
Software Quality Journal manuscript No.
(will be inserted by the editor)

Does Choice of Mutation Tool Matter?

Rahul Gopinath · Iftekhar Ahmed · Mohammad Amin Alipour · Carlos

Jensen · Alex Groce

Received: date / Accepted: date

Abstract Though mutation analysis is the primary

means of evaluating the quality of test suites, it suf-

fers from inadequate standardization. Mutation anal-

ysis tools vary based on language, when mutants are

generated (phase of compilation), and target audience.

Mutation tools rarely implement the complete set of

operators proposed in the literature, and most imple-

ment at least a few domain-specific mutation operators.

Thus different tools may not always agree on the mu-

tant kills of a test suite. Few criteria exist to guide a

practitioner in choosing the right tool for either evalu-

ating effectiveness of a test suite or for comparing dif-

ferent testing techniques. We investigate an ensemble of

measures for evaluating efficacy of mutants produced by

different tools. These include the traditional difficulty

of detection, strength of minimal sets, and the diversity
of mutants, as well as the information carried by the

mutants produced. We find that mutation tools rarely

agree. The disagreement between scores can be large,

and the variation due to characteristics of the project

— even after accounting for difference due to test suites

— is a significant factor. However, the mean difference

between tools is very small indicating that no single

tool consistently skews mutation scores high or low for

all projects.

These results suggest that experiments yielding small

differences in mutation score, especially using a single

tool, or a small number of projects may not be reliable.

Rahul Gopinath
EECS Dept.
Oregon State University
Tel.: +724-856-0067
E-mail: gopinatr@oregonstate.edu

Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen,
Alex Groce
Oregon State University

There is a clear need for greater standardization of mu-

tation analysis. We propose one approach for such a

standardization.

Keywords Mutation Analysis · Empirical Analysis ·
Software Testing

1 Introduction

Mutation analysis [1,2] is one of the best known meth-

ods for evaluating the quality of a test suite. Traditional

mutation analysis involves exhaustive generation of first

order faults, under the assumption that programmers

make simple mistakes (the competent programmer hy-

pothesis), and that most complex faults can be found by

tests able to detect simpler faults (the coupling effect).
The ability of a test suite to detect the injected mutants

is taken to represent its effectiveness in detecting real

faults.

Mutation analysis has been validated many times

in the past. Daran et al. [3] Andrews et al. [4,5], Do et

al. [6], and more recently Just et al. [7] suggest that fail-

ures generated by mutants resemble failures from real

faults, that mutation analysis is capable of generating

faults that resemble real bugs, that the ease of detection

for mutants is similar to that for real faults, and that

the effectiveness of a test suite in detecting real faults

is reflected in its mutation score.

These qualities have led developers to create numer-

ous mutation analysis tools [8,9], with different tools for

different languages, virtual machines, and introducing

mutations at various stages — including design level

and specification [10,11], directly from source code [12,

13], abstract syntax tree [14–16], intermediate represen-

tation [17], byte code of various virtual machines [18,

19], and even machine code [20]. This also means that

2 Rahul Gopinath et al.

there is often no direct translation between modifica-

tions carried out at a latter phase to an earlier phase1,

or a direct first-order translation between an earlier

phase and a latter one2. Tools may also choose to im-

plement uncommon domain-specific mutation operators

such as those targeting multi-threaded [22] code, us-

ing memory-related [23] operators, higher order muta-

tions [13], object-oriented operators [24,25], or database-

targeting operators [26].

Not all mutants are similar in their fault emulation

capabilities [27–29]. Redundant mutants tend to add

noise [30, 31], and undetected equivalent mutants de-

flates the measured mutation score [32–36]. There may

be numerous easy to detect mutants, and a few stub-

born mutants that are hard to find [37].

This presents a predicament for the software prac-

titioner. There is no guideline for choosing a tool that

is best suited for evaluating quality of a test suite, or

for comparing multiple testing techniques. This paper

proposes multiple measures to evaluate different tools,

and also provide a comparative benchmark for existing

tools.

