(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Error Explanation with Distance Metrics

Alex Groce', Sagar Chaki', Daniel Kroening?, Ofer Strichman?

1 School of Computer Mellon

agroce,chaki@cs.cmu.edu

Science, Carnegie

2 ETH Zurich, Zurich, Switzerland, e-mail: kroening@cs . cmu.edu

3 Technion, Haifa, Israel, e-mail: ofers@ie.technion.ac.il

The date of receipt and acceptance will be inserted by the editor

Abstract. In the event that a system does not satisfy
a specification, a model checker will typically automati-
cally produce a counterexample trace that shows a par-
ticular instance of the undesirable behavior. Unfortu-
nately, the important steps that follow the discovery of
a counterexample are generally not automated. The user
must first decide if the counterexample shows genuinely
erroneous behavior or is an artifact of improper specifi-
cation or abstraction. In the event that the error is real,
there remains the difficult task of understanding the er-
ror well enough to isolate and modify the faulty aspects
of the system. This paper describes a (semi-)automated
approach for assisting users in understanding and isolat-
ing errors in ANSI C programs. The approach, derived
from David Lewis’ counterfactual approach to causal-
ity, is based on distance metrics for program executions.
Experimental results show that the power of the model
checking engine can be used to provide assistance in un-
derstanding errors and to isolate faulty portions of the
source code.

1 Introduction

In an ideal world, given a trace demonstrating that a sys-
tem violates a specification, a programmer or designer
would always be able in short order to identify and cor-
rect the faulty portion of the code, design, or specifica-
tion. In the real world, dealing with an error is often an
onerous task, even with a detailed failing run in hand.
Debugging is one of the most time consuming tasks in
the effort to improve software quality [9], and locating
an error is the most difficult aspect of the debugging
process [62]. This paper describes the application of a
technology traditionally used for discovering errors to
the problem of understanding and isolating errors.

University, Pittsburgh, PA 15213-3891, USA, e-mail:
P + spec.
/\ counterexample
counterexample A
CBMC explain 6,7 \\/ As
1 34
S |2 S5 closest successful execution

SAT solver PBS

finds a counterexample finds closest successful execution
as measured by distance metric

Fig. 1. Explaining an error using distance metrics

Error explanation describes approaches that aid users
in moving from a trace of a failure to an understanding
of the essence of the failure and, perhaps, to a correc-
tion for the problem. This is a psychological problem,
and it is unlikely that formal proof of the superiority of
any approach is possible. Fault localization is the more
specific task of identifying the faulty core of a system,
and is suitable for quantitative evaluation.

Model checking [19,49,21] tools explore the state-
space of a system to determine if it satisfies a specifica-
tion. When the system disagrees with the specification,
a counterexample trace [20] is produced. This paper ex-
plains how a model checker can provide error explanation
and fault localization information. For a program P, the
process (Figure 1) is as follows:

1. The bounded model checker CBMC uses loop un-
rolling and static single assignment to produce from
P and its specification a Boolean satisfiability (SAT)
problem, S. The satisfying assignments of S are finite
executions of P that violate the specification (coun-
terexamples).

2. CBMC uses a SAT solver to find a counterexample.

3. The explain tool produces a propositional formula,
S’. The satisfying assignments of S’ are executions
of P that do not violate the specification. explain

2 Alex Groce et al.: Error Explanation with Distance Metrics

extends S’ with constraints representing an optimiza-
tion problem: find a satisfying assignment that is as
similar as possible to the counterexample, as mea-
sured by a distance metric on executions of P.

4. explain uses the PBS [5] solver to find a successful
execution that is as close as possible to the coun-
terexample.

5. The differences (As) between the successful execu-
tion and the counterexample are computed.

6. A slicing step is applied to reduce the number of As
the user must examine. The As are then presented
to the user as explanation and localization.

If the explanation is unsatisfactory at this point, the
user may need to add assumptions and return to step
1 (see Section 6). The most important novel contribu-
tions of this work are the third, fourth, and sixth steps
of this process: previous approaches to error explana-
tion did not provide a means for producing a successful
execution guaranteed to be as similar as possible to a
counterexample, and lacked the notion of causal slicing.

