10 function c::main
---------------------------------------------------- (most#6)

most = 0

Failed assertion: assertion line 13 function c::main

Fig. 5. Counterexample for minmax.c

input1#0 = 1 most#3 = 1
input2#0 = 0 most#4 = 1
input3#0 = 1 \guard#3 = TRUE
least#0 = 1 most#5 = 0
most#0 = 0 most#6 = 0
\guard#1 = FALSE \guard#4 = FALSE
most#1 = 0 least#1 = 1
most#2 = 1 least#2 = 1
\guard#2 = FALSE

Fig. 6. Counterexample values for minmax.ce

line 9, where least#0 > input2#0. Line 10 is executed,
assigning input2 to most rather than least.

In this simple case, understanding the error in the
code is not difficult (especially as the comments to the
code indicate the location of the error). Line 10 should
be an assignment to least rather than to most. A good
explanation for this faulty program should isolate the
error to line 10.

For given loop bounds (irrelevant in this case), all
executions of a program can be represented as sets of as-
signments to the variables appearing in the constraints.
Moreover, all executions (for fixed U) are represented as
assignments to the same variables. Different flow of con-

trol will simply result in differing \guard values (and φ
function) assignments.

3.2 The Distance Metric d

The distance metric d will be defined only between two
executions of the same program with the same maxi-
mum bound on loop unwindings5. This guarantees that
any two executions will be represented by constraints on
the same variables. The distance, d(a, b), is equal to the
number of variables to which a and b assign different
values. Formally:

Definition 2 (distance, d(a, b)). Let a and b be ex-
ecutions of a program P , represented as sets of assign-
ments, a = {v0 = vala0 , v1 = vala1 , . . . , vn = valan} and
b = {v0 = valb0, v1 = valb1, . . . , vn = valbn}.

d(a, b) =
n∑
i=0

∆(i)

where

∆(i) =
{

0 if valai = valbi
1 if valai 6= valbi

Here v0, v1, v2, etc. do not indicate the first, second,
third, and so forth assignments in a considered as an exe-
cution trace, but uniquely named SSA form assignments.
The pairing indicates that the value for each assignment
in execution a is compared to the assignment with the
same unique name in execution b. SSA form guaran-
tees that for the same loop unwindings, there will be
a matching assignment in b for each assignment in a. In
the running example {v0, v1, v2, v3, . . .} are {input1#0,
input2#0, input3#0, least#0, most#0, . . .}, execution a
could be taken to be the counterexample (Figures 5 and
6), and execution b might be the most similar successful
execution (see Figures 8 and 9).

This definition is equivalent to the Levenshtein dis-
tance [55] if we consider executions as strings where the
alphabet elements are assignments and substitution is
the only allowed operation6. The properties of inequal-
ity guarantee that d satisfies the four metric properties.

The metric d differs from the metrics often used in
sequence comparison in that it does not make use of a
notion of alignment. The SSA form based representation
encodes an execution as a series of assignments. In con-
trast, the MAGIC implementation of error explanation
represents an execution as a series of states, including
a program counter to represent control flow. Although
viewing executions as sequences of states is a natural
result of the usual Kripke structure approach to verifi-
cation, the need to compute an alignment and compare

5 Counterexamples can be extended to allow for more unwind-
ings in the explanation.

6 A Levenshtein distance is one based on a composition of
atomic operations by which one sequence or string may be trans-
formed into another.



Alex Groce et al.: Error Explanation with Distance Metrics 7

all data elements when two states are aligned can impose
a serious overhead on explanation [15].

In the CBMC/explain representation, however, the
issue of alignments does not arise. Executions a and
b will both be represented as assignments to input1,
input2, input3, \guard#0-\guard#4, least#0-least#2,
and most#0-most#6. The distance between the execu-
tions, again, is simply a count of the assignments for
which they do not agree. This does result in certain
counter-intuitive behavior: for instance, although nei-
ther execution a nor execution b executes the code on
line 12 (\guard#4 is FALSE in both cases), the values of
least#1 will be compared. Therefore, if the values for
input3 differ, this will be counted twice: once as a differ-
ence in input3, and once as a difference in least#1, de-
spite the second value not being used in either execution.
In general, a metric based on SSA form unwindings may
be heavily influenced by results from code that is not ex-
ecuted, in one or both of the executions being compared.
Any differences in such code can eventually be traced to
differences in input values, but the weighting of differ-
ences may not match user intuitions. It is not that infor-
mation is lost in the SSA form encoding: it is, as shown in
the counterexamples, possible to determine the control
flow of an execution from the \guard or φ function val-
ues; however, to take this into account complicates the
metric definition and introduces a potentially expensive
degree of complexity into the optimization problem of
finding a maximally similar execution7.

A state and alignment based metric avoids this pecu-
liarity, at a potentially high computational cost. Exper-
imental results [15] show that in some cases the “coun-
terintuitive” SSA form based metric may produce better
explanations — perhaps because it takes all potential
paths into account.

In summary, the representation for executions pre-
sented here has the advantage of combining precision
and relative simplicity, and results in a very clean (and
easy to compute) distance metric. The pitfalls involved
in trying to align executions with different control flow
for purposes of comparison are completely avoided by
the use of SSA form. Obviously, the details of the SSA
form encoding may need to be hidden from non-expert
users (the CBMC GUI provides this service) — a good
presentation of a trace may hide information that is use-
ful at the level of representation. Any gains in the direct
presentability of the representation itself (such as remov-
ing values for code that is not executed) are likely to be
purchased with a loss of simplicity in the distance metric
d, as seen in the metric used by MAGIC.

7 Each ∆, as shown below, would potentially introduce a case
split based on whether the code was executed in one, both, or
neither of the executions being compared.

3.3 Choosing an Unwinding Depth

The definition of d presented above only considers execu-
tions with the same unwinding depth and therefore (due
to SSA form) the same variable assignments. However, it
is possible to extend the metric to any unwinding depth
by simply considering there to be a difference for each
variable present in the successful execution but not in
the counterexample. Using this extension of d, a search
for a successful execution can be carried out for any un-
winding depth. It is, of course, impossible to bound in
general the length of the closest successful execution.
In fact, no successful execution of a particular program
may exist. However, given a closest successful execution
within some unwinding bounds, it is possible to deter-
mine a maximum possible bound within which a closer
execution may be found. For a program P , each un-
winding depth determines the number of variables in the
SSA form unwinding of the program. If the counterex-
ample is represented by i variables, and the successful
execution’s unwinding requires j > i variables, then the
minimum possible distance between the counterexample
and any successful execution at that unwinding depth is
j − i. Given a successful execution with distance d from
a counterexample, it is impossible for a successful exe-
cution with unwinding depth such that j − i ≥ d to be
closer to the counterexample.

4 Producing an Explanation

Generating an explanation for an error requires two phases:

– First, explain produces a successful execution that
is as similar as possible to the counterexample. Sec-
tion 4.1 describes how to set up and solve this opti-
mization problem.

– The second phase produces a subset of the changes
between this execution and the counterexample which
are causally necessary in order to avoid the error.
The subset is determined by means of the ∆-slicing
algorithm described in Section 5.

