
A Method Dependence Relations Guided
Genetic Algorithm

Ali Aburas and Alex Groce

Oregon State University, Corvallis OR 97330, USA

Abstract. Search based test generation approaches have already been
shown to be effective for generating test data that achieves high code
coverage for object-oriented programs. In this paper, we present a new
search-based approach, called GAMDR, that uses a genetic algorithm
(GA) to generate test data. GAMDR exploits method dependence re-
lations (MDR) to narrow down the search space and direct mutation
operators to the most beneficial regions for achieving high branch cov-
erage. We compared GAMDR’s effectiveness with random testing, Evo-
Suite, and a simple GA. The tests generated by GAMDR achieved higher
branch coverage.

Keywords: SBST, Genetic Algorithm, Search Space Reduction, Java Testing

1 Introduction

Different search-based testing techniques have been proposed to automatically
generate unit tests for object-oriented programs, e.g., TestFul [4] and Evo-
Suite [7]. A major problem with most of the existing search based software
testing (SBST) approaches is that they consider the whole search space of pos-
sible input values and method calls to the class under test (CUT). Thus, finding
critical calls can be a challenge due to the large size of the search space.

In genetic algorithms (GA), the mutation operator plays an essential role: it
modifies individuals (here, test cases) with a relatively small probability. Mu-
tation operations (e.g., modifying input values or inserting method calls) are
randomly performed to preserve diversity of populations, and prevent the search
from being trapped in a local optima [11]. Nevertheless, whenever mutation oc-
curs, the chance of choosing the method calls or primitive values that are most
beneficial is very low. Such random mutation has two problems. First, it lacks
guidance as to inputs, causing unnecessary computational expense [11]. This
is due to an inability to explore promising areas in the search space. Second,
randomly flipping methods or manipulating an input primitive value may fail
to generate high quality new individuals. This can lead to an increase in the
chances of premature convergence due to lack of diversity in the population [11].

In this short paper, we introduce a fully automated search-based testing
approach for Java, called GAMDR. GAMDR implements a Genetic Algorithm
(GA) that aims to cover all target branches. This implementation accelerates the



2

search towards the global optimum because it does not waste time on infeasible
branches [4, 7]. GAMDR also exploits Method Dependence Relations (MDR) [14]
to narrow down the search space and direct mutation operators to the most
beneficial regions in the search space, leading to high CUT branch coverage.

2 Related Work

Harman et al. [9] were the first to theoretically and empirically explore search
space reduction for SBST. Their empirical study targeted procedural programs
and showed that irrelevant input removal improved the performance of local,
global, and hybrid search algorithms. Barsei et al. [4] proposed a semi-automated
approach to augment the efficiency and speed-up test generation with the Test-
Ful tool. This was achieved by requiring the user to provide data regarding the
effects of each method of the CUT. Ribeiro et al. [12] leveraged purity analy-
sis [13] to reduce the input space of object-oriented programs. Harman et al. [10]
also proposed a domain reduction technique to exclude irrelevant parameters in
the search space for aspect-oriented programs. They performed backward slic-
ing to identify such irrelevant parameters, after which evolutionary testing was
conducted only on the remaining relevant parameters. Aburas and Groce [1]
proposed a memetic algorithm exploiting MDR to improve the effectiveness of
a hill climbing (HC) technique.

In contrast to the aforementioned approaches, our approach uses GA to gen-
erate test data and applies a static analysis to precisely identify only those
member fields or parameters of the method under test that would be relevant
for covering uncovered branches. Then, it leverages MDR to automatically di-
rect the mutation operations to generate a sequence of method calls that produce
the desired values for member fields or parameters, based on impact on target
branches. Combining GA with MDR has a number of advantages. 1) it focuses
on the root cause of the failure to cover target branches. 2) it focuses only on the
relevant parts of the individuals (i.e., test cases) that affect the execution of the
target branches. 3) it implements a domain reduction mechanism to speed search
space exploration. Unlike previous search-based approaches, these strengths to-
gether enable the proposed approach to explore high complexity code in order
to achieve high branch coverage.

3 GAMDR

GAMDR consists of three different components: the Instrumenter, Static Ana-
lyzer, and Genetic Tester components.
- Instrumenter Component: In this component, the original source code
of the class under test (CUT) is instrumented at byte-code level to measure
coverage values and calculate the fitness function. We use Soot1 for analyzing
and instrumenting Java byte-code.

1 http://www.sable.mcgill.ca/



3

- Static Analyzer Component: The key idea behind our approach is to use
lightweight static analysis to identify relevant methods for each target branch,
and then use them during mutation operations. To this end, we perform back-
ward analysis for each target branch, and precisely identify if a parameter of
the method contains the target branch or if a member field of a class can help
to cover the target branch. For each member field, we use MDR to identify the
methods that modify the member field (the write-read relation). In addition,
if a parameter of the target method affects the coverage of the target branch,
we identify all the methods that write in the target method (the read-write

relation). If the identified parameter is not a primitive type, we identify the
methods’ return as the same type object that can be passed as an argument to
the target method (i.e., accessed-data relation).
- Genetic Tester Component: In our implementation, we use a similar GA
to that used in previous work [3, 4], but extend it to implement MDR [14].
1. Individual representation: We use an individual representation similar to

some previous work [4, 7] because it is easy to manipulate. Each individual
consists of a set of statements of length N , which is set to 80. Each statement
is a constructor, method call, field access, or array input.