One measure that is often used for comparing mu-

tants produced by different tools is to consider the mean

scores obtained by different tools on similar subjects.

It is assumed that the mutation tool with the lowest

mean score produced the hardest to find (and hence

best) mutants. However, this criteria fails to account

for problems due to equivalent mutants. Equivalent mu-

tants are undetectable, and hence deflate the mutation

score. This causes skew in favor of tools that produce

numerous equivalent mutants. It is also sometimes as-

sumed that tools generating only a small number of

mutants are better than those generating a larger num-

ber of mutants for a program. In fact, some tools ap-

ply selective mutation by default, resulting in a smaller

number of mutants. However, we note that selective mu-

tation has questionable benefits [38, 39] and that, any

large set of mutants can be reduced to a much smaller

number by random sampling without significant loss of

accuracy [40] or effectiveness [38]. Hence, generating a

smaller number of mutants is in itself not necessarily a

desirable attribute.

The traditional way to evaluate a selected set of

mutants is to first compute the minimum adequate test

suite required for that set of mutants, and then evaluate

1 Very often, a single high level statement is implemented
as multiple lower level instructions. Hence, a simple change in
assembly may not have an equivalent source representation.
See Pit switch mutator [21] for an example which does not
have a direct source equivalent.
2 See Pit return values mutator [21] for an example

where first order source changes imply much larger bytecode
changes.

the effectiveness of of that minimum test suite against

the larger set from which the mutants were selected. If

the minimal adequate test suite for the selected set of

mutants is still adequate for the larger set of mutants,

the selected set is deemed equal in effectiveness to the

larger set of mutants. This evaluation criteria can be

extended for non-adequate test suites trivially by con-

sidering only the detected mutants. However, we note

that this criteria can not provide a standard measure for

comparing mutants from different tools because it re-

quires a superset of mutants to compare against. Since

we are trying to come up with a standard score, we have

to consider any mutant that can possibly be introduced

by a mutation tool. That is, the full set of mutants that

is required for a standard measure is the complete set

of faults a program can have, which is infeasible to eval-

uate.

Previous comparisons of mutation tools [9, 41–43]

have focused on syntactic features, the number of mu-

tants produced and tool support, with few considering

the actual semantic3 characteristics of mutants. Mu-

tant semantics assumes new importance in the wake of

recent questions regarding the efficacy of various muta-

tion tools [44–46].

We benchmark multiple tools using an ensemble of

measures from different fields. We use raw mutation

scores (without removing non-detected mutants first

— which may be subject to skew due to equivalent

mutants) and refined mutation scores (removing non-

detected mutants which may contain equivalent mu-

tants), and compare the scores produced by different

random subsets of test suites. Next we consider the

strength4 of mutants produced, using the minimal set
of mutants [47, 48] originally formulated by Kintis et

al. [47] as disjoint mutant set as a measure of the util-

ity of a mutant set, and also a slightly relaxed criterion

— using non-subsumed (surface) mutants rather than

a minimal set for comparison. We then measure the di-

versity5 of a set of mutants using statistical measures

3 By semantics, we mean the actual behavior (in contrast
to the static syntax) of the mutants. That is, some mutants
while syntactically different, are actually indistinguishable in
their behavior. Similarly mutants may be hard or easy to
detect, and a set of mutants may encode more difference in
behavior than another set. We use measures such as mutual
information and entropy to measure the ability of a set of
mutants to provide a diverse a behavior set.
4 For any set of mutants, the strength of a test suite

required to detect them depends on the number of non-
redundant mutants within that set. Thus, for this paper, we
define the strength of a set of mutants as the number of non-
redundant mutants within that set.
5 Diversity of a set of mutants refers to how different one

can expect any two mutants from the set to be, in terms of
the tests that kill them. For example, say we have mutant set

Does Choice of Mutation Tool Matter? 3

such as sum of covariance (which we have shown previ-

ously [40] to be related to the sample size required for

any set of mutants for accurate estimation of mutation

score), and the mutual information of mutants (which

measures the redundancy of a mutant set).

Finally, consider that a test suite is often considered

to be one of the ways to specify program behavior [49].

