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Abstract. Model checking of software programs has two
goals: one is the verification of correct software. The
other is the discovery of errors in faulty software. Some
techniques for dealing with the most crucial problem
in model checking, the state space explosion problem,
concentrate on the first of these goals. In this paper we
present an array of heuristic model checking techniques
for combating the state space explosion when searching
for errors. Previous work on this topic has mostly fo-
cused on property-specific heuristics closely related to
particular kinds of errors. We present structural heuris-
tics that attempt to explore the structure (branching
structure, thread inter-dependency structure, abstrac-
tion structure) of a program in a manner intended to
expose errors efficiently. Experimental results show the
utility of this class of heuristics. In contrast to these very
general heuristics, we also present very lightweight tech-
niques for introducing program-specific heuristic guid-
ance.

1 Introduction

There has been recent interest in model checking soft-
ware written in real programming languages [3,11,24,34,
35,52]. The primary challenge in software model check-
ing, as in all model checking, is the state space explosion
problem: exploring all of the behaviors of a system is,
to say the least, difficult when the number of behaviors
is exponential in the possible inputs, contents of data
structures, or number of threads in a program. A vast
array of techniques have been applied to this problem [9],
first in hardware verification, and now, increasingly, in
software verification [3,11,31]. Many of these techniques
require considerable non-automatic work by experts or
do not apply as well to software as to hardware. Most

of these techniques are aimed at reducing the size of the
total state space that must be explored, or represent-
ing it symbolically so as to reduce the memory and time
needed for the exploration.

Abstraction techniques (and specifically predicate ab-
straction [26]) have proven to be useful for software model
checking [3,31]. However, applying such abstractions is
expensive if the number of predicates required becomes
large and determining whether an abstract behavior is
also possible in the concrete program can be undecid-
able. These techniques have therefore been used mostly
to show properties dependent on the control-flow of a
program rather than to analyze systems where the prop-
erties depend on data—e.g. show reachability of a state-
ment or that a specific sequence of API calls are possible,
rather than show that a real-time scheduler will always
allocate each thread its requested time.

An alternative approach is to concentrate not on ver-
ifying the correctness of programs but on dealing with
the state space explosion when attempting to find er-
rors. Rather than reducing the overall size of the state
space, we can attempt to find a counterexample before
the state explosion exhausts memory. Therefore produc-
ing a counterexample can be seen as searching through
the state space of a system for a specific (error) behavior.
Rather than blindly searching through the state-space,
as is common for traditional model checking, we can then
focus on using heuristics to guide the search. Heuristic
model checking therefore aims at generating counterex-
amples by searching the bug-containing part of the state
space first. Obviously we do not know, in general, what
part of a program’s state space is going to contain an
error, or even if there is an error present.

A separate motivation for heuristic search in bug-
finding is that although one of the strongest advantages
of model checking is the generation of counterexamples
when verification fails, traditional depth-first search al-
gorithms tend to return very long counterexamples; heuris-
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tic search, when it succeeds, almost always produces
much more succinct counterexamples.

The use of heuristics in model checking has so far
mostly focused on using the property to be checked as a
measure for guiding the search [14,25,32,40,54]. Unfor-
tunately, unlike in more traditional optimization prob-
lems in which heuristics are more commonly used, it is
not always possible to know during model checking how
close one is to a property being violated. Measurements
of distance to assertion statements, possible uncaught
exceptions, or deadlocks require a concentration on a
particular error. In a large program with many possi-
ble errors, this results in either a search for each pos-
sible error or a heuristic that may be hopelessly con-
flicted (for example, if every thread contains an asser-
tion, the heuristic will be trying to move forward on
each thread). In this paper we propose also using the
structure of programs to develop heuristics to guide the
search. In particular we show how structural coverage
and thread-interdependence can be used as heuristics for
model checking. Furthermore, to illustrate that heuris-
tics can also be used during abstraction-based model
checking, we propose a heuristic that will reduce false
positive results (errors that are possible in the abstract
program, but not possible in the concrete), by always
first searching for errors in the portion of the state space
where no infeasible behaviors exist.

We believe one of the most interesting aspects of
heuristic model checking is to learn from previous analy-
ses which heuristic is best-suited to discovering an error
in a program. To illustrate the vision, we show how a
heuristic that favors the execution of a subset of threads
in a program can be calibrated by selecting threads that
formed part of race-violation (discovered during a pre-
vious model checking run)—the reasoning being that a
race violation can lead to something more severe (which
it did, since a deadlock was thus discovered).

Finally, we believe that the tester (or developer) us-
ing the model checker will in all likelihood know more
about the overall structure of the program and in which
parts there might be errors lurking than can be discov-
ered automatically. Therefore, it is important to allow for
user-defined heuristics. We propose an approach where
the user can define a new heuristic function, or take a
more light-weight approach and simply annotate the pro-
gram with statements that the model checker can use
during analysis to indicate which parts of the state space
are most interesting to explore.

The contributions of the paper are:

– A suggested combination of property-based, struc-
tural and user-defined heuristics.

– Description of a set of structural heuristics that ex-
ploit structural coverage, concurrency structures, and
structures induced by applying abstractions before
model checking.

– Experimental results for the new heuristics within
the context of error-detection with Java PathFinder
(JPF) [52].

The paper is organized as follows. Section 2 describes
heuristic model checking and presents the basic algo-
rithms involved. Section 3 presents the Java PathFinder
model checker and the implementation of heuristic search.
Structural heuristics are defined and described in detail
in Section 4, which also includes experimental results.
Section 5 presents user-guided heuristics and heuristic
annotations. The now considerable body of literature on
heuristic model checking is described in section 6. We
present our conclusions and consider future work in a
final section.

2 Heuristic Model Checking

In heuristic or directed model checking, a state space is
explored in an order dependent on an evaluation func-
tion for states. This function (the heuristic) is usually
intended to guide the model checker more quickly to
an error state. Any resulting counterexamples will of-
ten be shorter than ones produced by the depth-first
search based algorithms traditionally used in explicit-
state model checkers. Heuristic model checking is a grow-
ing field; we discuss the large body of related work in
Section 6.

2.1 Search Algorithms

A number of different search algorithms can be combined
with heuristics. All share a common structure: a fitness
f is computed for each state generated by the model
checker, and then the values for f are used to determine
which states are explored next. The searches all termi-
nate if a goal is reached (for our purposes, if a property
violation is detected). f ’s value will be derived from a
heuristic function h evaluating the state. Because many
of the heuristic functions we use take into account the
path by which a state was reached or other search-level
information, the primary distinction between f and h in
this paper is that f is used to introduce search-strategy
specific modifications to heuristics that are always com-
puted in the same fashion for any of these algorithms.

The simplest of heuristic search algorithms is a best-
first search, which uses the heuristic function h to com-
pute a fitness f in a greedy fashion (Figure 1).

The A∗ algorithm [29] is similar, except that like
Dijkstra’s shortest paths algorithm, it adds the length
of the path to S′ to f (f = h(S′) + path-length(S′)
rather than f = h(S′)). When the heuristic function h
is admissible, that is, when h(S′) is guaranteed to be less
than or equal to the length of the shortest path from S′

to a goal state, A∗ is guaranteed to find an optimal solu-
tion (for purposes of model checking, the shortest coun-
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priority queue Q = {initial state}
while (Q not empty)

S = state in Q with best f
remove S from Q
for each successor state S′ of S
if S′ not already visited

if S′ is the goal

terminate

f = h(S′)
store (S′, f) in Q

Fig. 1. Algorithm for best-first search.

queue Q = {initial state}
while (Q not empty)

while (Q not empty)

priority queue Q′ = ∅
remove S from Q
for each successor state S′ of S
if S′ not already visited

if S′ is the goal

terminate

f = h(S′)
store (S′, f) in Q′

remove all but k best elements from Q′

Q = Q′

Fig. 2. Algorithm for beam search.

terexample). A∗ is a compromise between the guaran-
teed optimality of breadth-first search and the efficiency
in returning a solution of best-first search.