4.1 Finding the Closest Successful Execution

The next step is to consider the optimization problem of
finding an execution that satisfies a constraint and is as
close as possible to a given execution. The constraint is
that the execution not be a counterexample. The origi-
nal BMC problem is formed by negating the verification
claim V , where V is the conjunction of all assertions,
bounds checks, overflow checks, unwinding assertions,
and other conditions for correctness, conditioned by any
assumptions. For minmax.c, V is:
{1}: least#2 <= most#6
and the SAT instance S to find a counterexample is
formed by negating V :
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input1#0∆ == (input1#0 != 1)
input2#0∆ == (input2#0 != 0)
input3#0∆ == (input3#0 != 1)
least#0∆ == (least#1 != 1)
most#0∆ == (most#1 != 1)
\guard#1∆ == (\guard#1 != FALSE)
most#1∆ == (most#2 != 0)
most#2∆ == (most#3 != 1)
\guard#2∆ == (\guard#2 != FALSE)
most#3∆ == (most#4 != 1)
most#4∆ == (most#5 != 1)
\guard#3∆ == (\guard#3 != TRUE)
most#5∆ == (most#6 != 0)
most#6∆ == (most#7 != 0)
\guard#4∆ == (\guard#4 != FALSE)
least#1∆ == (least#2 != 1)
least#2∆ == (least#3 != 1)

Fig. 7. ∆s for minmax.c and the counterexample in Figure 5

¬{1}: least#2 > most#6.
In order to find a successful execution it is sufficient to
use the original, unnegated, claim V .

The distance to a given execution (e.g., a counterex-
ample) can be easily added to the encoding of the con-
straints that define the transition relation for a program.
The values for the ∆ functions necessary to compute the
distance are added as new constraints (Figure 7) by the
explain tool.

These constraints do not affect satisfiability; correct
values can always be assigned for the ∆s. The ∆ values
are used to encode the optimization problem. For a fixed
a, d(a, b) = n can directly be encoded as a constraint by
requiring that exactly n of the ∆s be set to 1 in the solu-
tion. However, it is more efficient to use pseudo-Boolean
(0-1) constraints and use the pseudo-Boolean solver PBS
[5] in place of zChaff. A pseudo-Boolean formula has the
form:

(Σn
i=1ci · bi) ./ k

where for 1 ≤ i ≤ n, each bi is a Boolean variable,
ci is a rational constant, k is a rational constant, and
./ is one of {<, ≤, >, ≥, =}. For our purposes, each
ci is 1, and each bi is one of the ∆ variables intro-
duced above8. PBS accepts a SAT problem expressed
as CNF, augmented with a pseudo-Boolean formula. In
addition to solving for pseudo-Boolean constraints such
as d(a, b) = k, d(a, b) < k, d(a, b) ≥ k, PBS can use
a binary search to solve a pseudo-Boolean optimization
problem, minimizing or maximizing d(a, b). For error ex-
planation, the pseudo-Boolean problem is to minimize
the distance to the counterexample a.

From the counterexample shown in Figure 5, we can
generate an execution (1) with minimal distance from
the counterexample and (2) in which the assertion on
line 13 is not violated. Constraints {-1}-{-14} are con-
joined with the ∆ constraints (Figure 7) and the un-
negated verification claim {1}. The pseudo-Boolean con-
straints express an optimization problem of minimizing

8 In practice, several ∆ variables (for example, changes in
guards) may be equivalent to the same CNF variable, after sim-
plification. In this case, the coefficient on that variable is equal to
the number of ∆s it represents.

Initial State
----------------------------------------------------

State 1 line 2 function c::main
---------------------------------------------------- (input1#0)

input1 = 1

State 2 line 2 function c::main
---------------------------------------------------- (input2#0)

input2 = 1

State 3 line 2 function c::main
---------------------------------------------------- (input3#0)

input3 = 1

State 4 line 3 function c::main
---------------------------------------------------- (least#0)

least = 1

State 5 line 4 function c::main
---------------------------------------------------- (most#0)

most = 1

Fig. 8. Closest successful execution for minmax.c

input1#0 = 1 most#3 = 1
input2#0 = 1 most#4 = 1
input3#0 = 1 \guard#3 = FALSE
least#0 = 1 most#5 = 1
most#0 = 1 most#6 = 1
\guard#1 = FALSE \guard#4 = FALSE
most#1 = 1 least#1 = 1
most#2 = 1 least#2 = 1
\guard#2 = FALSE

Fig. 9. Closest successful execution values for minmax.c

Value changed: input2#0 from 0 to 1
Value changed: most#1 from 0 to 1

file minmax.c line 6 function c::main
Guard changed: least#0 > input2#0 (\guard#3) was TRUE

file minmax.c line 9 function c::main
Value changed: most#5 from 0 to 1

file minmax.c line 10 function c::main
Value changed: most#6 from 0 to 1

Fig. 10. ∆ values (∆ = 1) for execution in Figure 8

the sum of the ∆s. The solution is an execution (Fig-
ure 8) in which a change in the value of input2 results
in least <= most being true at line 13. This solution
is not unique. In general, there may be a very large set
of executions that have the same distance from a coun-
terexample.

The values of the ∆s (Figure 10) allow us to examine
precisely the points at which the two executions differ.
The first change is the different value for input2. At
least one of the inputs must change in order for the as-
sertion to hold, as the other values are all completely de-
termined by the three inputs. The next change is in the
potential assignment to most at line 6. In other words, a
change is reported at line 6 despite the fact that line 6
is not executed in either the counterexample or the suc-
cessful execution. It is, of course, trivial to hide changes
guarded by false conditions from the user; such changes
are retained in this presentation in order to make the na-
ture of the distance metric clear. Such assignments are
automatically removed by the ∆-slicing technique pre-
sented in Section 5 (see Figure 16). This is an instance
of the counter-intuitive nature of the SSA form: because
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the condition on line 5 is still not satisfied (indeed, none
of the guards are satisfied in this successful execution),
the value of most which reaches line 7 (most#2) is not
changed. While one of the potential values for most at
the merge point is altered, the φ function, i.e., the con-
ditional split on the guard for most#2, retains its value
from the counterexample. The next change occurs at the
guard to the erroneous code: least#0 is no longer less
than input2#0, and so the assignment to most at line
10 is not executed. The potential value that might have
been assigned (most#5) is also changed, as input2 has
changed its value. Finally, the value of most that reaches
the assertion, most#6, has changed from 0 to 1 (because
line 10 has not been executed, although in this case exe-
cuting line 10 would not change the value of most). The
explanation shows that not executing the code at line 10,
where the fault appears, causes the assertion to succeed.
The error has been successfully isolated.

4.2 Closest Successful Execution ∆s and Causal
Dependence

The intuition that comparison of the counterexample
with minimally different successful executions provides
information as to the causes of an error can be justified
by showing that ∆s from a (closest) successful execution
are equivalent to a cause c:

Theorem 1. Let a be the counterexample trace and let
b be any closest successful execution to a. Let D be the
set of ∆s for which the value is not 0 (the values in
which a and b differ). If δ is a predicate stating that
an execution disagrees with b for at least one of these
values, and e is the proposition that an error occurs, e
is causally dependent on δ in a.