2. Fitness Function: The fitness function uses branch distance (BD) and keeps
track of how close an individual is to covering all reachable but not-yet-
executed branches [3, 7].

f(i) =
∑
bj∈B

BD(bj , i) and BD(bj , i) =


0 if branch j is covered

k if branch j is reached

1 otherwise

The function BD(bj , i) shows how close an individual i is to cover the not-
covered branch j. Here BD is all target branches and k is a normalizing func-
tion with value within [0,1]; we use the normalization function: k = x

x+1 [2],
and x shows how far a predicate is from obtaining opposite value [7].

3. Genetic Operations: Our approach (GAMDR) implements common ge-
netic operators: selection, crossover, mutation, and elitism, to manipulate and
evolve successive populations. Following is a summary of these operators:

a) Selection : GAMDR implements tournament selection [11]. However, if two
individuals have the same fitness values, the shortest individual is selected to
prevent bloat [6].

b) Crossover : GAMDR implements a fixed single crossover point, where the
two selected individuals are cut at the middle, to avoid generating long off-
spring [6].

c) Mutation : After crossover, the individuals are subjected to mutation. Rather
than just randomly changing statements of the chosen individuals, GAMDR
uses MDR to direct the mutation operator towards relevant statements where
changes may help to result in more fit individuals and increase exploration
of the search space. Therefore, GAMDR randomly chooses a reached (but
not covered) branch and analyzes its predicates. Then, GAMDR precisely
identifies the relevant types of elements that are involved in execution of
the target branch, e.g. member field, parameter method, or/and constant



4

values. Consequently, GAMDR directs the mutation operations to explore
those identified relevant statements (constructors, methods, and parameters).
Finally, for a chosen individual with a length n, GAMDR randomly applies
one of the following operations with probability 1/3.

- Remove: All irrelevant statements are removed; additionally a chosen state-
ment from the identified relevant statements is removed from the individual
with a probability r, where r = 0.01.

- Insert: A random number r, where 1 ≤ r ≤ (N − n), of identified relevant
statements are added at a random position in the chosen individual.

- Change: Each identified relevant statement and parameter is changed in the
chosen individual with probability r, where r = 0.01.

d) Elitism : The best individuals are copied to the next new generation. The
population size is set to 100, and elitism rate is set to 10%.

4 Empirical Study

We compared the effectiveness of GAMDR in achieving branch coverage against
three different approaches: a simple GA (without MDR enabled) [3, 4], pure
random testing (RT) [5], and EvoSuite [7]. We used seven popular Java projects
as test subjects (Table 1). These projects are taken from the literature discussing
cases where SBST faces problems in achieving high branch coverage.

Table 1. Details of the test subjects.

Test Subject #Classes NCSS #Branches
Commons Codec 41 3,269 1,373
Commons CLI 11 677 288
Conzilla 13 377 120
jdom2 40 3,196 978
lang3 55 9,182 5052
NanoXML 26 1,984 571
Joda-Time 57 9,152 2,207
Total 243 27,837 10,589

We used identical configu-
rations for GAMDR and the
simple GA to ensure as fair
a comparison as possible. We
also used EvoSuite version
20130910 with the default
configuration. To compare RT
with GAMDR, we adopted
the proposed approach by
Ciupa et al. [5]; the length of
test cases in RT was set to
200 [8]. We ran each approach
30 times with a time limit of 5
minutes with different random seeds, and used JaCoCoVersion 0.7.52 to measure
coverage during test generation.

4.1 Effectiveness of GAMDR

Table 2 summarizes the average branch coverage percentags for the 30 experi-
ments. In the table, the highlighted values with bold text indicates that a par-
ticular testing approach obtained the highest coverage (with Mann-Whitney-
Wilcoxon test p-value < 0.05) for that test subject. For Commons Codec, GAMDR
was significantly better than EvoSuite and the pure GA, but not RT.

2 http://eclemma.org/jacoco/



5
Table 2. Branch Coverage achieved at 5 minutes

Test Subject RT(%) EvoSuite(%) GA(%) GAMDR(%)

Commons Codec 89.71 89.28 87.76 90.47
Commons CLI 95.96 95.67 91.97 95.81
Conzilla 70.05 82.79 73.78 91.85
Jdom2 83.58 81.22 80.02 83.03
lang3 88.48 78.64 86.98 89.43
NanoXML 62.87 61.34 62.51 69.88
Joda-Time 79.52 83.19 79.95 85.10