Beam-search proceeds even more like a breadth-first
search, but uses the heuristic function to discard all but
the k best candidate states at each depth (Figure 2).
Beam-search, therefore, can only be used to discover
errors—termination of a beam search without discov-
ering an error does not imply correctness of the system.

The queue-limiting technique used in beam-search
may also be applied to a best-first or A∗ search by re-
moving the worst state from Q (without expanding its
children) whenever inserting S′ results in Q containing
more than k states. This, again, introduces an incom-
pleteness into the model checking run: termination with-
out reported errors does not indicate that no errors exist
in the state space. However, given that the advantage of
heuristic search is its ability to quickly discover fairly
short counterexamples, in practice queue-limiting is a
very effective bug-finding tactic.

The experimental results in Section 4 show the vary-
ing utility of the different search strategies. Because none
of the heuristics we examine are admissible, A∗ lacks a
theoretical optimality, and is generally less efficient than
best-first search. The heuristic value is sometimes much
larger than the path length, in which case A∗ behaves
much like a best-first search.

As far as we are aware, combining a best-first search
with limitations on the size of the queue for storing states

pending is not discussed or given a name in the litera-
ture of heuristic search. A best-first search with queue
limiting can find very deep solutions that might be dif-
ficult for a beam-search to reach unless the queue limit
k is very small. In practice, picking a k for either type
of search is done by a hand approximation of iterative
widening [50].

Introduction of queue-limiting to heuristic search for
model checking raises the possibility of using other in-
complete methods when the focus of model checking is
on discovery of errors rather than on verification. As
an example, partial order reduction techniques usually
require a cycle check that may be expensive or over-
conservative in the context of heuristic search [15]. How-
ever, once queue-limiting is considered, it is natural to
experiment with applying a partial order reduction with-
out a cycle check. The general approach remains one of
model checking rather than testing because storing of
states already visited is crucial to obtaining good results
in our experience, with one notable exception (see the
discussion in sections 4.1.2 and 4.2.1).

3 Java PathFinder

Java PathFinder (JPF) is an explicit state on-the-fly
model checker that takes compiled Java programs (i.e.
bytecode class-files) and analyzes all paths through the
program for deadlock, assertion violations and linear time
temporal logic (LTL) properties [52]. JPF is unique in
that it is built on a custom-made Java Virtual Machine
(JVM) and therefore does not require any translation to
an existing model checker’s input notation. The dSPIN
model checker [35] that extends SPIN [33] to handle
dynamic memory allocation and functions is the most
closely related system to the JPF model checker.

Java does not support nondeterminism, but in a model
checking context it is often important to analyze the be-
havior of a program in an aggressive environment where
all possible actions, in any order, must be considered.
For this reason, methods in a special Verify class allow
programs to express nondeterminism. For example, Ver-
ify.random(2) will nondeterministically return a value
in the range 0–2, inclusive, which the model checker can
then trap during execution and evaluate with all possible
values.

An important feature of the model checker is the flex-
ibility in choosing the granularity of a transition between
states during the analysis of the bytecode. Since the
model checker executes bytecode instructions, the most
fine-grained analysis supported is at the level of indi-
vidual bytecodes. Unfortunately, for large programs the
bytecode-level analysis does not scale well, and therefore
the default mode is to analyze the code on a line-by-line
basis. JPF also supports atomic constructs (denoted by
Verify.beginAtomic() and Verify.endAtomic() calls)
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that the model checker can trap to allow larger code frag-
ments to be grouped into a single transition.

The model checker consists of two basic components:
State Generator - This includes the JVM, information

about scheduling, and the state storage facilities re-
quired to keep track of what has been executed and
which states have been visited. The default explo-
ration in JPF is to do a depth-first generation of the
state space with an option to limit the search to a
maximum depth. By changing the scheduling infor-
mation, one can change the way the state space is
generated - by default a stack is used to record the
states to be expanded next, hence the default DFS
search.

Analysis Algorithms - This includes the algorithms for
checking for deadlocks, assertion violations and vio-
lation of LTL properties. These algorithms work by
instructing the state generation component to gen-
erate new states, backtrack from old states, and can
check on the state of the JVM by doing API calls
(e.g. to check when a deadlock has been reached).
The heuristics in JPF are implemented in the State

Generator component, since many of the heuristics re-
quire information from the JVM and a natural way to do
the implementation is to adapt the scheduling of which
state to explore next (e.g. in the trivial case, for a breath-
first search one changes the stack to a queue). Best-first
(also used for A∗) and beam-search are straightforward
implementations of the algorithms listed in Section 2.1,
using priority queues within the scheduler. The heuristic
search capabilities are currently limited to deadlock and
assertion violation checks—none of the heuristic search
algorithms are particularly suited to cycle detection, which
is an important part of checking LTL properties. In addi-
tion, the limited experimental data on improving cycles
in counterexamples for liveness properties is not encour-
aging [16].

Heuristic search in JPF also provides a number of
additional features, including:
– users can introduce their own heuristics (interfacing

with the JVM through a well-defined API to access
program variables etc.)

– the sum of two heuristics can be used
– the order of analysis of states with the same heuristic

value can be altered
– the number of elements in the priority queue can be

limited
– the search depth can be limited
– dynamic annotations in the source code can cause

the model checker to increase or decrease heuristic
values or even remove parts of the search space

4 Structural Heuristics

Heuristics can be used in symbolic model checking to
reduce the bottlenecks of image computation, without

necessarily attempting to zero in on errors; Bloem, Ravi
and Somenzi thus draw a distinction between property-
dependent and system-dependent heuristics [5]. They note
that only property-dependent heuristics can be applied
to explicit-state model checking, in the sense that explor-
ing the state space in a different order will not remove
bottlenecks in the event that the entire space must be ex-
plored. We suggested a further classification of property-
dependent heuristics into property-specific heuristics that
rely on features of a particular property (queue sizes or
blocking statements for deadlock, distance in control or
data flow to false valuations for assertions) and struc-
tural heuristics that attempt to explore the structure of
a program in a way conducive to finding more general
errors [28]. The heuristic used in FLAVERS would be an
example of the latter [10].

Previous work on model checking using heuristics
largely concentrates on property-specific heuristics [14,
25,32,40,54]. Common heuristics include measuring the
lengths of queues, giving preference to blocking opera-
tions [14,40], and using a Hamming distance to a goal
state [16,54]. Heuristics tailored to match a property or
derived statically from a combination of the source code
and the property (such as distance to assertions or a
search for overflow of a particular buffer) are certainly
useful. However, when a model checker is applied to a
large concurrent program with many assertions and the
potential for deadlocks and uncaught exceptions, it is
unclear how to pick a property-specific heuristic. Rather
than looking for a specific error, it may be best to try
to explore the structure of the program systematically,
looking for any kind of error. As we note below, this is
the motivation behind coverage metrics in testing.

We consider the following heuristics to be structural
heuristics because they explore some structural aspect of
the program (branching, thread-interdependence, etc.)
independent of any specific property.

4.1 Code Coverage Heuristics

The code coverage achieved during testing is a measure
of the adequacy of the testing—or, in other words, of
the quality of the set of test cases. Although it does not
directly address the correctness of the code under test,
having achieved high code coverage during testing with-
out discovering any errors does inspire more confidence
that the code is correct. A case in point is the avionics
industry where software can only be certified for flight
if 100% structural coverage, specifically modified con-
dition/decision coverage (MC/DC), is achieved during
testing [47].