Proof. A predicate e is causally dependent on δ in a iff
for all of the closest executions for which ¬δ is true, ¬e
is also true. Since ¬δ only holds for executions which
agree with b for all values in D, ¬δ(b) must hold. Addi-
tionally, ¬e(b) must be true, as b is defined as a closest
successful execution to a. Assume that some trace b′ ex-
ists, such that ¬δ(b′) ∧ e(b′) ∧ d(a, b′) ≤ d(a, b). Now, b′

must differ from b in some value (as e(b′)∧¬e(b)). How-
ever, b′ cannot differ from b for any value in D, or δ(b′)
would be true. Thus, if b′ differs from b in a value other
than those in D, b′ must also differ from a in this value.
Therefore, d(a, b′) > d(a, b), which contradicts our as-
sumption. Hence, e must be causally dependent on δ in
a.

In the running example minmax.c, δ is the predi-
cate (input3#0 != 0) ∨ (most#3 != 0) ∨ (least#1
!= 0) ∨ (least#2 != 0). Finding the closest success-
ful execution also produces a predicate c(δ) on which the
error is causally dependent. Actually, this proof holds for
any successful execution. Minimizing the distance serves

1 int main () {
2 int input1, input2;
3 int x = 1, y = 1, z = 1;
4 if (input1 > 0) {
5 x += 5;
6 y += 6;
7 z += 4;
8 }
9 if (input2 > 0) {
10 x += 6;
11 y += 5;
12 z += 4;
13 }
14 assert ((x < 10) || (y < 10));
15 }

Fig. 11. slice.c

Value changed: input2#0 from 1 to 0
Guard changed: input2#0 > 0 (\guard#2) was TRUE

line 9 function c::main
Value changed: x#4 from 12 to 6

line 10 function c::main
Value changed: y#4 from 12 to 7

line 11 function c::main
Value changed: z#4 from 9 to 5

line 12 function c::main

Fig. 12. ∆ values for slice.c

to minimize the number of terms in δ. A δ with mini-
mal terms can be used as a starting point for hypotheses
about a more general cause for the error.

More generally, this proof should hold for any met-
ric which can be formulated in terms of a Levenshtein
distance such that operations can be represented by mu-
tually exclusive independent terms that can be conjoined
(as with the atomic changes to the SSA form representa-
tion). Such a formulation should be possible for the non-
SSA form metric used with abstract explanation [15];
however, the reduction to atomic terms in that case is
considerably less natural, and the value of an explana-
tion as a conjunction in terms of predicates on states and
predicate values once alignment and position are taken
into account is dubious.

5 ∆-Slicing

A successful path with minimal distance to a counterex-
ample may include changes in values that are not actu-
ally relevant to the specification. For example, changes
in an input value are necessarily reflected in all values
dependent on that input.

Consider the program and ∆ values in Figures 11 and
12. The change to z is necessary but also irrelevant to
the assertion on line 14. Various static or dynamic slicing
techniques [61] would suffice to remove the unimportant
variable z. Generally, however, static slicing is of limited
value as there may be some execution path other than
the counterexample or successful path in which a vari-
able is relevant. Dynamic slicing raises the question of
whether to consider the input values for the counterex-
ample or for the successful path.
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If we assume a failing run with the values 1 and 1
for input1 and input2, a typical dynamic slice on the
execution would indicate that lines 2, 3, 4, 5, 6, 9, 10,
and 11 are relevant. In this case, however, the explana-
tion technique has already focused our attention on a
subset of the failing run: no changes appear other than
at lines 9, 10, 11, and 12. If dynamic slicing was applied
to these ∆ locations rather than the full execution, lines
9, 10, and 11 would be considered relevant, as both x
and y influence the assertion at line 14. Starting with
differences rather than the full execution goes beyond
the reductions provided by a dynamic slice.

Notice, however, that in order to avoid the error, it is
not required that both x and y change values. A change
in either x or y is sufficient. It is true that in the program
as written, a change is only observed in x when a change
is also observed in y, but the basic assumption of error
explanation is that the program’s behavior is incorrect.
It might be useful to observe (which dynamic slicing will
not) that within a single execution two routes to a value
change that removes the observed error potentially exist.

This issue of two causal “routes” within an execution
is independent of the possibility that there may be more
than one successful execution at a particular distance. In
the case of slice.c, there are clearly two possible explana-
tions based on two executions at the same distance from
the counterexample: one in which input1 is altered and
one in which input2 is altered. If multiple explanations
at the same distance exist, explain will arbitrarily se-
lect one. In the event that this choice reflects a way to
avoid the consequences of an error rather than capturing
the faulty code, assumptions must be used to narrow the
search space, as described in Section 6.1. The ∆-slicing
technique assumes that a single explanation has already
been chosen. It should be noted that ∆-slicing can some-
times be used to “detect” a bad choice of explanation (as
discussed in Section 6.3) in that an explanation may be
reduced to a very small set of ∆s that clearly cannot
contain a fault.

The same approach used to generate the ∆ values
can be used to compute an even more aggressive “dy-
namic slice.” In traditional slicing, the goal is to dis-
cover all assignments that are relevant to a particular
value, either in any possible execution (static slicing) or
in a single execution (dynamic slicing). In reporting ∆
values, however, the goal is to discover precisely which
differences in two executions are relevant to a value.
Moreover, the value in question is always a predicate
(the specification). A dynamic slice is an answer to the
question: “What is the smallest subset of this program
which always assigns the same values to this variable at
this point?” ∆-slicing answers the question “What is the
smallest subset of changes in values between these two
executions that results in a change in the value of this
predicate?”

To compute the ∆-slice, we use the same ∆ and
pseudo-Boolean constraints as presented above. The con-

straints on the transition relation, however, are relaxed.
For every variable vi such that ∆(i) = 1 in the coun-
terexample with constraint vi = expr, and values valai
and valbi in the counterexample and closest successful
execution, respectively, a new constraint is generated:

(vi = valai ) ∨ ((vi = valbi ) ∧ (vi = expr))

That is, for every value in this new execution that
changed, the value must be either the same as in the
original counterexample or the same as in the closest
successful run. If the latter, it must also obey the transi-
tion relation, as determined by the constraint vi = expr.
For values that did not change (∆(i) = 0) the constant
constraint vi = valai is used.

Consider the SSA form variable x#3, which has a
value of 12 in both the counterexample (a) and the suc-
cessful execution (b). The ∆ value associated with x#3 is
0, and so the old constraint9 for x#3, x#3 == x#2 + 6 is
replaced in the ∆-slicing constraints with the constant
assignment x#3 == 12.

The variable y#4, on the other hand, is assigned a
value of 12 in the counterexample (a) and a value of 7 in
the successful execution (b), and is therefore associated
with a ∆ value of 1. The constraint for this variable is
y#4 == (\guard#2 ? y#3 : y#2). To produce the new
constraint on y#4 for ∆-slicing, we take the general form
above and substitute y#4 for vi, 12 for valai , 7 for valbi ,
and (\guard#2 ? y#3 : y#2) for expr:

(y#4 == 12) || ((y#4 == 7) && (y#4 ==
(\guard#2 ? y#3 : y#2)))

The “execution” generated from these constraints may
not be a valid run of the program (it will not be, in any
case where the slicing reduces the size of the ∆s). How-
ever, no invalid state or transition will be exposed to the
user: the only part of the solution that is used is the new
set of ∆s. These are always a subset of the original ∆s.
The improper execution is only used to focus attention
on the truly necessary changes in a proper execution.
The change in the transition relation can be thought of
as encoding the notion that we allow a variable to revert
to its value in the counterexample if this alteration is not
observable with respect to satisfying the specification.