There are many possible approaches to error expla-
nation. A basic notion shared by many researchers in this
area [10,31,65] and many philosophers [59] is that to ex-
plain something is to identify its causes. A second com-
mon intuition is that successful executions that closely
resemble a faulty run can shed considerable light on the
sources of the error (by an examination of the differences
in the successful and faulty runs) [31,52,66].

David Lewis [43] has proposed a theory of causality
that provides a justification for the second intuition if
we assume explanation is the analysis of causal relation-
ships. If explanation is, at heart, about causality, and, as
Lewis proposes, causality can be understood using a no-
tion of similarity (that is, a distance metric), it is logical
that successful executions resembling a counterexample
can be used to explain an error.

Following Hume [36,37,59] and others, Lewis holds
that a cause is something that makes a difference: if
the cause ¢ had not been, the effect e would not have
been. Lewis equates causality to an evaluation based on
distance metrics between possible worlds (counterfactual
dependence) [44]. This provides a philosophical link be-
tween causality and distance metrics for program execu-
tions.

For Lewis, an effect e is dependent on a cause c at a
world w iff at all worlds most similar to w in which —¢,
it is also the case that —e. Causality does not depend
on the impossibility of —¢ and e being simultaneously
true of any possible world, but on what happens when
we alter w as little as possible, other than to remove the
possible cause c. This seems reasonable: when consid-
ering the question “Was Larry slipping on the banana
peel causally dependent on Curly dropping it?” we do
not, intuitively, take into account worlds in which an-
other alteration (such as Moe dropping a banana peel)
is introduced. This intuition also holds for causality in

programs, despite the more restricted context of possible
causes: when determining if a variable’s value is a cause
for a failed assertion, we wish to consider whether chang-
ing that value results in satisfying the assertion without
considering that there may be some other (unrelated)
way to cause the assertion to fail. Distance metrics be-
tween possible worlds are problematic, and Lewis’ pro-
posed criteria for such metrics have been criticized on
various grounds [34,40].

Program executions are much more amenable to mea-
surement and predication than possible worlds. The prob-
lems introduced by the very notion of counterfactuality
are also avoided: a counterfactual is a scenario contrary
to what actually happened. Understanding causality by
considering events that are, by nature, only hypothet-
ical may make theoretical sense, but imposes certain
methodological difficulties. On the other hand, when ex-
plaining features of program executions, this aspect of
counterfactuality is usually meaningless: any execution
we wish to consider is just as real, and just as easily in-
vestigated, as any other. A counterexample is in no way
privileged by actuality.

If we accept Lewis’ underlying notions, but replace
possible worlds with program executions and events with
propositions about those executions, a practically appli-

cable definition of causal dependence emerges!:

Definition 1 (causal dependence). A predicate e is
causally dependent on a predicate ¢ in an execution a iff:

1. ¢ and e are both true for a (we abbreviate this as

c(a) Ae(a))

2. There exists an execution b such that: —¢(b) A—e(b)A
(Vb . (=c(d') Ae(b)) = (d(a,b) < d(a,b')))

where d is a distance metric for program executions (de-
fined in Section 3). In other words, e is causally depen-
dent on ¢ in an execution a iff executions in which the
removal of the cause also removes the effect are more like
a than executions in which the effect is present without
the cause.

Figure 2 shows two sets of executions. In each set, an
execution a, featuring both a potential cause ¢ and an
effect e, is shown. Also shown in each set is an execution
b, such that (1) neither the cause ¢ nor the effect e is
present in b and (2) that is as similar as possible to a.
That is, no execution which does not feature either ¢ or
e is closer to a than b. Execution &’ in each group is, in
like manner, as close as possible to a, and features the
effect e but not the potential cause c. If b is closer to a
than ¥’ is (that is, d(a,b) < d(a,b’), as in the first set of
executions), we say that e is causally dependent on ¢. If
b’ is at least as close to a as b (as in the second set of
executions), we say that e is not causally dependent on
c.