The quality of the test suite is defined by how much

of the specification it is able to accurately provide and

verify [50,51]. Hence, a set of mutants of a program may

be considered to represent the program behavior with

respect to the possibilities of deviation, and the infor-

mation carried by a set of mutants is a reasonable mea-

sure of its quality. We use entropy as a measure of the

information content of a set of mutants. We also evalu-

ate whether the number of mutants used has an impact

on the scores by using a constant number of mutants

(100 mutants sampled 100 times) in each measurement.

We further evaluate whether the phase of generation

(source or bytecode) or the audience targeted (indus-

try or research) has an impact on the measures since

these are seen as causes for variation [45].

Our evaluation suggests that there is often a wide vari-

ation in the mutation scores for mutants produced by

different tools (low correlation by R2 and τb). However,

there is very little difference in mean across multiple

projects.

Comparing the quality of mutants produced, there

is some variation between tools, with Pit producing the

most diverse and strongest set of mutants. However, the

difference with other tools is often small. We also note

that project is a significant factor on all measures, gen-

erally larger than the impact of tool, phase of generation

or target audience, even after accounting for the vari-

ability due to difference of test suites (same test suites

are used for all tools) and number of mutants. This

suggests that individual project characteristics have a

larger impact on the mutants produced than the tool

used.

The rest of this paper is organized as follows. The

previous research that is related to ours is given in Sec-

tion 2. Our methodology is given in Section 3, and Sec-

tion 3.4 details the different measures we evaluated. The

results from the empirical analysis is given in Section 4,

and its implications are discussed in Section 5. Threats

to validity of our research is discussed in Section 6, and

we summarize our research in Section 7.

A, and killing tests given by {(m1, t1), (m2, t2)}, and mutant
set B and killing tests given by {(m1, t1), (m2, t2), (m3, t3)},
both have similar diversity, while another set C given by
{(m1, t1), (m2, t1)} has a different diversity.

2 Related Work

The idea of mutation analysis was first proposed by

Lipton [1], and its main concepts were formalized by

DeMillo et al. in the “Hints” [52] paper. The first im-

plementation of mutation analysis was provided in the

PhD thesis of Budd [53] in 1980.

Previous research on mutation analysis suggests that

it subsumes different coverage measures, including state-

ment, branch, and all-defs dataflow coverage [54–56].

There is also some evidence that the faults produced by

mutation analysis are similar to real faults in terms of

error trace produced [3] and the ease of detection [4,5].

Recent research by Just et al. [7] using 357 real bugs

suggests that mutation score increases with test effec-

tiveness for 75% of the cases, which was better than the

46% reported for structural coverage.

The validity of mutation analysis rests upon two

fundamental assumptions:“The competent programmer

hypothesis” – which states that programmers tend to

make simple mistakes, and“The coupling effect”– which

states that test cases that can detect all small faults

will, with high probability, detect a large portion of

complex faults composed of these small faults [52]. Ev-

idence for the coupling effect comes from theoretical

analysis by Wah [57, 58], and empirical studies by Of-

futt [59,60] and Langdon [61]. The competent program-

mer hypothesis is harder to verify, however, the mean

syntactic difference between faults was quantified in our

previous work [62].

One problem in mutation analysis is the existence

of equivalent mutants — mutants that are syntactically

different, but semantically indistinguishable from the

original program, leading to incorrect mutation score,

because in general, identifying equivalent mutants is

undecidable. The work on identifying equivalent mu-

tants is generally divided into prevention and detec-

tion [36], with prevention focusing on reducing the in-

cidence of equivalent mutants [37] and detection focus-

ing on identifying the equivalent mutants by examining

their static and dynamic properties. Measures for de-

tection include efforts to identify them using compiler

equivalence [33, 36, 63] dynamic analysis of constraint

violations [35,64], and coverage [34].