In the testing literature there are a vast number of
structural code coverage criteria, from simply covering
all statements in the program to covering all possible
execution paths. Here we will focus on branch cover-
age, which requires that at every branching point in the
program all possible branches be taken at least once.
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In many industries 100% branch coverage is considered
a minimum requirement for test adequacy [4]. On the
face of it, one might wonder why coverage during model
checking is of any value, since model checkers typically
cover all of the state space of the system under analy-
sis, hence by definition covering all the structure of the
code. However, when model checking Java programs the
programs are often infinite-state, or have a very large
finite state space, which the model checker cannot cover
due to resource limitations (typically memory). Calcu-
lating coverage therefore serves the same purpose as dur-
ing testing: it shows the adequacy of the (partial) model
checking run.

As with test coverage tools, calculating branch cov-
erage during model checking only requires us to keep
track of whether at each structural branching point all
options were taken. Since JPF executes bytecode state-
ments, this means simple extensions need to be intro-
duced whenever IF* (related to any if-statement in the
code) and TABLESWITCH (related to case-statements) are
executed to keep track of the choices made. However,
unlike with simple branch coverage, we also keep track
of how many times each branch was taken, rather than
just whether it was taken or not, and consider coverage
separately for each thread created during the execution
of the program. The first benefit of this feature is that
the model checker can now produce detailed coverage
information when it exhausts memory without finding a
counterexample or searching the entire state space. Ad-
ditionally, if coverage metrics are a useful measurement
of a set of test cases, it seems plausible that using cov-
erage as a heuristic to prioritize the exploration of the
state space might be useful.

One approach to using coverage metrics in a heuris-
tic would be to simply use the percentage of branches
covered (on a per-thread or global basis) as the heuristic
value (we refer to this as the %-coverage heuristic). How-
ever, this approach does not work well in practice (see
Section 4.1.2). Instead, a slightly more complex heuristic
proves far more useful:

1. States covering a previously untaken branch receive
the best heuristic value.

2. States that are reached by not taking a branch receive
the next best heuristic value.

3. States that cover a branch already taken are ranked
according to how many times that branch has been
taken (worse scores are assigned to more frequently
taken branches).

The motivation behind the branch counting heuristic
is to make use of the branching structure of a program
while avoiding some of the pitfalls of the more direct
heuristic.

The %-coverage heuristic is likely to fall into local
minima, exploring paths that cover a large number of
branches but do not in the future increase coverage.
The branch counting heuristic behaves in an essentially

public static void main (String [] args) {
int x = Verify.random (2);

int y = Verify.random (2);

for (int i = 0; i < x; i++) {
System.out.println

("x,y,i:" + x + "," + y + "," + i);

}
for (int j = 0; j < y; j++) {

System.out.println

("x,y,j:" + x + "," + y + "," + j);

}
}

Fig. 3. Example program for the branch counting heuristic.

breadth-first manner unless a path is actually increas-
ing coverage. By default, JPF explores states with the
same heuristic value in a FIFO manner, resulting in a
breadth-first exploration of a program with no branch
choices. However, if there are branch choices, the ex-
ploration will proceed in a manner that is not strictly
breadth-first. Even after the coverage ceases to increase,
the frontier is much deeper along paths which have pre-
viously increased coverage, so the search still advances
exploration of structurally interesting paths over unin-
teresting paths.

The improved heuristic delays exploration of repet-
itive portions of the state space (those that take the
same branches repeatedly). Choosing untaken branches
(Rule 1) obviously cannot lead to repetitive exploration
of a part of a system’s control flow. While there is no
guarantee of novelty in choosing transitions not involv-
ing branches (Rule 2), any repetition of these transitions
is presumably guarded by a branch. Thus if a nondeter-
minisic choice determines how many times to execute a
loop, for instance, it will delay exploring through mul-
tiple iterations of the loop along certain paths until it
has searched further along paths that skip the loop or
execute it only once. The heuristic thus achieves deeper
coverage of the structure and examines possible behav-
iors after termination of the loop. If the paths beyond the
loop continue to be free of branches or involve previously
uncovered branches, exploration will continue; however,
if one of these paths leads to a loop, exploration will
return to explore further iterations of the first loop be-
fore executing the latter loop more than once, due to the
third rule.

In order to clarify the consequences of this ordering,
we present a small example program (Figure 3) and show
the results of using a few different search strategies to
explore it (Table 1). The first column for each search is
the output (in order). Beside each output is the count
for the branches at that point in execution: the first two
numbers are the true and false branches for the branch
on i < x and the second and third numbers are the true
and false branches for j < y. DFS immediately diverges
from the other two strategies: the model checker initially
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DFS BFS branchcount

j:0,1,0 0/2/1/1 i:1,0,0 6/3/2/1 i:1,0,0 1/3/0/1
j:0,2,0 0/3/2/2 i:1,1,0 6/3/2/1 j:0,1,0 3/3/1/1
j:0,2,1 0/3/3/2 i:1,2,0 6/3/2/1 i:1,1,0 3/3/1/1
i:1,0,0 1/3/3/3 i:2,0,0 6/3/2/1 j:0,2,0 6/3/2/1
i:1,1,0 2/4/3/4 i:2,1,0 6/3/2/1 i:1,2,0 6/3/2/1
j:1,1,0 2/5/4/4 i:2,2,0 6/3/2/1 i:2,0,0 6/3/2/1
i:1,2,0 3/5/4/5 j:0,1,0 6/3/2/1 i:2,1,0 6/3/2/1
j:1,2,0 3/6/5/5 j:0,2,0 6/3/2/1 i:2,2,0 6/3/2/1
j:1,2,1 3/6/6/5 i:2,0,1 9/6/5/3 j:1,1,0 6/5/3/3
i:2,0,0 4/6/6/6 i:2,1,1 9/6/5/3 j:0,2,1 6/5/4/3
i:2,0,1 5/6/6/6 i:2,2,1 9/6/5/3 j:1,2,0 6/6/5/3
i:2,1,0 6/7/6/7 j:0,2,1 9/6/5/3 i:2,0,1 7/6/5/3
i:2,1,1 7/7/6/7 j:1,1,0 9/6/5/3 i:2,1,1 8/6/5/3
j:2,1,0 7/8/7/7 j:1,2,0 9/6/5/3 i:2,2,1 9/6/5/3
i:2,2,0 8/8/7/8 j:1,2,1 9/9/8/6 j:1,2,1 9/6/6/5
i:2,2,1 9/8/7/8 j:2,1,0 9/9/8/6 j:2,1,0 9/8/7/6
j:2,2,0 9/9/8/8 j:2,2,0 9/9/8/6 j:2,2,0 9/9/8/6
j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8

Table 1. Order of exploration for code in Figure 3.

chooses the pair (0, 0) for (x, y) (which causes nothing
to be printed, as neither for-loop can be entered). Back-
tracking then causes the model checker to choose a sec-
ond value for y, resulting in the pair (0, 1). As this is
a depth-first search, the first loop is therefore skipped
again, but the second (j) loop is entered, printing (0, 1,
j = 0). BFS and branch counting, on the other hand,
both first show the print statement that can be reached
in the fewest steps, in the first (i) loop. However, they di-
verge immediately afterwards. The same print statement
can also be reached at the same search depth with y’s
value being 1. As the branch counting heuristic always
prefers a path with an unexplored branch, it first shows
the execution where the first loop is never executed but
the second is executed once. At this point, each branch
in the loops has been explored by branch counting (as
with DFS, the case where both branches are not taken
is invisible).