The ∆-slicing algorithm is:

1. Produce an explanation (a set of ∆s) for a counterex-
ample as described in Section 4.1.

2. Modify the SAT constraints on the variables to reflect
the ∆s between the counterexample and the chosen
closest successful execution by
– replacing the constraints for variables in the set

of ∆s with:

(vi = valai ) ∨ ((vi = valbi ) ∧ (vi = expr))

9 Constraints are always the same for both counterexample and
successful execution.
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...
{-7} \guard#2 == (input2#0 > 0)
{-6} x#3 == x#2 + 6
{-5} y#3 == y#2 + 5
{-4} z#3 == z#2 + 4
{-3} x#4 == (\guard#2 ? x#3 : x#2)
{-2} y#4 == (\guard#2 ? y#3 : y#2)
{-1} z#4 == (\guard#2 ? z#3 : z#2)
|--------------------------
{1} \guard#0 => x#4 < 10 || y#4 < 10

Fig. 13. Partial constraints for slice.c

...
{-7} \guard#2 == (input2#0 > 0)
{-6} x#3 == 12
{-5} y#3 == 12
{-4} z#3 == 9
{-3} (x#4 == 12) ||

((x#4 == 6) && (x#4 == (\guard#2 ? x#3 : x#2)))
{-2} (y#4 == 12) ||

((y#4 == 7) && (y#4 == (\guard#2 ? y#3 : y#2)))
{-1} (z#4 == 9) ||

((z#4 == 5) && (z#4 == (\guard#2 ? z#3 : z#2)))
|--------------------------
{1} \guard#0 => x#4 < 10 || y#4 < 10

Fig. 14. ∆-slicing constraints for slice.c

– and replacing the constraints for all other vari-
ables with

vi = valai

(which is the same as vi = valbi , in this case).
3. Use PBS to find a new (potentially better) solution

to the modified constraint system, under the same
distance metric as before.

Figure 13 shows some of the original constraints for
slice.c. The modified constraints used for computing the
∆-slice are shown in Figure 14. The relaxation of the
transition relation allows for a better solution to the op-
timization problem, the ∆-slice shown in Figure 15. An-
other slice would replace y with x. It is only necessary
to observe a change in either x or y to satisfy the asser-
tion. ∆-slicing produces either lines 9 and 10 or 9 and
11 as relevant, while dynamic slicing produces the union
of these two routes to a changed value for the assertion.

The ∆-slicer can be used to produce all of the pos-
sible minimal slices of a set of differences (in this case,
these consist of a change to x alone and a change to y
alone), indicating the possible causal chains by which an
error can be avoided, when the first slice produced does
not help in understanding the error. Additional slices
can be produced by adding a constraint to the SAT rep-
resentation that removes the latest slice from the set of
possible solutions (i.e., a blocking clause). The new set
of constraints are given to PBS, along with a pseudo-
Boolean constraint restricting solutions to those at the
same distance as the previous slice(s). This can be re-
peated (growing the constraints by one blocking clause
each time) until the PBS constraints become unsatis-
fiable, at which point all possible slices have been pro-
duced. This division into causal “routes” is not a feature
of traditional dynamic slicing.

Value changed: input2#0 from 1 to 0
Guard changed: input2#0 > 0 (\guard#2) was TRUE

line 9 function c::main
Value changed: y#4 from 12 to 7

Fig. 15. ∆-slice for slice.c

Value changed: input2#0 from 0 to 1
Guard changed: least#0 > input2#0 (\guard#3) was TRUE

file minmax.c line 9 function c::main
Value changed: most#6 from 0 to 1

Fig. 16. ∆-slice for minmax.c

Revisiting the original example program, we can ap-
ply ∆-slicing to the explanation in Figure 10 and obtain
the smaller explanation shown in Figure 16.

In this case, the slicing serves to remove the changes
in values deriving from code that is not executed that
are introduced by the reliance on SSA form.

5.1 Explaining and Slicing in One Step

The slicing algorithm presented above minimizes the changes
in a given successful execution, with respect to a coun-
terexample. However, it seems plausible that in some
sense this is solving the wrong optimization problem:
perhaps what we really want is to minimize the size of
the final slice, not to minimize the pre-slicing ∆s. It is
not immediately clear which of two possible optimization
problems will best serve our needs:

– Find an execution of the program P with minimal
distance from the counterexample a. This distance,
naturally, may take into account behavior that is ir-
relevant to the erroneous behavior and will be sliced
away.

– Find an execution of the program P that minimizes
the number of relevant changes to the counterexam-
ple a (where relevance is determined by ∆-slicing).

We refer to the second technique as one-step slicing
as the execution and slice are computed at the same
time. Before returning to the issue of which approach is
best, we will demonstrate that solving the second opti-
mization problem is indeed feasible.

5.1.1 Näıve Approach

The simplest approach to computing a one-step slice
would be to use the slicing constraints in place of the
usual SSA unwinding in the original search for a clos-
est execution. The constraint used in the two-phase ap-
proach:

(vi = valai ) ∨ ((vi = valbi ) ∧ (vi = expr))

relies upon a knowledge of valbi from an already discov-
ered closest successful execution. Unfortunately, remov-
ing this term to produce the constraint:
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(vi = valai ) ∨ (vi = expr)

fails to guarantee that the set of observed changes will be
consistent with any actual execution of the program (or
even that each particular changed value will be contained
in any valid execution of the program).

5.1.2 Shadow Variables

In order to preserve the property that the slice is a sub-
set of an actual program execution, the one-step slicing
algorithm makes use of shadow variables.

For each assignment in the original SSA, a shadow
copy is introduced, indicated by a primed variable name.
For each shadow assignment, all variables from the orig-
inal SSA are replaced by their shadow copies, e. g.:

v6 = v3 + v5

becomes

v′6 = v′3 + v′5

and the constraints ensuring a successful execution are
applied to the shadow variables. In other words, the
shadow variables are exactly the constraints used to dis-
cover the most similar successful execution: the shadow
variables are constrained to represent a valid successful
execution of the program. Using ∆s based on the shadow
variables would give results exactly equivalent to the first
step of the two-phase algorithm, in that the only change
is the priming of variables.

The slicing arises from the fact that the distance met-
ric is not computed over the shadow variables. Instead,
the shadow variables are used to ensure that the ob-
served changes presented to a user are a subset of a single
valid successful execution. The ∆s for the distance met-
ric are computed over non-primed variables constrained
in a manner very similar to the first ∆-slicing algorithm:

(vi = valai ) ∨ ((vi = val′i) ∧ (vi = expr))

with valbi replaced by val′i. Rather than first computing a
minimally distant successful execution, the one-step slic-
ing algorithm produces a (possibly non-minimally dis-
tant) successful execution as it computes a minimal slice.
Because it cannot be known which variables will be un-
changed, there are no constant constraints as in the two-
phase algorithm (recall that the constant constraints are
just a simplification of the above expression, in any case).