A similar problem is that of redundant mutants [30],

where multiple syntactically different mutants repre-

sent a single fault, resulting in a misleading mutation

score. A number of studies have measured the redun-

dancy among mutants. Ammann et al. [48] compared

the behavior of each mutant under all tests and found

a large number of redundant mutants. More recently,

Papadakis et al. [36] used the compiled representation

of programs to identify equivalent mutants. They found

4 Rahul Gopinath et al.

Table 1: Mutation data computed from Delahaye et al. [9]

Subject programs, test suites and mutation scores

Project TestSuite Judy Major Pit Jumble Javalanche
codec1.5 380 78.33 70.49 91.35 84.94
codec1.7 519 81.42 72.52 88.23 76.98
codec1.6 1,973 72.17 85.54 79.99
jdom2 1,813 71.83 82.24 44.99
jopt-simple 677 87.36 80.27 94.62 43.67 83
json-simple 3 51.85 21.37 58.52 53.90 68

Number of mutants

Project Judy Major Pit Jumble Javalanche
codec1.5 5,302 5,809 1,826 1,082
codec1.7 7,206 6,922 2,651 1,525
codec1.6 19,472 9,544 4,657
jdom2 6,699 4,978 1,958
jopt-simple 1,060 674 539 229 100
json-simple 677 1,783 393 141 100

that on average 7% of mutants are equivalent and 20%

are redundant.

Another important area of research has been reduc-

ing the cost of mutation analysis, broadly categorized as

do smarter, do faster, and do fewer by Offutt et al. [65].

The do smarter approaches include space-time trade-

offs, weak mutation analysis, and parallelization of mu-

tation analysis. The do faster approaches include mu-

tant schema generation, code patching, and other meth-

ods to make the mutation analysis faster as a whole. Fi-

nally, the do fewer approaches try to reduce the number

of mutants examined, and include selective mutation

and mutant sampling.

Various studies have tried to tackle the problem of

approximating the full mutation score without running

a full mutation analysis. The idea of using only a subset

of mutants (do fewer) was conceived first by Budd [54]

and Acree [66] who showed that using just 10% of the

mutants was sufficient to achieve 99% accuracy of pre-

diction for the final mutation score. This idea was fur-

ther investigated by Mathur [67], Wong et al. [68, 69],

and Offutt et al. [70] using the Mothra [71] mutation
operators for FORTRAN.

Barbosa et al. [29] provides guidelines for operator

selection, such as considering at least one operator in

each mutation class, and evaluating empirical inclusion

among the operators. Lu Zhang et al. [72] compared

operator-based mutant selection techniques to random

mutant sampling, and found that random sampling per-

forms as well as the operator selection methods. Ling-

ming Zhang et al. [73] compared various forms of sam-

pling such as stratified random sampling based on op-

erator strata, based on program element strata, and

a combination of the two. They found that stratified

random sampling when strata were used in conjunc-

tion performed best in predicting the final mutation

score, and as few as 5% of mutants were a sufficient

sample for a 99% correlation with the actual muta-

tion score. The number of samples required for larger

projects was found to be still smaller [74], and recently,

it was found [40] that 9, 604 mutants were sufficient for

obtaining 99% accuracy for 99% of the projects, irre-

spective of the independence of mutants or the size of

the program.

A number of researchers have tried to approximate

mutation score. Gligoric et al. [75] found that branch

coverage is highly correlated with mutation score. Cai

et al. [76] found that decision coverage was closely cor-

related with mutation coverage. Namin et al. [77] found

that fault detection ratio was well correlated with block

coverage, decision coverage, and two different data-flow

criteria. Our analysis [78] of 232 projects using both

manually generated test suites and test suites gener-

ated by randoop suggests that, of the different cover-

age criteria we tested — statement, branch, and path

— statement coverage had the highest correlation with

mutation score.

Researchers have evaluated different mutation tools

in the past. Delahaye et al. [9] compared tools based

on fault model (operators used), order (syntactic com-

plexity of mutations), selectivity (eliminating most fre-

quent operators), mutation strength (weak, firm, and

strong), and the sophistication of the tool in evaluating

mutants. The details of subject programs and muta-

tions are given in Table 16, and the correlations found

(computed by us using the reported data in the paper)

are given in Table 2.

Our evaluation differs from their research in focus-

ing on the semantic impact of mutants produced by

different tools.