Additionally, it is important to note that while BFS
and branchcount both display x,y,i:1,0,0 first, the
branch coverage counts are quite different. In the BFS,
all of the possible combinations for x and y are gener-
ated and the first for loop is executed with each possible
combination. There are nine possible choices for x and
y, 6 of which cause the true branch to be taken and 3 of
which cause the false branch to be taken. These have all
been executed before the first print: thus the true branch
has been covered 6 times and the false branch 3 times.
In contrast, for branchcount, the print statement is cov-
ered when the true branch has only been executed once.
BFS, therefore, results in a very static set of coverages,
with only 3 total changes to the coverage counts for each
branch. For branchcount, the coverage numbers change
a total of 12 times. While DFS changes coverage be-
tween every two printings, it does so in a non-methodical

manner that is weighted towards the false branches—it
increases the counts, but makes no directed effort to in-
crease coverage. Thus while both BFS and branchcount
have covered all branches by the second printing, DFS
does not do so until the fourth printing. The behavior
of the branchcount heuristic can be seen as a mixture of
the behaviors of BFS and DFS that is sensitive to the
branching structure of the program.

In addition to avoiding local minima, this heuristic
has the advantage of being more sensitive to data values
than the coverage measures traditionally used in test-
ing. Because the heuristic counts the executions of each
branch, it is influenced by data values that determine
how many times a for-loop is executed in a manner be-
yond the simple 0-1 sensitivity of all-or-nothing coverage.

4.1.1 Variations on the Branch Counting Heuristic.

A number of options can modify the basic strategy:

– Counts may be taken globally (over the entire state
space explored) or only for the path by which a par-
ticular state is reached. This allows us to examine
either combinations of choices along each path or
to try to maximize branch choices over the entire
search when the ordering along paths is less rele-
vant. In principle, the path-based approach should
be useful when taking certain branches in a partic-
ular combination in an execution is responsible for
errors. Global counts will be more useful when sim-
ply exercising all of the branches is a better way to
find an error. An instance of the latter would be a
program in which one large nondeterministic choice
at the beginning results in different classes of shallow
executions, one of which leads to an error state.

– The branch count may be allowed to persist—if a
state is reached without covering any branches, the
last branch count on the path by which that state was
reached may be used instead of giving the state the
second best heuristic value. This allows us to increase
the tendency to explore paths that have improved
coverage without being quite as prone to falling into
local minima as the %-coverage heuristic.

– The counts over a path can be summed to reduce the
search’s sensitivity to individual branch choices.

– These various methods can also be applied to counts
taken on executions of each individual bytecode in-
struction, rather than only of branches. This is equiv-
alent to the idea of statement coverage in traditional
testing.

The practical effect of this class of heuristic is to in-
crease exploration of portions of the state space in which
nondeterministic choices or thread interleavings have re-
sulted in the possibility of previously unexplored or less-
explored branches being taken.

In practice, these variations behaved very much like
the basic branch counting heuristic in our experimental
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results. For persistent and summing counts, in fact, the
results were identical to the standard search in almost
all cases, and were thus omitted from the experimental
results. In theory, all of the variations can produce signif-
icantly different results on real programs, but in practice
only global vs. path had any observable impact.

Note also that the branch counting heuristics can
be used in dynamic test case generation [39] by using
the heuristic function to optimize the selection of test
cases—for example, by only picking cases in which the
coverage increases.

4.1.2 Experimental Results

We will refer to a number of heuristics (Table 2) and
search strategies (Table 3) when presenting experimental
results. In addition to these basic heuristics, we indicate
whether a heuristic is measured over paths or all states
by appending (path) or (global) when that is an option.

The DEOS real-time operating system developed by
Honeywell enables Integrated Modular Avionics (IMA)
and is currently used within certain small business air-
craft to schedule time-critical software tasks. During its
development a routine code inspection led to the uncov-
ering of a subtle error in the time-partitioning that could
allow tasks to be starved of CPU time - a sequence of
unanticipated API calls made near time-period bound-
aries would trigger the error. Interestingly, although avion-
ics software needs to be tested to a very high degree
(100% MC/DC coverage) to be certified for flight, this
error was not uncovered during testing. Model checking
was used to rediscover this error, by using a translation
to PROMELA (the input language of the SPIN model
checker) [44]. Later a Java translation of the original
C++ code was used to detect the error. Both versions
use an abstraction to find the error (see the discussion
in section 4.4). The results (Table 4) are from a version
of the Java code that does not abstract away an infinite-
state counter—a more straightforward translation of the
original C++ code into Java.

The %-coverage heuristic does indeed appear to eas-
ily become trapped in local minima, and, as it is not
admissible, using an A∗ search will not necessarily help.
For comparison to results not using heuristics, here and
below we also give results for breadth-first search (BFS),
depth-first search (DFS) and depth-first searches lim-
ited to a certain maximum depth. For essentially infinite
state systems (such as this version of DEOS), limiting
the depth is the only practical way to use DFS, but as
can be seen, finding the proper depth can be difficult—
and large depths may result in extremely long counterex-
amples. Using a purely random heuristic does, in fact,
find a counterexample for DEOS—however, the coun-
terexample is considerably longer and takes more time
and memory to produce than with the coverage heuris-
tics.

We also applied the successful heuristics to the DEOS
system with the storing of visited states turned off (per-
forming testing or simulation rather than model check-
ing, essentially). Without state storage, these heuris-
tics failed to find a counterexample before exhausting
memory—the queue of states to explore becomes too
large and exhausts the memory.

4.2 Thread Interleaving Heuristics

A different kind of structural heuristic is based on max-
imizing thread interleavings. Testing, in which generally
the scheduler cannot be controlled directly, often misses
subtle race conditions or deadlocks because they rely on
unlikely thread scheduling. One way to expose concur-
rency errors is to reward “demonic” scheduling by as-
signing better heuristic values to states reached by paths
involving more switching of threads. In this case, the
structure we attempt to explore is the dependency of
the threads on precise ordering. If a non-locked variable
is accessed in a thread, for instance, and another thread
can also access that variable (leading to a race condi-
tion that can result in a deadlock or assertion violation),
that path will be preferred to one in which the accessing
thread continues onwards, perhaps escaping the effects
of the race condition by reading the just-altered value.
This heuristic is calculated by keeping a (possibly lim-
ited in size) history of the threads scheduled on each
path:

– At each step of execution append the thread just ex-
ecuted to a thread history.

– Pass through this history, making the heuristic value
that will be returned worse each time the thread just
executed appears in the history by a value propor-
tional to:
1. how far back in the history that execution is and
2. the current number of live threads

Figure 4 presents a small sample program and Table
5 shows how the interleaving heuristic affects the order
of exploration of its state space by the model checker. As
with branch counting, DFS is immediately distinguish-
able from the other heuristics, as the model checker ex-
ecutes Thread #1 until this is no longer possible (after
which we observe backtracking behavior). BFS and the
interleaving heuristic both behave very similarly at first;
as with the branch counting heuristic, the basic approach
is to imitate a breadth-first exploration until information
is available to modify this behavior. Figure 5 shows the
beginning of the possible interleavings of the print state-
ments for the code. There are only two possible print
statements at the earliest depth at which a print state-
ment can be encountered. States with the same heuristic
value are ordered by the creation order of the threads. At
the second depth at which print statements can be en-
countered, there are four choices, but the thread history
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Heuristic Definition

branchcount The basic branch counting heuristic. Has multiple variations, such as path
or global coverage.

bytecode Computed in the same manner as the branchcount heuristic, but applied to
all bytecode instructions; also comes in path and global variations.

%-coverage Measures the percentage of branches covered. States with higher coverage
receive better values.

most-blocked Measures the number of blocked threads. More blocked threads results
in better values.

interleaving Measures the amount of interleaving of threads on paths. See Section 4.2.
prefer-threads Uses heuristic value to prefer execution of a given set of threads.
choose-free Uses heuristic value to avoid abstraction-introduced nondeterminism.
random Uses a randomly assigned heuristic value. Results shown are best of a series

of runs.

Table 2. Heuristics.