L Our causal dependence is actually Lewis’ counterfactual de-
pendence.

Alex Groce et al.: Error Explanation with Distance Metrics 3

cause
C
— (| |
d(a,b) d(a,b’)
effect effect
e e
b a b’

Causal dependence

cause
C

d(ab) dab)

effect effect
e e

b a b’
No causal dependence

Fig. 2. Causal dependence

This article describes a distance metric that allows
determination of causal dependencies and the implemen-
tation of that metric in a tool called explain [30] that
extends CBMC [1], a model checker for programs writ-
ten in ANSI C. The focus of the paper, however, is not
on computing causal dependence, which is only useful
after forming a hypothesis about a possible cause ¢, but
on helping a user find likely candidates for c?. Given a
good candidate for ¢, it is likely that code inspection
and experimentation are at least as useful as a check for
causal dependence.

The approach presented in this paper is automated
in that the generation of a closest successful execution
requires no intervention by the user; however, it may be
necessary in some cases for a user to add simple assump-
tions to improve the results produced by the tool. For
most of the instances seen in our case studies, this is a
result of the structure of the property, and can be fully
automated; more generally, however, it is not possible
to make use of a fully automated refinement, as an ex-
planation can only be evaluated by a human user: there
is no independent objective standard by which the tool
might determine if it has captured the right notion of the
incorrectness of an execution, in a sense useful for debug-
ging purposes. In particular, while the specification may
correctly capture the full notion of correct and incorrect
behavior of the program, it will not always establish suf-
ficient guidance to determine the correct executions that
are relevant to a particular failing execution. Assump-
tions are used, in a sense, to refine the distance metric
(instead of the specification) by removing some program
behaviors from consideration. The frequency of this need
is unknown: only one of our examples required the addi-
tion of a non-automatable assumption. See Section 6.1
for the details of this occasional need for additional guid-
ance.

2 Computing causal dependence using two bounded model
checking queries is described elsewhere [29].

The basic approach, presented in Section 4, is to ex-
plain an error by finding an answer to an apparently
different question about an execution a: “How much of
a must be changed in order for the error e not to occur?”
— explain answers this question by searching for an ex-
ecution, b, that is as similar as possible to a, except that
e is not true for b. Typically, a will be a counterexample
produced by model checking, and e will be the negation
of the specification. Section 4.2 provides a proof of a
link between the answer to this question about changes
to a and the definition of causal dependence. The guid-
ing principle in both cases is to explore the implications
of a change (in a cause or an effect) by altering as little
else as possible: differences will be relevant if irrelevant
differences are suppressed.

2 Related Work

This paper is an extension of the TACAS 2004 paper
[28] which originally presented error explanation based
on distance metrics: we introduce further case study and
experimental results and a new slicing method, shedding
light on the need for user-introduced assumptions. The
explain tool is described in a CAV 2004 paper [30].

Recent work by Chechik, Tan, and others has de-
scribed proof-like and evidence-based counterexamples
[17,60]. Automatically generating assumptions for veri-
fication [23] can also be seen as a kind of error expla-
nation: an assumption describes the conditions under
which a system avoids error. These approaches appear
to be unlikely to result in succinct explanations, as they
may encode the complexity of the transition system; one
measure of a useful explanation lies in how much it re-
duces the information the user must consider.

Error explanation facilities are now featured in Mi-
crosoft’s SLAM [11] model checker [10] and NASA’s Java
PathFinder 2 (JPF) [63] model checker [31]. Jin, Ravi,
and Somenzi proposed a game-like explanation (directed

4 Alex Groce et al.: Error Explanation with Distance Metrics

more at hardware than software systems) in which an
adversary tries to force the system into error [38]. Of
these, only JPF uses a (weak) notion of distance be-
tween traces, and it cannot solve for nearest successful
executions.