3 Methodology

Mutation tools vary along different dimensions. As Am-

mann suggests in his keynote [79], tools targeting differ-

ent communities tend to have different priorities, with

theoretical completeness a bone of contention between

6 Note that the LOC given by Delahaye et al. is ambigu-
ous. The text suggests that the LOC is that of the program.
However, checking the LOC of some of the programs such as
jopt-simple and commons-lang suggests that the given LOC
is that of the test suite (and it is reported in the table as de-
tails of the test suite). Hence we do not include LOC details
here.

Does Choice of Mutation Tool Matter? 5

Table 2: Correlation for the mutation scores — Data

from Delahaye et al. [9]

R2 τb %Difference µ σ
Jumble× Judy 0.15 -0.33
Jumble×Major 0.16 -0.33 -0.70 26.10
Jumble× Pit 0.26 0.07 -19.34 19.80
Judy ×Major 1 1
Judy × Pit 0.98 0.67
Major × Pit 0.96 0.60 -18.64 9.70

Table 3: Subject programs, test suite size and

mutation scores

Project TestSuite Judy Major Pit
annotation-cli 126 42.42 43.27 59.38
asterisk-java 214 13.54 21.54 20.64
beanutils 1,185 50.71 42.69 56.78
beanutils2 680 59.47 52.49 61.85
clazz 205 24.46 39.45 30.20
cli 373 71.17 76.61 86.14
collections 4,407 76.99 58.63 34.69
commons-codec 605 92.72 73.52 82.66
commons-io 964 88.38 70.65 77.34
config-magic 111 55.19 29.80 60.69
csv 173 53.01 68.08 79.68
dbutils 239 44.23 65.20 47.34
events 206 77.14 70.03 59.95
faunus 172 2.55 58.65 49.07
java-api-wrapper 125 14.95 84.91 76.03
java-classmate 219 66.17 77.23 90.26
jopt-simple 566 84.50 79.32 94.50
mgwt 103 40.72 6.61 8.85
mirror 303 58.73 74.73 75.47
mp3agic 206 72.46 51.70 54.51
ognl 113 13.96 6.46 56.32
pipes 138 65.99 62.64 67.66
primitives 2,276 93.35 71.33 35.71
validator 382 50.27 59.06 68.21
webbit 146 73.95 67.17 52.41
µ 569.48 55.48 56.47 59.45
σ 930.91 26.03 21.78 21.68

researchers and industry. Further, mutants generated

in different phases of program compilation often do not

have first order equivalents in other phases. For exam-

ple, changes in bytecode may not have a representation

in the source code. Similarly changes in source may have

a larger impact in the byte code. Hence it is important

to ensure that representatives of as many different di-

mensions of variation are included.

The major avenues of variation are: variation due

to mutant distribution in individual projects, variation

due to the language used, and variation due to the mu-

tation generation tools used (especially the phase dur-

ing which the mutants were produced). Unfortunately,

the language choice is not orthogonal to other sources of

variation. That is, language choice determines projects

and the tool used, which makes it difficult to compare

Table 4: Number of mutants by tools in subject

programs

Project LOC Judy Major Pit
annotation-cli 870 777 512 981
asterisk-java 29,477 12,658 5,812 15,476
beanutils 11,640 6,529 4,382 9,665
beanutils2 2,251 990 615 2,069
clazz 5,681 2,784 2,022 5,165
cli 2,667 2,308 1,411 2,677
collections 25,400 1,006 10,301 24,141
commons-codec 6,603 44 7,362 9,953
commons-io 9,472 164 6,486 9,799
config-magic 1,251 527 650 1,181
csv 1,384 1,154 991 1,798
dbutils 2,596 1,159 677 1,922
events 1,256 2,353 615 1,155
faunus 9,000 3,723 3,771 9,668
java-api-wrapper 1,760 929 611 1,711
java-classmate 2,402 1,423 952 2,543
jopt-simple 1,617 497 695 1,790
mgwt 16,250 1,394 6,654 12,030
mirror 2,590 1,316 449 1,876
mp3agic 4,842 1,272 4,822 7,182
ognl 13,139 8,243 5,616 21,227
pipes 3,513 590 1,171 3,001
primitives 11,965 14 4,916 11,312
validator 5,807 3,320 3,655 5,846
webbit 5,018 144 1,327 3,707
µ 7,138.04 2,212.72 3,059 6,715
σ 7,471.65 2,931.64 2,786.07 6,369.23

different tools and variation introduced due to projects.