Search strategy Definition

BFS A breadth-first search.
DFS A depth-first search. (depth n) indicates that stack depth is limited to n.
best Best-first search, (with possible queue limit k)
A∗ An A∗ search (with possible queue limit k)
beam Beam search (with a given k)

Table 3. Search strategies.

Search Heuristic Time(s) Mem(MB) States Length Max Depth

best branchcount (path) 60 92 2,701 136 139
A∗ branchcount (path) 59 90 2,712 136 139
best branchcount (global) 60 91 2,701 136 139
A∗ branchcount (global) 59 92 2,712 136 139
best bytecode (path) - FAILS 9,032 - 168
A∗ bytecode (path) - FAILS 10,073 - 139
best bytecode (global) 62 88 2,195 136 137
A∗ bytecode (global) 63 94 2,383 136 137
best %-coverage (path) - FAILS 20,215 - 334
A∗ %-coverage (path) - FAILS 18,141 - 134
best %-coverage (global) - FAILS 20,213 - 334
best random 162 240 8,057 334 360
BFS - - FAILS 18,054 - 135
DFS - - FAILS 14,678 - 14,678
DFS (depth 500) - 6,782 383 392,479 455 500
DFS (depth 1000) - 2,222 196 146,949 987 1,000
DFS (depth 4000) - 171 270 8,481 3,997 4,000

Results with state storage turned off

best branchcount (path) - FAILS 15,964 - 125
A∗ branchcount (path) - FAILS 15,962 - 125
best branchcount (global) - FAILS 15,964 - 125
A∗ branchcount (global) - FAILS 15,962 - 125

Table 4. Experimental results for the DEOS system.

All results obtained on a 1.4 GHz Athlon with JPF limited to 512Mb. Time(s) is in seconds and Mem(MB) is in
megabytes. FAILS indicates failure due to running out of memory. The Length column reports the length of the

counterexample (if one is found). The Max Depth column reports the length of the longest path explored (the maximum
stack depth in the depth-first case).
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class MyThread extends Thread {
public static int s = 0;

private int tid;

MyThread (int i) {
tid = i;

}
public void run(){

System.out.println ("Thread #" + tid + ", A");

System.out.println ("Thread #" + tid + ", B");

System.out.println ("Thread #" + tid + ", C");

}
}
class IntExample {

public static void main (String [] args) {
Verify.beginAtomic ();

MyThread Thread1 = new MyThread(1);

MyThread Thread2 = new MyThread(2);

Thread1.start (); Thread2.start ();

Verify.endAtomic ();

}
}

Fig. 4. Example program for interleaving heuristic.

1B 2B 1A 2C

1A 2B

2A

1C 2A 1B 2B

1B 2A

1ADepth 1

Depth 2

Depth 3

Depth 4... .            .            .
Fig. 5. Thread interleaving for code in Figure 4.

is too small to activate the interleaving heuristic. It is at
the third depth (indicated by the line in Table 5) that
we see divergence between the BFS and the interleaving
heuristic. 1C, the first print statement at this depth in
the BFS, results from a very non-interleaved execution
sequence in which thread #1 is chosen three times in a
row. 1B, the interleaving choice, results from executing
thread #1, then thread #2, then thread #1 again. 2A,
the next BFS choice, must result from a path which be-
gins by executing thread #1 twice in a row, while the
interleaving heuristic causes 2B to appear first, as it can
be reached by executing thread #2, then thread #1, and
then thread #2 again. After this, the execution orders
grow more divergent as more thread history is accumu-
lated. The interleaving heuristic not only rearranges the
order within a particular depth, it abandons breadth first
search completely. A 2A execution from depth 4 appears
before the 1A execution for depth 3.

4.2.1 Experimental Results

During May 1999 the Deep-Space 1 spacecraft ran a set
of experiments whereby the spacecraft was under the
control of an AI-based system called the Remote Agent.

DFS BFS interleaving

Thread #1, A Thread #1, A Thread #1, A
Thread #1, B Thread #2, A Thread #2, A
Thread #1, C Thread #1, B Thread #1, B
Thread #2, A Thread #2, A Thread #2, A
Thread #2, B Thread #1, A Thread #1, A
Thread #2, C Thread #2, B Thread #2, B

Thread #2, A Thread #1, C Thread #1, B
Thread #1, C Thread #2, A Thread #2, B
Thread #2, B Thread #1, B Thread #1, B
Thread #1, C Thread #2, B Thread #2, B
Thread #2, C Thread #1, B Thread #1, C
Thread #1, C Thread #2, B Thread #2, A
Thread #2, A Thread #1, A Thread #2, A
Thread #1, B Thread #2, C Thread #2, B
Thread #2, B Thread #2, A Thread #2, C
Thread #1, B Thread #1, C Thread #1, A
Thread #2, C Thread #2, B Thread #2, C
Thread #1, B Thread #1, B Thread #1, A
Thread #2, A Thread #2, C Thread #1, B
Thread #1, A Thread #1, C Thread #1, C
Thread #1, B Thread #2, B Thread #1, C
Thread #1, C Thread #1, B Thread #2, B
Thread #2, B Thread #2, C Thread #1, B
Thread #2, C Thread #1, A Thread #2, C
Thread #2, B Thread #2, B Thread #1, B
Thread #1, C Thread #1, C Thread #2, C
Thread #2, C Thread #2, C Thread #1, B
Thread #1, C Thread #1, B Thread #1, C
Thread #2, B Thread #2, B Thread #1, C
Thread #1, B Thread #1, C Thread #2, B
Thread #2, C Thread #2, C Thread #2, B
Thread #1, B Thread #1, B Thread #2, C
Thread #2, B Thread #2, C Thread #1, C
Thread #1, A Thread #1, C Thread #2, C
Thread #2, C Thread #2, C Thread #1, C
Thread #1, A Thread #1, C Thread #2, C

Table 5. Order of exploration for code in Figure 4.

Unfortunately, during one of these experiments the soft-
ware went into a deadlock state, and had to be restarted
from Earth. The cause of the error at the time was un-
known, but after some study, in which the most likely
components to have caused the error were identified, the
error was found by applying model checking to a Java
version of the code—the error was due to a missing criti-
cal section causing a race violation to occur under certain
thread interleavings introducing a deadlock [30]. The re-
sults (Table 6) use a version of the code that is faithful
to the original system, as it also includes parts of the
system not involved in the deadlock.

Experiments indicate that whileA∗ and beam-search
can certainly perform well at times, they generally do not
perform as well as best-first search. The heuristics inves-
tigated are not admissible, so the optimality advantages
of A∗ do not come into play. In general, both appear
to require more judicious choice of queue-limits than is
necessary with best-first search, at least in this example.
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Search Heuristic Time(s) Mem(MB) States Length Max Depth

best (k = 40) branchcount (path) - FAILS 1,765,009 - 12,092
best (k = 160) branchcount (path) - FAILS 1,506,725 - 5,885
best (k = 1000) branchcount (path) 132 290 845,263 136 136

best (k = 40) branchcount (global) - FAILS 1,758,416 - 12,077
best (k = 160) branchcount (global) - FAILS 1,483,827 - 1,409
best (k = 1000) branchcount (global) - FAILS 1,509,810 - 327

best random - FAILS 55,940 - 472

BFS - - FAILS 623,566 - 60

DFS - - FAILS 267,357 - 267,357
DFS (depth 500) - 43 54 116,071 500 500
DFS (depth 1000) - 44 64 117,235 1000 1000
DFS (depth 4000) - 47 72 122,513 4000 4000

best interleaving - FAILS 378,068 - 81
best (k = 5) interleaving 15 17 38,449 913 913
best (k = 40) interleaving 116 184 431,752 869 869
best (k = 160) interleaving 908 501 1,287,984 869 870
best (k = 1000) interleaving - FAILS 745,788 - 177