Sharygina and Peled [57] propose the notion of the
neighborhood of a counterexample and suggest that an
exploration of this region may be useful in understand-
ing an error. However, the exploration, while aided by
a testing tool, is essentially manual and offers no auto-
matic analysis.

Temporal queries [16] use a model checker to fill in
a hole in a temporal logic formula with the strongest
formula that holds for a model. Chan and others [16,32]
have proposed using these queries to provide feedback in
the event that a property does not hold on a model.

Simmons and Pecheur noted in 2000 that explana-
tion of counterexamples was important for incorporating
formal verification into the design cycle for autonomous
systems, and suggested the use of truth maintenance sys-
tems (TMS) [48] for explanation [58].

Analyses of causality from the field of artificial intel-
ligence appear to rely on causal theories or more precise
logical models of relationships between components than
are available in model checking of software systems [27,
45,51], but may be applicable in some cases. The JADE
system for diagnosing errors in Java programs makes use
of model-based techniques [46]. The program model is
extracted automatically, but requires a programmer to
answer queries to manually identify whether variables
have correct values at points that are candidates for di-
agnosis. Wotawa has discussed the relationship between
model-based debugging and program slicing [64].

Shapiro [56] introduced a technique for debugging
logic programs that relies on interaction with a user as
an oracle. Further developments based on this technique
have reduced the number of user queries (in part by use
of slicing) [41]. Related techniques for debugging of pro-
grams in functional languages, such as Haskell, rely on
similar models or queries and a semantics of the conse-
quences of computations [7].

Fault localization and visualization techniques based
on testing, rather than verification, differ from the veri-
fication or model-based approaches in that they rely on
(and exploit) the availability of a good test suite. When
an error discovered by a model checker is not covered
by a test suite, these techniques may be of little use.
Dodoo, Donovan, Lin and Ernst [25] use the Daikon in-
variant detector [26] to discover differences in invariants
between passing and failing test cases, but propose no
means to restrict the cases to similar executions relevant
for analysis or to generate them from a counterexample.
The JPF implementation of error explanation also com-
putes differences in invariants between sets of successful
executions and counterexamples using Daikon. Program
spectra [53,33] and profiles provide the basis for a num-
ber of testing based approaches, which rely on the pres-

ence of anomalies in summaries of test executions. The
Tarantula tool [39] uses a visualization technique to il-
luminate (likely) faults statements in programs, as does
xSlice [4].

Our work was partly inspired by the success of An-
dreas Zeller’s delta debugging technique [66], which ex-
trapolates between failing and successful test cases to
find similar executions. The original delta-debugging work
applied to test inputs only, but was later extended to
minimize differences in thread interleavings [18]. Delta-
debugging for deriving cause-effect chains [65] takes state
variables into account, but requires user choice of instru-
mentation points and does not provide true minimality
or always preserve validity of execution traces. The Ask-
Igor project [2] makes cause-effect chain debugging avail-
able via the web.

Renieris and Reiss [52] describe an approach that is
quite similar in spirit to the one described here, with
the advantages and limitations of a testing rather than
model checking basis. They use a distance metric to se-
lect a successful test run from among a given set rather
than, as in this paper, to automatically generate a suc-
cessful run that resembles a given failing run as much as
is possible. Experimental results show that this makes
their fault localization highly dependent on test case
quality. Section 6.3 makes use of a quantitative method
for evaluating fault localization approaches proposed by
Renieris and Reiss.

The “slicing” technique presented in Section 5 should
be understood in the context of both work on program
slicing [61,67,4] and some work on counterexample min-
imization [50,29]. The technique presented here can be
distinguished from these approaches in that it is not a
true slice, but the result of a causal analysis that can
only be performed between two executions which differ
on a predicate (in this application, the presence of an
error).

Distance metrics can also be used to explain abstract
counterexamples [15], in which As (deltas) are presented
in terms of changes to predicates on program variables,
rather than in terms of concrete values. The methodol-
ogy presented in this paper is applied to the MAGIC [14]
model checker, and the resulting gains in the generality
of explanations are described. The distance metric used
differs from that presented in this paper in that it does
not rely on static single assignment. The resulting met-
ric is possibly more intuitive than the one described in
Section 3; however, the use of alignments sometimes re-
sults in serious performance problems and occasionally
produces less satisfactory explanations.