Hence, we avoided variation due to languages, and fo-

cused solely on Java projects.

3.1 Project Selection

Keeping the goal of real world projects that best rep-

resent real world software, we looked for large Java

projects in Github. We searched for projects that had

at least 100 test cases, and had at least 1,000 lines of

code. Since the number of projects thus obtained was

small, we added annotation-cli from Github because it

had close to 1,000 lines of code, and could be compiled

and tested successfully. To ensure that our projects were

representative, we also relied on projects from Apache

foundation which are known to be of high quality.

We also selected only those projects that could be

compiled and tested successfully using multiple muta-

tion analysis tools. Thus we found 25 large Java projects

from Github [80] and Apache Software Foundation [81],

that had large test suites (Table 3).

Note that we have a much larger set of large sized

projects (25 projects with mean 7,138 LOC) than pre-

vious studies such as Ammann et al. [48], Sridharan et

al. [82], Namin et al. [27], Zhang et al. [72], all of which

use the Siemens test suites and programs (7 projects

6 Rahul Gopinath et al.

with mean 312 LOC), Zhang et al. [73] (7 projects with

mean 15,083 LOC), and Zhang et al. [74] (12 projects

with mean 6,209 LOC). While our test suites are small

(mean=569,sd=931) in comparison to most previous

studies using the Siemens test suites7 —

Ammann et al. [48] (mean=3,294, sd=1,588), Sridharan

et al. [82] (mean=3,115, sd=1,572), Namin et al. [27]

(mean=3,115, sd=1,572), Zhang et al. [72] (mean=3,115,

sd=1,572), Zhang et al. [73] (mean=3,115, sd=1,572),

and Zhang et al. [74] (mean=81, sd=29), we assume

that the number and size of projects, and the extent of

comparison more than makes up for it.

3.2 Tool Selection

We started our evaluation with the list of all known

tools for Java which were available (the first mutation

system, JavaMut [84] is no longer available). We also

discarded Insure++ [85] which did not actually imple-

ment mutation testing [86, 87]. The tools we investi-

gated were Pit [18], Major [16], Judy [42], Javalanche [88],

Bacterio [89], MuJava [90], Jumble [19], Jester [91], and

Mutator [92]. Our choice of mutation tools for assess-

ment were driven by three key concerns:

First, each tool had to provide a way to evaluate

the full test suite against each mutant, and obtain the

pass or fail status of each mutant against each test (kill

matrix). This eliminated Mutator, Jester, and Jumble.

While unmodified Pit does not provide the full test kill

matrix, we modified Pit to run the full test suite against

each mutant (as has been done in numerous studies

using Pit), and provide the result.

Second, we had to be able to get it to work in a

distributed cluster, which provided only command line

access. Bacterio could not work in a non GUI environ-

ment8.

Third, and most importantly, the tools had to work

with a majority of the projects and test suites we had.

MuJava could not handle package hierarchies. Exam-

ination of the source suggested that fixing this short-

coming was non-trivial. We discarded Javalanche for

several issues: 1) Javalanche had problems in analyzing

the projects we chose; while we could get it to work on

simple projects, it had problems with newer projects

and Junit libraries. A large number of tests caused the

JVM to either hang or crash; eliminating these, the

7 The Siemens test suite is a test suite curated by re-
searchers [83] and this is at best a questionable representative
for real world test suites.
8 Even though a script mode is available, it still requires

GUI to be present, and communication with its authors did
not produce any assistance on this point.

●

●●

Pit

M
ajo

r

Ju
dy

industry

research

byte source
Phase

A
ud

ie
nc

e

Fig. 1: Tools used for benchmark

tests that remained were a small fraction of the orig-

inal test suites. 2) Javalanche was last updated in 2012.