A∗ interleaving - FAILS 369,166 - 81
A∗ (k = 5) interleaving 13 19 43,172 912 912
A∗ (k = 40) interleaving 77 129 306,285 865 867
A∗ (k = 160) interleaving - FAILS 1,309,561 - 789
A∗ (k = 1000) interleaving - FAILS 1,836,675 - 273

beam (k = 5) interleaving 14 16 35,514 927 927
beam (k = 40) interleaving 91 113 238,945 924 924
beam (k = 160) interleaving 386 418 1,025,595 898 898
beam (k = 1000) interleaving - FAILS 1,604,940 - 365

best most-blocked 7 33 7,537 158 169
best (k = 5) most-blocked - FAILS 922,433 - 27,628
best (k = 40) most-blocked - FAILS 913,946 - 4,923
best (k = 160) most-blocked - FAILS 918,575 - 1,177
best (k = 1000) most-blocked 6 10 7,537 158 169

A∗ most-blocked - FAILS 631,274 - 61
A∗ (k = 5) most-blocked - FAILS 935,796 - 16,189
A∗ (k = 40) most-blocked - FAILS 960,259 - 1,907
A∗ (k = 160) most-blocked - FAILS 989,513 - 555
A∗ (k = 1000) most-blocked - FAILS 1,138,920 - 165

best prefer-threads - FAILS 548,157 - 61
best (k = 5) prefer-threads 3 3 3,632 121 121
best (k = 40) prefer-threads 6 12 23,754 121 121
best (k = 160) prefer-threads 16 39 81,162 121 121
best (k = 1000) prefer-threads 80 201 450,035 121 121

Table 6. Experimental results for the Remote Agent system.

Finally, for the dining philosophers (Table 7), we
show that the interleaving heuristic can scale to quite
large numbers of threads. While DFS fails to uncover
counterexamples even for small problem sizes, the inter-
leaving heuristic can produce short counterexamples for
up to 64 threads. The most-blocked heuristic, designed
to detect deadlocks, generally returns larger counterex-
amples (in the case of size 8 and queue limit 5, larger by a
factor of over a thousand) after a longer time than the in-
terleaving heuristic. Even more importantly, it does not
scale well to larger numbers of threads. We only report,
for each number of philosopher threads, the results for
those searches that were successful in the next smaller
version of the problem. Results not shown indicate that,

in fact, failed searches do not tend to succeed for larger
sizes.

The key difference in approach between using a property-
specific heuristic and a structural heuristic can be seen
in the dining philosophers example where we search for
the well-known deadlock scenario. When increasing the
number of philosophers high enough (for example to 16)
it becomes impossible for an explicit-state model checker
to try all the possible combinations of actions to get
to the deadlock and heuristics (or luck) are required. A
property-specific heuristic applicable here is to try and
maximize the number of blocked threads (most-blocked
heuristic from Table 2), since if all threads are blocked
we have a deadlock in a Java program. Whereas a struc-
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Search Heuristic Size Time(s) Mem(MB) States Length Max Depth

best branchcount (path) 8 - FAILS 374,152 - 41
best random 8 - FAILS 218,500 - 86
BFS - 8 - FAILS 436,068 - 13
DFS - 8 - FAILS 398,906 - 384,286
DFS (depth 100) - 8 - FAILS 1,357,596 - 100
DFS (depth 500) - 8 - FAILS 1,354,747 - 500
DFS (depth 1000) - 8 - FAILS 1,345,289 - 1,000
DFS (depth 4000) - 8 - FAILS 1,348,398 - 4,000
best most-blocked 8 - FAILS 310,317 - 285
best (k = 5) most-blocked 8 17,259 378 891,177 78,353 78,353
best (k = 40) most-blocked 8 10 7 13,767 273 273
best (k = 160) most-blocked 8 10 12 25,023 172 172
best (k = 1000) most-blocked 8 46 59 123,640 254 278
best interleaving 8 - FAILS 487,942 - 16
best (k = 5) interleaving 8 2 1 1,719 66 66
best (k = 40) interleaving 8 5 5 16,569 66 66
best (k = 160) interleaving 8 12 27 62,616 66 66
best (k = 1000) interleaving 8 60 137 354,552 67 67

best (k = 5) most-blocked 16 - FAILS 802,526 - 36,443
best (k = 40) most-blocked 16 38 69 101,576 1,008 1,008
best (k = 160) most-blocked 16 - FAILS 799,453 - 2,071
best (k = 1000) most-blocked 16 - FAILS 791,073 - 702
best (k = 5) interleaving 16 4 5 6,703 129 129
best (k = 40) interleaving 16 16 45 69,987 131 131
best (k = 160) interleaving 16 60 207 290,637 131 132
best (k = 1000) interleaving 16 - FAILS 858,818 - 41

best (k = 40) most-blocked 32 - FAILS 463,414 - 2,251
best (k = 5) interleaving 32 11 32 25,344 257 257
best (k = 40) interleaving 32 - FAILS 472,022 - 775
best (k = 160) interleaving 32 - FAILS 494,043 - 86

best (k = 5) interleaving 64 59 206 101,196 514 514

Table 7. Experimental results for dining philosophers.

tural heuristic may be to observe that we are dealing
here with a highly concurrent program—hence it may
be argued that any error in it may well be related to an
unexpected interleaving—hence we use the heuristic to
favor increased interleaving during the search (interleav-
ing heuristic from Table 2). Although the results are by
no means conclusive, it is still worth noting that for this
specific example the structural heuristic performs much
better than the property-specific heuristic.

For the dining philosophers and Remote Agent ex-
ample we also performed the experiment of turning off
state storage. For the interleaving heuristic, results were
essentially unchanged (minor variations in the length of
counterexamples and number of states searched). We be-
lieve that this is because to return to a previously visited
state in each case requires an action sequence that will
not be given a good heuristic value by the interleaving
heuristic (for example in the dining philosophers, alter-
nating picking up and dropping of forks by the same
threads). For the most-blocked heuristic, however, suc-
cessful searches become unsuccessful—removal of state
storage introduces the possibility of non-termination into
the search. For example, the most-blocked heuristic with-

out state storage may not even terminate, in some cases
(imagine a scenario in which deadlock is impossible but
a certain thread can acquire a lock, blocking all other
threads—it is then forced to release the lock as the only
thread that can execute, but the heuristic will then cause
it to acquire the lock again, returning to the previous
state).

Godefroid and Khurshid apply their genetic algo-
rithm techniques to a very similar implementation of the
dining philosophers (written in C rather than Java) [25].
They seed their genetic search randomly on a version
with 17 running threads, reporting a 50% success rate
and average search time of 177 seconds (on a slower ma-
chine than we used). The results suggest that the dif-
ferences may be as much a result of the heuristics used
(something like most-blocked vs. the interleaving heuris-
tic) as the genetic search itself. Application of structural
heuristics in different search frameworks is an interesting
avenue for future study.
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4.3 The Thread Preference Heuristic

The interleaving heuristic rewards context-switching; if a
program has a large number of threads that are enabled,
in an interleaving-guided search those threads will all be
executed often. However, a few threads in a program may
be suspected to harbor an error. Instead of rewarding
context-switching (or trying to block threads that may
be unrelated to the error), we can improve the heuristic
value of transitions that involve execution of only these
threads.