The explain tool has been extended to automati-
cally generate and test hypotheses about causal depen-
dence (as defined in Section 1), in order to provide some
of the automatic generalization supplied by abstract ex-
planation [29].

This paper presents a new distance metric for pro-
gram executions, and uses this metric to provide error

Alex Groce et al.: Error Explanation with Distance Metrics 5

explanations based on David Lewis’ counterfactual anal-
ysis of causality. While previous approaches have taken
into account the similarity of executions, our approach is
the first to automatically generate a successful execution
that is maximally similar to a counterexample. Solving
this optimization problem produces a set of differences
that is as succinct as possible. Our novel slicing algo-
rithm then makes use of the program semantics and the
fact that we are only interested in causal differences to
further reduce the amount of information that must be
understood by a user.

3 Distance Metrics for Program Executions

A distance metric [55] for program executions is a func-
tion d(a,b) (where a and b are executions of the same
program) that satisfies the following properties:

Nonnegative property: Ya . Vb . d(a,b) >0

Zero property: Ya . Vb . d(a,b) =0 a=10b
Symmetry: Ya . Vb . d(a,b) = d(b,a)

Triangle inequality: Ya . ¥b . Ve . d(a,b) + d(b,c) >
d(a,c)

Ll o

In order to compute distances between program exe-
cutions, we need a single, well-defined representation for
those executions.

3.1 Representing Program FExecutions

Bounded model checking (BMC) [13] also relies on a rep-
resentation for executions: in BMC, the model checking
problem is translated into a SAT formula whose satisfy-
ing assignments represent counterexamples of a certain
length.

CBMC [42] is a BMC tool for ANSI C programs.
Given an ANSI C program and a set of unwinding depths
U (the maximum number of times each loop may be ex-
ecuted), CBMC produces a set of constraints that en-
code all executions of the program in which loops have
finite unwindings. CBMC uses unwinding assertions to
notify the user if counterexamples with more loop ex-
ecutions are possible. The representation used is based
on static single assignment (SSA) form [6] and loop un-
rolling. CBMC and explain handle the full set of ANSI
C types, structures, and pointer operations including
pointer arithmetic. CBMC only checks safety properties,
although in principle BMC (and the explain approach)
can handle full LTL [12]3.

Given the example program minmax.c (Figure 3),
CBMC produces the constraints shown in Figure 4 (U
is not needed, as minmax.c is loop-free)*. The renamed

3 Explanation for LTL properties has been implemented for er-
ror explanation in MAGIC [15].
4 Qutput is slightly simplified for readability.

1 int main) {

2 int inputl, input2, input3; //input values
3 int least = inputl; //least#0

4 int most = inputl; //most#0

5 if (most < input2) //guard#1

6 most = input2; //most#1,2

7 if (most < input3) //guard#2

8 most = input3; //most#3,4

9 if (least > input2) //guard#3

10 most = input2; //most#5,6 (ERROR!)
11 if (least > input3) //guard#4

12 least = input3; //least#1,2

13 assert (least <= most); //specification
14 }

Fig. 3. minmax.c

variables describe unique assignment points: most#1 de-
notes the second possible assignment to most, least#2
denotes the third possible assignment to least, and so
forth. CBMC assigns uninitialized (#0) values nondeter-
ministically — thus inputl, input2, and input3 will
be unconstrained 32 bit integer values. The \guard vari-
ables encode the control flow of the program (\guard#1
is the value of the conditional on line 5, etc.), and are
used when presenting the counterexample to the user
(and in the distance metric). Control flow is handled by
using ¢ functions, as usual in SSA form: the constraint
{-10}, for instance, assigns most#2 to either most#1 or
most#0, depending on the conditional (\guard#1) for the
assignment to most#1 (the syntax is that of the C con-
ditional expression). Thus most#2 is the value assigned
to most at the point before the execution of line 7 of
minmax.c. The property/specification is represented by
the claim, {1}, which appears below the line, indicating
that the conjunction of these constraints should imply
the truth of the claim(s). A solution to the set of con-
straints {-1}-{-14} is an execution of minmax.c. If the
solution satisfies the claim, {1} (least#2 <= most#6),
it is a successful execution of minmax.c; if it satisfies the
negation of the claim, —{1} (least#2 > most#6), it is a
counterexample.