The ∆s are computed over the non-shadow variables
using the same distance metric as in both steps of the
two-phase algorithm. The ∆s that are reported to the
user use the values from the non-primed variables: how-
ever, for all actual changes, this will match the shadow
value, which guarantees that all changes are a subset
of a valid successful execution. Figure 17 shows a sub-
set of the shadow and normal constraints produced for

...
{-12} x#3’ == 6 + x#2’
{-11} (x#3 == 12) || ((x#3 == x#3’) && (x#3 == 6 + x#2))
{-10} y#3’ == 5 + y#2’
{-9} (y#3 == 12) || ((y#3 == y#3’) && (y#3 == 5 + y#2))
{-8} z#3’ == 4 + z#2’
{-7} (z#3 == 9) || ((z#3 == z#3’) && (z#3 == 4 + z#2))
{-6} x#4’ == (\guard#2’ ? x#3’ : x#2’)
{-5} (x#4 == 12) || ((x#4 == x#4’) &&

(x#4 == (\guard#2 ? x#3 : x#2)))
{-4} y#4’ == (\guard#2’ ? y#3’ : y#2)
{-3} (y#4 == 12) || ((y#4 == y#4’) &&

(y#4 == (\guard#2 ? y#3 : y#2)))
{-2} z#4’ == (\guard#2’ ? z#3’ : z#2)
{-1} (z#4 == 9) || ((z#4 == z#4’) &&

(z#4 == (\guard#2 ? z#3 : z#2)))
|--------------------------
{1} \guard#0 => x#4 < 10 || y#4 < 10
{2} \guard#0’ => x#4’ < 10 || y#4’ < 10

Fig. 17. One-step ∆-slicing constraints for slice.c

slice.c. In the case of slice.c, slicing in one-step produces
no changes: the slice is already minimal.

5.1.3 Disadvantages of One-Step Slicing: The
Relativity of Relevance

Interestingly, when the results of one-step and two-phase
slicing differ, it is generally the case that the one-step ap-
proach produces less useful results. Table 2 in Section 6.4
shows the results for applying one-step slicing to various
case studies. The one-step approach does not provide a
significant improvement in localization over the original
counterexamples, and is considerably less effective than
the two-phase algorithm (results in Table 1): the expla-
nations produced are, on average, of much lower quality,
and take longer to produce.

That the two-phase approach is faster is not surpris-
ing. The PBS optimization problems in both phases will
always be smaller than that solved in the one-step ap-
proach (by a factor of close to two, due to the need for
shadow variables). The slicing phase is also highly con-
strained: setting one bit of any program variable may
determine the value for 32 (or more) SAT variables, as
each SSA form value has only two possible values.

The most likely explanation for the poor explana-
tions produced by one-step slicing is that it solves the
wrong optimization problem. In ∆-slicing, “relevance”
is not a deterministic artifact of a program and a state-
ment, as it is in static slicing. Instead, relevance is a func-
tion of an explanation: the ∆-slicing notion of relevance
only makes sense in the context of a given counterexam-
ple and successful execution. If the successful execution
is poorly chosen, the resulting notion of relevance (and
hence the slice) will be of little value. Optimizing the size
of the final slice is unwise if it is possible for a slice to be
small because it is based on a bad explanation — and, as
shown in Section 6, this is certainly possible. It is not so
much that optimizing over “irrelevant” changes is desir-
able, but that it is impossible to know which changes are
relevant until we have chosen an execution. Given that
the distance metric already precludes irrelevant changes
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100c100
// (correct version)
< result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation >= ALIM())));
---
// (faulty version #1)
> result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation > ALIM())));

Fig. 18. diff of correct TCAS code and variation #1

that are not forced by relevant changes, it is probably
best to simply optimize the distance between the exe-
cutions and trust that ∆-slicing will remove irrelevant
behavior — once we have some context in which to de-
fine relevance.

An appealing compromise would be to compute the
original distance metric only over SSA form values and
guards present in a static slice with respect to the error
detected in the original counterexample.

6 Case Studies and Evaluation

Two case studies provide insight into how error expla-
nation based on distance metrics performs in practice.
The TCAS resolution advisory component case study
allows for comparison of fault localization results with
other tools, including a testing approach also based on
similarity of successful runs. The µC/OS-II case study
shows the applicability of the explanation technique to
a more realistically sized example taken from produc-
tion code for the kernel of a real-time operating system
(RTOS). The fault localization results for both studies
are quantitatively evaluated in Section 6.3.

6.1 TCAS Case Study

TCAS (Traffic Alert and Collision Avoidance System) is
an aircraft conflict detection and resolution system used
by all US commercial aircraft. The Georgia Tech version
of the Siemens suite [54] includes an ANSI C version of
the Resolution Advisory (RA) component of the TCAS
system (173 lines of C code) and 41 faulty versions of
the RA component. A previous study of the component
using symbolic execution [24] provided a partial spec-
ification that was able to detect faults in 5 of the 41
versions (CBMC’s automatic array bounds checking de-
tected 2 faults). In addition to these assertions, it was
necessary to include some obvious assumptions on the
inputs10.

Variation #1 of the TCAS code differs from the cor-
rect version in a single line (Figure 18). A ≥ comparison
in the correct code has been changed into a > compar-
ison on line 100. Figure 19 shows the result of applying

10 CBMC reports overflow errors, so altitudes over 100,000 were
precluded (commercial aircraft at such an altitude would be be-
yond the aid of TCAS in any case).

Value changed: Input Down Separation#0 from 400 to 159
Value changed: P1 BCond#1 from TRUE to FALSE

line 255 function c::main

Fig. 19. First explanation for variation #1 (after ∆-slicing)

PrB = (ASTEn && ASTUpRA);
...
P1 BCond = ((Input Up Separation < Layer Positive RA Alt Thresh) &&

(Input Down Separation >= Layer Positive RA Alt Thresh));
assert(!(P1 BCond && PrB)); // P1 BCond -> ! PrB

Fig. 20. Code for violated assertion

explain to the counterexample generated by CBMC for
this error (after ∆-slicing). The counterexample passes
through 90 states before an assertion (shown in Figure
20) fails.

The explanation given is not particularly useful. The
assertion violation has been avoided by altering an in-
put so that the antecedent of the implication in the as-
sertion is not satisfied. The distance metric-based tech-
nique is not always fully automated; fortunately user
guidance is easy to supply in this case. We are really
interested in an explanation of why the second part of
the implication (PrB) is true in the error trace, given
that P1 BCond holds. To coerce explain into answering
this query, we add the constraint assume(P1 BCond); to
variation #1. After model checking the program again
we reapply explain. The new explanation (Figure 22)
is far more useful.

In this particular case, which might be called the
implication-antecedent problem, automatic generation of
the needed assumption is feasible: the tool only needs to
observe the implication structure of the failed assertion,
and that the successful execution falsifies the antecedent.
An assumption requiring the antecedent to hold can then
be introduced. The original counterexample is still valid,
as it clearly satisfies the assumption11. As noted in the
introduction it is not to be expected that all assumptions
about program behavior that are not encoded directly in
the specification can be generated by the tool. In some
cases, users may need to augment a program with subtle
assumptions that the distance metric and specification
do not capture.