The Remote Agent example includes a scalable num-
ber of threads that are not involved in the actual er-
ror. If the size of this irrelevant part of the state space
is increased, the various searches listed above perform
much more poorly, and in many cases cannot find the
error. The existence of the prefer-threads heuristic al-
lows a new approach to hunting concurrency errors in
JPF. JPF incorporates a version of the Eraser race de-
tection algorithm [49]. First, the model checker is run
in race detection mode with a small queue limit (300
worked well) and some heuristic (a BFS sufficed in our
experiments). This search does not find the error, but
reports a number of potential race conditions. Allowing
the race detection to run for 3 minutes (using 389MB of
memory) reveals that the Executive and Planner threads
have unprotected write accesses to a field. The threads
involved in the potential race conditions are then used to
guide a thread-preference search with a similarly small
queue, and a counterexample is quickly detected. This
approach scaled to larger versions of the Remote Agent
than other heuristics could handle (Table 8). The first
block of results are for a version in which the irrelevant
portion of the state space is doubled with respect to the
version in Table 6, and the size is again doubled in each
block (with only the searches succeeding for the last size
shown).

This is a different flavor of structural heuristic than
those presented previously. The branch counting and in-
terleaving heuristics are not only not property-specific,
but do not rely on specific knowledge of the program’s
behavior beyond what can be observed by the model
checker (which branches are taken, which threads are en-
abled) during execution of the program. Preferring cer-
tain threads assumes knowledge about the behavior of
the program; while it is not a property-specific heuristic,
it focuses on a part of the system’s structure guided by
knowledge of what parts of the system are “interesting.”
However, our strategy with the Remote Agent demon-
strates that this knowledge itself may be automatically
extractable by the model checker. The experimental re-
sults show that such additional knowledge can, as would
be expected, aid a guided search considerably.

4.4 The Choose-free Heuristic

Abstraction based on over-approximations of the sys-
tem behavior is a popular technique for reducing the
size of the state space of a system to allow more efficient
model checking [8,12,26,53]. JPF supports two forms
of over-approximation: predicate abstraction [53] and
type-based abstractions (via the BANDERA tool) [12].
However, over-approximation is not well suited for error-
detection, since the additional behaviors introduced by
the abstraction can lead to spurious errors that are not
present in the original. Eliminating spurious errors is an
active area of research within the model checking com-
munity [3,7,31,43,48].

JPF uses a novel technique for the elimination of
spurious errors called choose-free search [43]. This tech-
nique is based on the fact that all over-approximations
introduce nondeterministic choices in the abstract pro-
gram that were not present in the original. Therefore,
a choose-free search first searches the part of the state
space that doesn’t contain any nondeterministic choices
due to abstraction. If an error is found in this so-called
choose-free portion of the state space then it is also an er-
ror in the original program. Although this technique may
seem almost naive, it has been shown to work remark-
ably well in practice [12,43]. The first implementation of
this technique was by only searching the choose-free state
space, but the current implementation uses a heuristic
that gives the best heuristic values to the states with
the fewest nondeterministic choice statements enabled,
i.e. allowing the choose-free state space to be searched
first but continuing to the rest of the state space oth-
erwise (this also allows choose-free to be combined with
other heuristics).

The DEOS example can be abstracted by using both
predicate abstraction [53] and type-based abstraction [12].
The predicate abstraction of DEOS is a precise abstrac-
tion, i.e. it does not introduce any new behaviors not
present in the original, hence we focus here on the type-
based abstraction—specifically we use a Range abstrac-
tion (allowing the values 0 and 1 to be concrete and all
values 2 and above to be represented by one abstract
value) to the appropriate variable [12]. When using the
choose-free heuristic it is discovered that for this Range
abstraction the heuristic search reports a choose-free er-
ror of length 26 in 20 seconds. The error path is shorter
than in the experimental results reported earlier because
those results are for a version of DEOS in which time is
not abstracted (and thus arithmetic is not reduced to
operations on the range-abstracted values).

These heuristics for finding feasible counterexamples
during abstraction can be seen as an on-the-fly under-
approximation of an over-approximation (from the ab-
straction) of the system behavior. The only other heuris-
tic that we are aware of that falls into a similar category
is the one for reducing infeasible execution sequences
in the FLAVERS tool [10]. This heuristic differs from
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Search Heuristic Time(s) Mem(MB) States Length Max Depth

Size = 10 (Table 6 is Size = 5 results)

best (k = 1000) branchcount (path) - FAILS 1,193,730 - 230
DFS (depth 500) - - FAILS 599,431 - 500
DFS (depth 1000) - - FAILS 598,487 - 1000
DFS (depth 4000) - - FAILS 590,259 - 4000
best (k = 5) interleaving 116 161 243,910 2,870 2,870
best (k = 40) interleaving - FAILS 908,353 - 1,755
best (k = 160) interleaving - FAILS 1,146,152 - 809
A∗ (k = 5) interleaving 112 158 241,999 2,867 2,867
A∗ (k = 40) interleaving - FAILS 892,071 - 1,764
beam (k = 5) interleaving 116 151 209,370 2,888 2,888
beam (k = 40) interleaving - FAILS 875,752 - 1,927
beam (k = 160) interleaving - FAILS 1,066,711 - 902
best most-blocked 25 186 23,528 269 280
best (k = 1000) most-blocked 15 31 24,528 269 280
best (k = 5) prefer-threads 4 8 11,137 201 201
best (k = 40) prefer-threads 16 49 79,354 201 201
best (k = 160) prefer-threads 51 169 290,932 201 201
best (k = 1000) prefer-threads - FAILS 995,617 - 149

Size = 20

best (k = 5) interleaving - FAILS 639,748 - 5,321
A∗ (k = 5) interleaving - FAILS 635,067 - 5,031
beam (k = 5) interleaving - FAILS 611,495 - 5,797
best most-blocked - FAILS 41,991 - 497
best (k = 1000) most-blocked - FAILS 402,007 - 524
best (k = 5) prefer-threads 9 38 38,147 361 361
best (k = 40) prefer-threads 55 272 286,554 361 361
best (k = 160) prefer-threads - FAILS 680,990 - 279

Size = 40

best (k = 5) prefer-threads 38 212 140,167 681 681
best (k = 40) prefer-threads - FAILS 472,708 - 445

Table 8. Larger versions of the Remote Agent.

those discussed previously in that it relies on the struc-
ture of the abstraction applied to a program rather than
on the branching or thread-interaction structure of the
program.

5 User-Guided Searches

5.1 User-Defined Heuristics

Traditionally, heuristics are often very problem-specific.
Previous discussion throughout this paper has been of
heuristics of general utility, but JPF allows for very spe-
cific heuristics as well. Users may write their own heuris-
tics in Java. Consider a program with a class Main with a
static field buffer, itself an object of a class with integer
fields current and capacity. Figure 6 shows the code
for a heuristic returning either (capacity − current),
or a default value (defined in the UserHeuristic class) if
the Main.buffer field hasn’t been initialized:

Structural heuristics and property-specific heuristics
of very general utility (such as the most-blocked heuris-
tic) are provided as built-in features of the model checker,

public int heuristicValue() {
Reference m =

getSystemState().getClass("Main");

if (m != null) {
Reference b =

m.getObjectField("buffer");

if (b != null) {
int current =

b.getIntField("current");

int capacity =

b.getIntField("capacity");

if (current > capacity)

return 0;

return (capacity-current);

}
}
return defaultValue;

}

Fig. 6. Example of a user-defined heuristic.

but the range of property-specific (or experimental struc-
tural heuristics) is so large that it is essential to allow
users to also craft their own heuristics.
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Method

Verify.interesting (boolean b)

If b evaluates to true:
heuristic value for state in which the call appears is equal
to the best possible heuristic value.

Verify.boring (boolean b)

If b evaluates to true:
heuristic value for state in which the call appears is one
step worse than the worst heuristic value previously
computed in the model checking run.

Verify.ignoreIf (boolean b)

If b evaluates to true:
the state in which the call appears is not explored by the
model checker. This applies even to non-heuristic searches.
Note that this potentially introduces an incompleteness
into the search and can be dangerous if used unwisely.