CBMC generates CNF clauses representing the con-
junction of ({-1}A{-2}A... {-14}) with the negation of
the claim (—{1}). CBMC calls zChaff [47], which pro-
duces a satisfying assignment in less than a second. The
satisfying assignment encodes an execution of minmax.c
in which the assertion is violated (Figure 5).

Figure 6 shows the counterexample from Figure 5 in
terms of the SSA form assignments (the internal repre-
sentation used by CBMC for an execution).

In the counterexample, the three inputs have values
of 1, 0, and 1, respectively. The initial values of least
and most (least#0 and most#0) are both 1, as a result
of the assignments at lines 3 and 4. Execution then pro-
ceeds through the various comparisons: at line 5, most#0
is compared to input2#0 (this is \guard#1). The guard
is not satisfied, and so line 6 is not executed. Lines 8 and
12 are also not executed because the conditions of the
if statements (\guard#2 and \guard#4 respectively) are
not satisfied. The only conditional that is satisfied is at

6 Alex Groce et al.: Error Explanation with Distance Metrics

{-14} least#0 == inputl#0

{-13} most#0 == inputl#0

{-12} \guard#1l == (most#0 < input2#0)

{-11} most#1 == input2#0

{-10} most#2 == (\guard#l ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)

{-8} most#3 == input3#0

{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)

{-5} most#5 == input2#0

{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)

{-2} 1least#1 == input3#0

{-1} 1least#2 == (\guard#4 7 least#l : least#0)

|
{1} least#2 <= most#6

Fig. 4. Constraints generated for minmax.c

Initial State

State 1 line 2 function c::main

(input1#0)
inputl =1
State 2 line 2 function c::main
(input2#0)
input2 = 0
State 3 line 2 function c::main
(input3#0)
input3 = 1
State 4 line 3 function c::main
(least#0)
least =1
State 5 line 4 function c::main
(most#0)
most = 1
State 12 line 10 function c::main
(most#6)

most = 0
Failed assertion: assertion line 13 function c::main

Fig. 5. Counterexample for minmax.c

inputl#0 =1 most#3 = 1
input2#0 = 0 most#4 = 1
input3#0 = 1 \guard#3 = TRUE
least#0 =1 most#5 = 0
most#0 = 0 most#6 = 0
\guard#1 = FALSE \guard#4 = FALSE
most#1 = 0 least#1 =1
most#2 = 1 least#2 = 1
\guard#2 = FALSE

Fig. 6. Counterexample values for minmax.ce

line 9, where least#0 > input2#0. Line 10 is executed,
assigning input?2 to most rather than least.

In this simple case, understanding the error in the
code is not difficult (especially as the comments to the
code indicate the location of the error). Line 10 should
be an assignment to least rather than to most. A good
explanation for this faulty program should isolate the
error to line 10.

For given loop bounds (irrelevant in this case), all
executions of a program can be represented as sets of as-
signments to the variables appearing in the constraints.
Moreover, all executions (for fixed U) are represented as
assignments to the same variables. Different flow of con-

trol will simply result in differing \guard values (and ¢
function) assignments.