Table 2 shows that GAMDR outperforms other test approaches on Conzilla,
NanoXML and Joda-Time subjects. One major reason is that these subjects con-
tain classes which have constructors that call superclasses. These constructors
require calling methods that are in a correct order and have valid arguments.
For example, in the NanoXML subject, the constructor of the class CDATAReader
requires a valid StdXMLReader object, which is a concrete implementation of the
interface class IXMLReader. As a result, a valid sequence of method calls re-
quires a correct order to create the desired objects: a valid StdXMLReader object
must be created before a CDATAReader object. Despite the fact that the class
CDATAReader contains only 4 public methods, our experiment revealed that RT,
EvoSuite, and GA could only achieve 66%, 68%, and 71% branch coverage of
CDATAReader, respectively. This is because there is no guidance encoded in the
fitness function identifying which constructors, methods, or parameters must be
called to cover certain branches. In contrast, the static analysis used in GAMDR
helps to identify all relevant methods based on the fields they write, and acces-
sible constructors. For example, GAMDR identifies the StdXMLReader construc-
tors and the method stringReader because they both return objects that can be
used to replace the interface class type argument in the CDATAReader construc-
tor, i.e., accessed-data relation. In addition, GAMDR identifies the CDATAReader
constructor because it writes field reader, i.e., write-read relation. As a result,
during the mutation phase, GAMDR tries to generate test data and method
calls for these relevant methods and constructors instead of investing time on all
constructors, methods and parameters. Our results show that GAMDR achieves
90% branch coverage of the class CDATAReader, which is 23%, 22%, and 19%
higher than RT, EvoSuite, and GA, respectively.

The results also show GAMDR outperforms EvoSuite and GA on lang3, and
improves some over RT, becasue lang3 contains classes that contain a large num-
ber of method calls. For example, the ArrayUtils class contains 229 different
public methods to test, each of which takes primitive and/or array arguments.
RT achieves 99%, EvoSuites 68%, and GA 88% branch coverage of the class. We
speculate the low branch coverage of the EvoSuite and GA are because the num-
ber of public methods decreases the probability of mutations of relevant methods
and parameters to cover certain branches. GAMDR uses MDR to increase the
probability of useful mutations, and achieves 98% branch coverage.

The results indicate that MDR is indeed useful in helping to increase branch
coverage by identifying relevant methods and parameters that need to be mu-
tated in order to cover particular branches. The results also support the belief



6

that the applicability of the search-based test data generation techniques are
limited not only when the search space is large, but also when the search does
not take into account data dependencies within the class under test (CUT) [11].

5 Conclusion

This paper has introduced and evaluated GAMDR, which applies a genetic al-
gorithm (GA) to cover all target branches at the same time, and uses method
dependence relations (MDR) for improving choice of mutations. Our empirical
study shows that GAMDR achieves higher branch coverage than RT, EvoSuite,
and a simple GA, for complex hard-to-cover programs.

References

1. Aburas, A., Groce, A.: An improved memetic algorithm with method dependence
relations (mamdr). In: Quality Software (QSIC). pp. 11–20. IEEE (2014)

2. Arcuri, A.: It really does matter how you normalize the branch distance in search-
based software testing. Software Testing, Verification and Reliability 23(2), 119–147
(2013)

3. Arcuri, A., Yao, X.: A memetic algorithm for test data generation of object-oriented
software. In: Evolutionary Computation, 2007. pp. 2048–2055. IEEE (2007)

4. Baresi, L., Lanzi, P.L., Miraz, M.: Testful: an evolutionary test approach for java.
In: Software testing, verification and validation (ICST). pp. 185–194. IEEE (2010)

5. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Artoo. In: Software Engineering, 2008.
ICSE’08. pp. 71–80. IEEE (2008)

6. Fraser, G., Arcuri, A.: Handling test length bloat. Software Testing, Verification
and Reliability 23(7), 553–582 (2013)

7. Fraser, G., Arcuri, A.: Whole test suite generation. Software Engineering, IEEE
Transactions on 39(2), 276–291 (2013)

8. Groce, A., Fern, A., Pinto, J., Bauer, T., Alipour, A., Erwig, M., Lopez, C.:
Lightweight automated testing with adaptation-based programming. In: Software
Reliability Engineering (ISSRE). pp. 161–170. IEEE (2012)

9. Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Wegener, J.: The impact of
input domain reduction on search-based test data generation. In: Proceedings of
the ACM SIGSOFT symposium. pp. 155–164. ACM (2007)

10. Harman, M., Islam, F., Xie, T., Wappler, S.: Automated test data generation for
aspect-oriented programs. In: Proceedings of the Aspect-oriented software devel-
opment. pp. 185–196. ACM (2009)

11. McMinn, P.: Search-based software test data generation: a survey. Software testing,
Verification and reliability 14(2), 105–156 (2004)

12. Ribeiro, J.C.B., Zenha-Rela, M.A., de Vega, F.F.: Test case evaluation and input
domain reduction strategies for the evolutionary testing of object-oriented software.
Information and Software Technology 51, 1534–1548 (2009)

13. Salcianu, A., Rinard, M.: Purity and side effect analysis for java programs. In:
Verification, Model Checking, and Abstract Interpretation. vol. 3385, p. 199 (2005)

14. Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated
test generation. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. pp. 353–363. ACM (2011)