Observe that, as in the first explanation, only one in-
put value has changed. The first change in a computed
value is on line 100 of the program — the location of
the fault! Examining the source line and the counterex-
ample values, we see that ALIM() had the value 640.
Down Separation also had a value of 640. The subex-
pression (!(Down Separation > ALIM())) has a value
of TRUE in the counterexample and FALSE in the suc-
cessful run. The fault lies in the original value of TRUE,
brought about by the change in comparison operators
and only exposed when ALIM() = Down Separation.

11 A new counterexample is used in the TCAS example to avoid
having to adjust line numbers, but an automatically generated
assumption would not require source code modification.
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Fig. 21. Explaining tcasv1.c

Value changed: Input Down Separation#0 from 500 to 504
Value changed: Down Separation#1 from 500 to 504

line 215 function c::main
Value changed: result#1 from TRUE to FALSE

line 100 function c::Non Crossing Biased Climb
Value changed: result#3 from TRUE to FALSE
Value changed: tmp#1 from TRUE to FALSE

line 106 function c::Non Crossing Biased Climb
Guard changed: \guard#1 && tmp#1 (\guard#7) was TRUE

line 144 function c::alt sep test
Value changed: need upward RA#1 from TRUE to FALSE

line 144 function c::alt sep test
Guard changed: \guard#15 && need upward RA#1 (\guard#16)

was TRUE
line 152 function c::alt sep test

Guard changed: \guard#15 && !need upward RA#1 (\guard#17)
was FALSE

line 152 function c::alt sep test
Guard changed: \guard#17 && !need downward RA#1 (\guard#19)

was FALSE
line 156 function c::alt sep test

Value changed: ASTUpRA#2 from TRUE to FALSE
Value changed: ASTUpRA#3 from TRUE to FALSE
Value changed: ASTUpRA#4 from TRUE to FALSE
Value changed: PrB#1 from TRUE to FALSE

line 230 function c::main

Fig. 22. Second explanation for variation #1 (after ∆-slicing)

The rest of the explanation shows how this value prop-
agates to result in a correct choice of RA.

Figures 21 and 23 show the explanation process as
it appears in the explain GUI. The error is highlighted
in red (black), and all source lines appearing in the ex-
planation are highlighted in orange (gray). Note that
although the counterexample in the screenshots is actu-
ally for a different assertion violation (CBMC’s initial
settings determine which counterexample is produced),
the localization information is unchanged.

For one of the five interesting12 variations (#40), a
useful explanation is produced without any added as-
sumptions. Variations #11 and #31 also require assump-
tions about the antecedent of an implication in an asser-
tion. The final variation, #41, requires an antecedent
assumption and an assumption requiring that TCAS is

12 The two errors automatically detected by CBMC are constant-
valued array indexing violations that are “explained” sufficiently
by a counterexample trace.
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Fig. 23. Correctly locating the error in tcasv1.c

enabled (the successful execution finally produced differs
from the counterexample to such an extent that changing
inputs so as to disable TCAS is a closer solution). The
second assumption differs from the implication-antecedent
case in that adding the assumption requires genuine un-
derstanding of the structure and behavior of TCAS. Au-
tomation of this kind of programmer knowledge of which
behaviors are relevant to a particular counterexample
(e.g., that comparison to executions in which TCAS does
not activate is often meaningless) is implausible.

6.2 µC/OS-II Case Study

µC/OS-II [3] is a real-time multitasking kernel for mi-
croprocessors and microcontrollers. CBMC applied to a
(now superseded) version of the kernel source discovered
a locking protocol error that did not appear in the de-
velopers’ list of known problems with that version of the
kernel. The checked source code consists of 2,987 lines of

C code, with heavy use of pointers and casts. The coun-
terexample trace contains 43 steps (passing through 82
states) and complete values for various complex data
structures used by the kernel. Reading this counterex-
ample is not a trivial exercise.

Figure 24 shows the basic structure of the code con-
taining the error. For this error, the actual conditions
in the guards are irrelevant: the error can occur even
if various conditions are mutually exclusive, so long as
the condition at line 1927 is not invariably false. Fig-
ure 25 shows the explanation for the error produced by
explain.

The µC/OS locking protocol requires that the func-
tion OS EXIT CRITICAL should never be called twice with-
out an intervening OS ENTER CRITICAL call. The code
guarded by the conditional on line 1927 (and thus not
executed in the successful execution) makes a call to
OS EXIT CRITICAL and sets a value to 1. The explana-
tion indicates that the error in the counterexample can
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1925 OS ENTER CRITICAL();
...
1927 if (...) {
...
1929 OS EXIT CRITICAL();
...
1931 (*err) = 1;

/* missing return here! */
1932 }
...
1934 if (...) {
...
1938 OS EXIT CRITICAL();
...
1941 } else {
...
1943 if (...) {
...
1945 OS EXIT CRITICAL();
...
1948 } else {
...
1956 OS EXIT CRITICAL();
...
1981 return;

Fig. 24. Code structure for µC/OS-II error

Guard changed: (...) && \guard#1 (\guard#2) was TRUE
line 1927 function c::OSSemPend

Value changed: LOCK#9 from 0 to 1
Value changed: error#3 from 1 to 0

Fig. 25. Explanation for µC/OS-II error

be avoided if the guard on line 1927 is falsified. This
change in control flow results in a change in the vari-
able LOCK (by removing the call to OS EXIT CRITICAL)
and the variable error, which is set by the code in the
branch. ∆-slicing removes the change in error.

The source code for this branch should contain a re-
turn statement, forcing an exit from the function OS-
SemPend (the return should appear between the assign-
ment at line 1931 and the end of the block at line 1932);
it does not. The missing return allows execution to pro-
ceed to a condition on line 1934. Both the if and else
branches of this conditional eventually force a call to
OS EXIT CRITICAL, violating the locking protocol when-
ever the guard at line 1927 is satisfied. explain has cor-
rectly localized the error as far as is possible. The prob-
lem is a code omission, which prevents the explanation
from pinpointing the precise line of the error (no change
between executions can occur in missing source code,
obviously), but the explanation has narrowed the fault
down to the four lines of code guarded by line 1927.

CBMC produces a counterexample for µC/OS-II in
44 seconds, and explain generates an explanation in 62
seconds. ∆-slicing requires an additional 59 seconds, but
is obviously not required in this case. The SAT instance
for producing a counterexample consists of 235,263 vari-
ables and 566,940 clauses. The PBS instance for expla-
nation consists of 236,013 variables and 568,989 clauses,
with 69 variables appearing in the pseudo-Boolean con-
straint.

6.3 Evaluation of Fault Localization

Renieris and Reiss [52] propose a scoring function for
evaluating error localization techniques based on pro-
gram dependency graphs (PDGs) [35]. A PDG is a graph
of the structure of a program, with nodes (source code
lines in this case) connected by edges based on data and
control dependencies. For evaluation purposes, they as-
sume that a correct version of a program is available. A
node in the PDG is a faulty node if it is different than
in the correct version. The score assigned to an error re-
port (which is a set of nodes) is a number in the range
0 - 1, where higher scores are better. Scores approach-
ing 1 are assigned to reports that contain only faulty
nodes. Scores of 0 are assigned to reports that either in-
clude every node (and thus are useless for localization
purposes) or only contain nodes that are very far from
faulty nodes in the PDG. Consider a breadth-first search
of the PDG starting from the set of nodes in the error
report R. Call R a layer, BFS0. We then define BFSn+1

as a set containing BFSn and all nodes reachable in one
directed step in the PDG from BFSn. Let BFS∗ be the
smallest layer BFSn containing at least one faulty node.
The score for R is 1 − |BFS∗||PDG| . This reflects how much
of a program an ideal user (who recognizes faulty lines
on sight) could avoid reading if performing a breadth-
first search of the PDG beginning from the error report.
This scoring method has been sufficiently accepted in
the fault localization community to be used by Cleve
and Zeller in evaluating their latest improvements to the
delta-debugging technique [22].