3.2 The Distance Metric d

The distance metric d will be defined only between two
executions of the same program with the same maxi-
mum bound on loop unwindings®. This guarantees that
any two executions will be represented by constraints on
the same variables. The distance, d(a, b), is equal to the
number of variables to which a and b assign different
values. Formally:

Definition 2 (distance, d(a,b)). Let a and b be ex-
ecutions of a program P, represented as sets of assign-
ments, a = {vg = vald,vy = val§,...,v, = val®} and
b= {vo =vall,vy =val},...,v —valb}

)= A0

where

L [0if val? =vall
Al = {1 if wal¢ # val®

Here vg, v1, vs, etc. do not indicate the first, second,
third, and so forth assignments in a considered as an exe-
cution trace, but uniquely named SSA form assignments.
The pairing indicates that the value for each assignment
in execution a is compared to the assignment with the
same unique name in execution b. SSA form guaran-
tees that for the same loop unwindings, there will be
a matching assignment in b for each assignment in a. In
the running example {vg,v1,v2,vs,...} are {input1#0,
input2#0, input3#0, least#0, most#0, ...}, execution a
could be taken to be the counterexample (Figures 5 and
6), and execution b might be the most similar successful
execution (see Figures 8 and 9).

This definition is equivalent to the Levenshtein dis-
tance [55] if we consider executions as strings where the
alphabet elements are assignments and substitution is
the only allowed operation®. The properties of inequal-
ity guarantee that d satisfies the four metric properties.

The metric d differs from the metrics often used in
sequence comparison in that it does not make use of a
notion of alignment. The SSA form based representation
encodes an execution as a series of assignments. In con-
trast, the MAGIC implementation of error explanation
represents an execution as a series of states, including
a program counter to represent control flow. Although
viewing executions as sequences of states is a natural
result of the usual Kripke structure approach to verifi-
cation, the need to compute an alignment and compare

5 Counterexamples can be extended to allow for more unwind-
ings in the explanation.

6 A Levenshtein distance is one based on a composition of
atomic operations by which one sequence or string may be trans-
formed into another.

Alex Groce et al.: Error Explanation with Distance Metrics 7

all data elements when two states are aligned can impose
a serious overhead on explanation [15].

In the CBMC/explain representation, however, the
issue of alignments does not arise. Executions a and
b will both be represented as assignments to inputl,
input2, input3, \guard#0-\guard#4, least#0-least#2,
and most#0-most#6. The distance between the execu-
tions, again, is simply a count of the assignments for
which they do not agree. This does result in certain
counter-intuitive behavior: for instance, although nei-
ther execution a nor execution b executes the code on
line 12 (\guard#4 is FALSE in both cases), the values of
least#1 will be compared. Therefore, if the values for
input3 differ, this will be counted twice: once as a differ-
ence in input3, and once as a difference in least#1, de-
spite the second value not being used in either execution.
In general, a metric based on SSA form unwindings may
be heavily influenced by results from code that is not ex-
ecuted, in one or both of the executions being compared.
Any differences in such code can eventually be traced to
differences in input values, but the weighting of differ-
ences may not match user intuitions. It is not that infor-
mation is lost in the SSA form encoding: it is, as shown in
the counterexamples, possible to determine the control
flow of an execution from the \guard or ¢ function val-
ues; however, to take this into account complicates the
metric definition and introduces a potentially expensive
degree of complexity into the optimization problem of
finding a maximally similar execution’.

A state and alignment based metric avoids this pecu-
liarity, at a potentially high computational cost. Exper-
imental results [15] show that in some cases the “coun-
terintuitive” SSA form based metric may produce better
explanations — perhaps because it takes all potential
paths into account.

In summary, the representation for executions pre-
sented here has the advantage of combining precision
and relative simplicity, and results in a very clean (and
easy to compute) distance metric. The pitfalls involved
in trying to align executions with different control flow
for purposes of comparison are completely avoided by
the use of SSA form. Obviously, the details of the SSA
form encoding may need to be hidden from non-expert
users (the CBMC GUI provides this service) — a good
presentation of a trace may hide information that is use-
ful at the level of representation. Any gains in the direct
presentability of the representation itself (such as remov-
ing values for code that is not executed) are likely to be
purchased with a loss of simplicity in the distance metric
d, as seen in the metric used by MAGIC.

7 Bach A, as shown below, would potentially introduce a case
split based on whether the code was executed in one, both, or
neither of the executions being compared.

3.8 Choosing