Table 9. Special methods for program guided search.

public static void main (String [] args) {
int x = Verify.random(10);

int y = 0;

Verify.interesting (x > 5);

Verify.boring (x < 5);

if (x > 5)

y = 100;

if (x < 5)

y = 50;

System.out.println ("y = " + y);

}

Fig. 7. Example program for program guided search.

Calls Order

none 50, 100, 50, 100, 50, 100, 50, 100, 50, 100, 0
both 100, 50, 100, 100, 100, 100, 0, 50, 50, 50, 50

Table 10. Search ordering for example in Figure 7.

5.2 Program-Guided Search

A more lightweight approach than introducing new heuris-
tics into the model checker itself is to introduce calls that
are trapped by the model checker and used to modify the
behavior of whatever heuristic is being used. JPF pro-
vides three methods for this purpose (Table 9).

These methods can be used to fine tune the behavior
of the various heuristics provided by JPF in a dynamic
fashion, based on values computed by the program being
model checked at run time. The heuristic alteration from
Verify.interesting and Verify.boring only applies
to one state, but may have a significant effect on the
search nonetheless. For example, if the branch counting
heuristic is used and the successor to the interesting state
covers a new branch, it (and possibly its successors) will
be explored before the other states that would otherwise
have had the same value as the interesting state.

As an example, consider the program in Figure 7.
Model checking the program using the branch count-
ing heuristic alone causes the model checker to alternate
between executions outputting 50 and 100 because this
keeps the counts on the branches even. Introducing calls
to Verify.interesting and Verify.boring causes the
first value printed to be 100, as the successors to the
“boring” states are placed later in the queue. A single
50 then appears, as the branch counting heuristic’s Rule
1 forces the first coverage of a branch to always have the
best heuristic value. The other choices in which (x < 5)
are all delayed until after the neutral (x == 5) case.

Verify.ignoreIf can be used as a more precise tool
for limiting the search queue, or in a non-heuristic fash-
ion to prune parts of the state space in which it can
be shown (via static analysis or manual inspection) that
errors cannot occur. The latter approach is used to ter-
minate exploration of infeasible paths when using JPF
for symbolic execution [38]. Use of Verify.ignoreIf re-
quires considerable caution, as it can result in the model
checker returning “true” for properties that do not hold.
It is analogous to the assume directive available in many
other model checkers.

6 Related Work

A wide body of work now exists on the topic of model
checking software in real programming languages [3,6,
11,24,31,34,35,41,52]. Techniques range from predicate
abstraction based approaches [3,6,31] to more direct ex-
plorations of executing code without a separate model [24,
41,52].

Early work in heuristic model checking applied best-
first search to model checking for protocol validation to
achieve significant gains over depth-first search [40]. Pa-
geot and Jard [42] discussed using heuristics to guide
memory-less search (also known as guided simulation or
random walk), and Holzmann noted that this could also
be applied to a (potentially) partial search as in explicit-
state model checking [32]. Edelkamp, Lafuente, and Leue
introduced heuristic search into the SPIN explicit-state
model checker [14], suggested a use of heuristic model
checking to reduce the size of counterexamples [16], and
applied the partial-order reduction to heuristic search [15,
13]. This work provides a useful contrast to this paper,
in that it concentrates on property and goal-directed
heuristics that are sometimes admissible.

We first applied heuristic model checking to Java pro-
grams [27] and introduced a new class of heuristics for
software model checking [28]. Our previous work and
this paper concentrate on structural heuristics over the
more studied property and goal-state directed heuristics.
Edelkamp and Mehler examined the use of JPF’s heuris-
tic framework with goal-directed heuristics, and provide
useful commentary on and comparisons with our struc-
tural approach [17]. Godefroid and Khurshid applied ge-
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netic algorithm techniques rather than the more basic
heuristic searches, using heuristics measuring outgoing
transitions from a state (similar to the most-blocked
heuristic—see Table 2), rewarding evaluations of asser-
tions, and measuring messages exchanged in a security
protocol [25]. Musuvathi et al. briefly mention some suc-
cess in using heuristics to guide a direct exploration of
C and C++ code (in a manner similar to that in which
JPF explores Java code) [41].

Yang and Dill used a best-first search with BDD-
based model checking within the Murφ tool [54]. Bloem,
Ravi and Somenzi used heuristics to reduce the bottle-
necks of image computation in symbolic model check-
ing [5]. OBDD-based heuristic search has also been used
in AI planning problems closely related to model check-
ing. Edelkamp and Reffel [18] originally proposed an
OBDD-based version of theA∗ algorithm. Jensen, Bryant
and Veloso have developed a significantly improved BDD-
based version of A∗ [37,36].

Heuristics have also been used for generating test
cases [45,51], and model checkers have been used for
test case generation [1,2,19,20,23,46]. Friedman et. al.
used a Coverage First Search (CFS) related to structural
heuristics to generate test suites [21]. Ganai and Aziz
used coverage-based techniques to guide a state-space
search for control-dependent hardware [22].

7 Conclusions and Future Work

Applying model checking to find errors in real programs
is complicated by the size of the state space of such sys-
tems. In other fields where search through prohibitively
large state spaces is required, such as in AI, the use of
heuristics has proven to be invaluable. Here we propose
the use of heuristics to guide the search of the JPF model
checker for errors in Java programs.

Heuristic search techniques are traditionally used to
solve problems where the goal is known and a well-defined
measure exists of how close any given state is to this goal.
The aim of the heuristic search is to guide the search,
using the measure, to achieve the goal as quickly (in the
fewest steps) as possible. This has also been the tra-
ditional use of heuristic search in model checking: the
heuristics are defined with regards to the property be-
ing checked. Here we also suggest a complementary ap-
proach where the focus of the heuristic search is more
on the structure of the state space being searched, in
our case the Java program from which the state space is
generated.

In addition to property-specific and structural heuris-
tics we also advocate the use of heuristics the user of a
model checker can define that are specific to the program
being analyzed. In JPF we provide the flexibility to add
these heuristics either as external heuristic functions or
as annotations of the program being model checked.

Our experimental results show that structural heuris-
tics can make error finding tractable in some systems
where unguided searches or searches using property-specific
heuristics do not work very well. It is clear that struc-
tural heuristics can be useful, and the type of program
being explored (programs with complex control flow or
that are concurrent) is at least suggestive in making a
choice of heuristic.

We believe that the flexibility these various styles
of heuristics give the user is an important contribution
to the success of model checking as a tool for scalable
and efficient error-detection in software systems. How-
ever this flexibility is also at the root of the biggest open
problem we currently face: which heuristic will work the
best in any given circumstance? Our experiments do not
really give a clear answer to this question. Ignoring user-
defined heuristics, we are already faced by a dizzying ar-
ray of heuristic options and accompanying parameters—
e.g. shall we use a branch counting or the interleaving
heuristic, shall we combine them, do we need to add
queue-limiting, and what should the limit be? One sim-
ple approach is to use the simplest of distributed ap-
proaches that computer networks provide and run thou-
sands of model checking runs with different heuristic op-
tions each on a different machine on the network with
the hope that at least one will produce a positive result.

A more interesting approach would be to learn which
heuristics would work best. Such an approach could use
either the structure of the program code, or the results
from failed model checking runs to determine which heuris-
tics to use. For example, in Section 4.3 we show how we
can use the results from a race-analysis of the code to
guide the search by focusing on the threads that were
involved in a race-violation. A further possibility would
be to attempt to apply algorithmic learning techniques
to finding good parameters for heuristic model checking.
We plan to investigate these ideas further in future work.

The development of more structural heuristics and
the refinement of those we have presented here is also an
open problem. For instance, are there analogous struc-
tures to be explored in the data structures of a pro-
gram to the control structures explored by our branch-
coverage heuristics? We imagine that these other heuris-
tics might relate to particular kinds of errors as the in-
terleaving heuristic relates to concurrency errors.
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