Renieris and Reiss report fault localization results
for the entire Siemens suite [52]. Their fault localization
technique requires only a set of test cases (and a test
oracle) for the program in question. The Siemens suite
provides test cases and a correct version of the program
for comparison. To apply the explain tool a specifi-
cation must be provided for the model checker; unfor-
tunately, most of the Siemens suite programs have not
been specified in a suitable manner for model checking.
It would be possible to hard-code values for test cases as
very specific assertions, but this obviously does not re-
flect useful practice — “successful” runs produced might
be erroneous runs not present in the test suite. Most of
the Siemens programs are difficult to specify using as-
sertions. The TCAS component, however, is suitable for
model checking with almost no modification.

Table 1 shows scores for error reports generated by
explain, JPF, and the approach of Renieris and Reiss.
The score for the CBMC counterexample is given as a
baseline. CodeSurfer [8] generated the PDGs and code
provided by Manos Renieris computed the scores for the
error reports.

The first two columns under the “explain” head-
ing show scores given to reports provided by explain
without using added assumptions, before and after ∆-
slicing. For versions #1, #11, #31, and #41, the orig-



Alex Groce et al.: Error Explanation with Distance Metrics 17

explain assume JPF R & R CBMC

Var. exp slice time assm slice time JPF time n-c n-s CBMC time

#1 0.51 0.00 4 0.90 0.91 4 0.87 1,521 0.00 0.58 0.41 1
#11 0.36 0.00 5 0.88 0.93 7 0.93 5,673 0.13 0.13 0.51 1
#31 0.76 0.00 4 0.89 0.93 7 FAIL - 0.00 0.00 0.46 1
#40 0.75 0.88 6 - - - 0.87 30,482 0.83 0.77 0.35 1
#41 0.68 0.00 8 0.84 0.88 5 0.30 34 0.58 0.92 0.38 1

Average 0.61 0.18 5.4 0.88 0.91 5.8 0.59 7,542 0.31 0.48 0.42 1

µC/OS-II 0.99 0.99 62 - - - N/A N/A N/A N/A 0.97 44
µC/OS-II* 0.81 0.81 62 - - - N/A N/A N/A N/A 0.00 44

Table 1. Scores for localization techniques. Explanation execution times in seconds. Best results in boldface. FAIL indicates memory
exhaustion (> 768MB used). * indicates alternative scoring method.

inal explanation includes a faulty node as a result of
an input change; however, the faulty node is only “ac-
cidentally” present in the report, and is removed by
slicing. This is not a failure of the slicing algorithm,
but a sign that the explanation is poor: the changes re-
quired to avoid the error do not include a faulty node,
but, because the TCAS code includes many dependen-
cies on the inputs, a change in a fault location happens
to arise from the input change. Because relevance in
∆-slicing is defined with respect to a given execution
(i.e., explanation), slicing a bad explanation may pro-
duce a very small and clearly useless result, as in these
cases. These results suggest that ∆-slicing can be used
to detect very poor explanations: if nothing “interest-
ing” (possibly faulty) remains after slicing, the original
explanation is almost certainly reflecting behavior that
we do not want to compare to the counterexample, such
as an in the implication-antecedent case. The columns
under the “assume” heading show explain results after
adding appropriate assumptions, if needed.

The next group of scores and times (under the “JPF”
heading) show the results of applying JPF’s error expla-
nation tools [31] to the TCAS example. Because JPF
does not produce a single report in the same fashion as
explain, a combination of results from the various anal-
yses produced by JPF, specifically only(pos)∪only(neg)∪
(all(neg)\all(pos)) ∪ (all(pos)\all(neg)) for transitions
and transforms, was used to evaluate the fault local-
ization. The details of this computation are somewhat
involved, but at a high level this report is based on a
sample of successful and failed executions of the pro-
gram, and contains: (1) nodes appearing in either only
successful or only failing runs and (2) those nodes ap-
pearing in either all successful but not all failed or all
failed but not all successful runs. In order to produce
any results (or even find a counterexample) with JPF
it was necessary to constrain input values to either con-
stants or very small ranges based on a counterexample
produced by CBMC. Comparison with the JPF scores is
therefore of somewhat dubious value.

The columns under the “R & R” heading show aver-
age scores for two of the localization methods described
by Renieris and Reiss [52]. The scores for their methods

vary depending on which failing test case is used as a ba-
sis for computing the localization. For the most part, the
difference between the minimum, maximum, and aver-
age scores for each variation were small (less than 0.04),
except for variation #11, with a maximum score of 0.95
and a minimum of 0.00, producing a low average. The
many low scores produced by these methods probably
indicate collisions: cases in which the spectra used are
too coarse to distinguish between some failing run and
some successful run [52]. Run-times are not reported for
these methods, as they are (roughly) equivalent to the
time needed to run the various test cases, and there-
fore not suitable for comparison to the model checking
approaches.

The last two columns provide a baseline: scores and
times for the counterexamples generated by the CBMC
model checker.

After introducing assumptions and slicing, 0.88 was
the lowest score for an explain report. Ignoring pre-
assumption accidental inclusions of faults, ∆-slicing al-
ways resulted in improved scores. The best average re-
sults are those for the explain approach after adding
assumptions and slicing.

The µC/OS-II explanation receives a score of 0.99
(∆-slicing does not change the score in this case). Some-
what surprisingly, the CBMC counterexample itself re-
ceives a score of 0.97: it is very short in comparison to
the complete source code, and (naturally) passes through
the faulty node. Any fault-containing and succinct re-
port will receive a good evaluation for a sufficiently large
program. Another useful way to view the results in the
µC/OS-II case is that the explanation points directly to
the error and contains four lines of results for a user to
read. The counterexample also includes the error, but
contains over 450 lines of text for a user to understand.
Even after removing over 200 lines of program state in-
formation, the counterexample contains over 220 lines.
Reading from the end of counterexample, 30 lines (from
state 82 to state 65) must be read before encountering
the faulty node. It is presumably far less likely that the
user will grasp the significance of this branch when it
is not presented in isolation. To remedy the difficulty in
distinguishing report quality for large programs, a mod-
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Value changed: Input Other Capability 1#0 from 2 to 1
Value changed: Other Capability#1 from 2 to 1

line 217 function c::main
Value changed: tcas equipped 1#1 from FALSE to TRUE

line 136 function c::alt sep test
Value changed: ASTEn#2 from TRUE to FALSE
Value changed: PrB#1 from TRUE to FALSE

line 230 function c::main

Fig. 26. One-step slicing report for TCAS variation #1

ified formula suggested by Manos Renieris uses the size
of the counterexample as a baseline in the formula, in
place of |PDG|: 1 − |BFS∗||CE| . Using this formula (results
marked with a * in Table 1), the counterexample itself
receives a score of 0.0013, and the µC/OS-II explanation
is given a score of 0.81 (a perfect explanation would re-
ceive a score of 0.95, as it must contain at least one node:
even the best explanation cannot reduce the user’s re-
quired reading below 5% of the original counterexample
nodes).

6.4 Evaluation of One-Step Slicing

Table 2 shows the poor results obtained by applying
one-step slicing (Section 5.1) to the case studies. Exe-
cution times are on average slightly over 4 times greater
for the TCAS results (and > 3.5 times longer for the
µC/OS-II example, which includes lengthy parsing and
processing times). More importantly, the explanations
produced are of much lower quality. Without assump-
tions, the average quality drops below that of the raw
counterexamples. With assumptions, the explanations
are only slightly better than the counterexamples, on
average. Averaging the best results overall gives a score
of 0.55, while for the two-phase algorithm, the average
is a respectable 0.91.

The problems with one-step slicing arise in part from
the ability to avoid an error by changing only an input
value and a very small number of intermediate values.
The SSA form allows most of the computational changes
produced by such an alteration to (correctly) be sliced
away, but computing the distance metric over this tiny
slice is meaningless, given that the original executions
were radically different. Consider, for example, the ex-
planation produced for the TCAS variation #1 by one-
step slicing (Figure 26).

The code shown in Figure 27 is used to determine if
a Resolution Advisory is computed by TCAS: the prop-
erties for TCAS are predicated on the assumption that
ASTEn is set to true (indicating a resolution has been
computed). The implication in the assertion (P1 BCond
⇒ !PrB) is always satisfied if no advisory is computed,
because this will force PrB to be false (see Figure 20).
The change in this explanation results in the if branch
13 In principle, a report could receive a negative score if it did

not contain a faulty node; the counterexample will always receive
a score of 0.00, as it is the same size as itself and must contain a
faulty node.

Bool enabled, tcas equipped, intent not known;
Bool need upward RA, need downward RA;
int alt sep;
ASTBeg = 1;
enabled = High Confidence && (Own Tracked Alt Rate <= OLEV) &&

(Cur Vertical Sep > MAXALTDIFF);
tcas equipped = Other Capability == TCAS TA;
intent not known = Two of Three Reports Valid &&

Other RAC == NO INTENT;
alt sep = UNRESOLVED;
if (enabled && ((tcas equipped && intent not known) ||

!tcas equipped))
{

ASTEn = 1;

Fig. 27. Code for determining if RA is computed

in this code not being taken. Although this causes a large
change in the program values, the slicing algorithm cor-
rectly notes that the only value crucial for the property
change is the alteration to the value of ASTEn used in
computing PrB.

Similar issues result in poor explanations for the other
TCAS examples. It might well be possible to generate
good explanations with one-step slicing in its current
form, but the need to introduce a large number of user-
produced assumptions makes the technique of very lim-
ited value, given the better performance of two-phase
slicing. In practice, it appears that computing distances
over complete executions is simply better than optimiz-
ing the ∆-slices, in the absence of some fundamental
reworking of one-step slicing.

7 Conclusions and Future Work

No single “best” approach for error explanation can be
formally defined, as the problem is inherently to some
extent psychological. David Lewis’ approach to causal-
ity is both intuitively appealing and readily translated
into mathematical terms, and therefore offers a practi-
cal means for deriving concise explanations of program
errors. A distance metric informed by Lewis’ approach
makes it possible to generate provably-most-similar suc-
cessful executions by translating metric constraints into
pseudo-Boolean optimality problems. Experimental re-
sults indicate that such executions are quite useful for
localization and explanation.

There are a number of interesting avenues for future
research. An in-depth look at interactive explanation in
practice and further empirical evaluation is certainly in
order. It might be fruitful to use static slicing to improve
the distance metric, as suggested in Section 5.1.3. Com-
bining the SSA form based metric with predicate ab-
straction appears likely to result in better explanations
than either the current CBMC or MAGIC approaches
[15].
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explain assume CBMC

Var. exp time assm time CBMC time

#1 0.00 26 0.33 26 0.41 1
#11 0.46 18 0.46 16 0.51 1
#31 0.00 31 0.81 29 0.46 1
#40 0.84 15 - - 0.35 1
#41 0.00 27 0.33 26 0.38 1

Average 0.26 23.4 0.48 24.3 0.42 1

µC/OS-II 0.00 223 - - 0.97 44
µC/OS-II* 0.00 223 - - 0.00 44

Table 2. Scores with one-step slicing

itra Giannakopoulou, and Flavio Lerda for their valuable
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Learning assumptions for compositional verification. In
Tools and Algorithms for the Construction and Analysis
of Systems, pages 331–346, Warsaw, Poland, April 2003.

24. A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze.
Using symbolic execution for verifying safety-critical
systems. In European Software Engineering Confer-
ence/Foundations of Software Engineering, pages 142–
151, Vienna, Austria, September 2001.

25. N. Dodoo, A. Donovan, L. Lin, and M. Ernst.
Selecting predicates for implications in program
analysis. http://pag.lcs.mit.edu/~mernst/pubs/

invariants-implications.ps, 2000.
26. M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dy-

namically discovering likely program invariants to sup-
port program evolution. In International Conference on
Software Engineering, pages 213–224, Los Angeles, CA,
May 1999.



20 Alex Groce et al.: Error Explanation with Distance Metrics

27. D. Galles and J. Pearl. Axioms of causal relevance. Ar-
tificial Intelligence, 97(1-2):9–43, 1997.

28. A. Groce. Error explanation with distance metrics. In
Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 108–122, Barcelona, Spain, March-
April 2004.

29. A. Groce and D. Kroening. Making the most of
BMC counterexamples. In Workshop on Bounded Model
Checking, Boston, MA, July 2004. To appear.

30. A. Groce, D. Kroening, and F. Lerda. Understanding
counterexamples with explain. In Computer-Aided Ver-
ification, Boston, MA, July 2004. To appear.

31. A. Groce and W. Visser. What went wrong: Explaining
counterexamples. In SPIN Workshop on Model Checking
of Software, pages 121–135, Portland, OR, May 2003.

32. A. Gurfinkel, B. Devereux, and M. Chechik. Model
exploration with temporal logic query checking. In
Foundations of Software Engineering, pages 139–148,
Charleston, SC, November 2002.

33. M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between
spectra differences and regression faults. Software Test-
ing, Verification and Reliability, 10(3):171–194, 2000.

34. P. Horwich. Asymmetries in Time, pages 167–176. 1987.
35. S. Horwitz and T. Reps. The use of program dependence

graphs in software engineering. In International Con-
ference on Software Engineering, pages 392–411, Mel-
bourne, Australia, May 1992.

36. D. Hume. A Treatise of Human Nature. London, 1739.
37. D. Hume. An Enquiry Concerning Human Understand-

ing. London, 1748.
38. H. Jin, K. Ravi, and F. Somenzi. Fate and free will in

error traces. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 445–458, Grenoble,
France, April 2002.

39. J. Jones, M. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In International
Conference on Software Engineering, pages 467–477, Or-
lando, FL, May 2002.

40. J. Kim. Causes and counterfactuals. Journal of Philos-
ophy, 70:570–572, 1973.
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