3) Javalanche uses only selective mutation, while other

tools examined leave that choice to the tester. 4) We

note that Javalanche could not complete successfully

for a majority of the projects in the previous compar-

ative study by Delahaye [9]). Hence we removed both

MuJava and Javalanche from the benchmark. Our pro-

cess of selection is detailed in Figure 2.

Thus we were left with three tools: (1) Pit, which

uses byte code mutation and is a tool used in industry,

(2) Judy, which uses byte code mutation and is mostly

used by researchers, and (3) Major, which uses manipu-

lation of the AST, providing source-based mutants, and

is primarily used by researchers. Note that as Figure 1

shows, we have a representative for all variations except

(source, industry). We also note that Pit and Major are

polar opposites along both dimensions. We worked with

the authors of each tool to ensure that we had the latest

version (Judy 2.1.x, Major 1.1.5, Pit 1.09).

3.3 Analysis

For each tool, we used the settings for the maximum

number of operators to mutate. Unlike other structural

coverage measures such as statement, branch or path

coverage, there is very little agreement on what consti-

tutes an acceptable set of mutants in mutation analysis.

This means that we can expect a wide variation in the

number of mutants produced. The mutants produced by

each tool for each program is given in Table 4. A box-

plot of the number of mutants by each tool is given in

Figure 3. Unfortunately, this also means that the muta-

tion scores do not necessarily agree as we see in Table 3.

One of the culprits is the presence of equivalent mutants

— mutants that do not produce a measurable semantic

variation to the original program. There is no foolproof

way of separating equivalent mutants from the merely

9 In the case of Pit we extended Pit to provide a more com-
plete set of mutants; a modification which was latter accepted
to the main line (Pit 1.0).

Does Choice of Mutation Tool Matter? 7

tools

(a)

(b)

(c)

discard

discard

discard

mutate(tool,project)discard discard

measure

projects

(A)

(B)

(C)

discard

discard

discard

(a) Is the tool available working?
no: 2 tools

(b) Does it provide a kill matrix?
no: 3 tools

(c) Does it provide a CLI?
no: 1 tool

(d) Did it work with most projects?
no: 1 tool

(A) Does it have a test suite?
no: 1004 projects

(B) Does it compile?
no: 470 projects

(C) Is the test suite green?
no: 168 projects

(D) Did it work with most tools, and non trivial?
no: 133 projects

10 tools

no

no

no

reject

yes

yes

yes

25 projects3 tools

no

no

no

reject

1,800 projects

yes

yes

yes

sample

Fig. 2: The process of selection

●● ●

●●

●

Pit

Major

Judy

0 2500 5000 7500 10000 12500
Tool

M
ut

an
ts

Fig. 3: Number of mutants produced by different tools

across all projects in our sample. The cross in the

center is the mean while the central black line is the

median.

stubborn mutants at this time. Hence, we removed the

mutants that were not killed by any of the test cases as

done in similar studies [27, 72–74]. We call the original

set the raw mutant set (vs. refined mutant set).

3.3.1 Sampling

The sampling was conducted in two dimensions. First,

we sampled the test cases of each project randomly in

increasingly smaller fractions { 12 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}. For

each fraction, we took 100 samples, that is, using the

complete set of mutants, but with 1
2 the number of test

cases of the full suite, 1
4 the number of test cases of

the full suite etc. The mutation score was computed for

each.

Second, we sampled 100 mutants each from the re-

fined set of mutants for each project. This was again

done 100 times using the complete test suite for each

project. That is, the effective size of sampling was 10, 000.

8 Rahul Gopinath et al.

This sample size is of sufficient accuracy as recommended

in our previous study on mutant sampling [40].

3.4 Measures

We considered multiple measures that can lead to in-

sights about the characteristics of mutants. For each,

we rely on two different measures of correlation — R2

and Kendall’s τb. For a detailed discussion on why both

were used, see Appendix A.1

We also provide the mean difference between the

scores (denoted by Difference µ in the table), and the

standard deviation (denoted by σ in the table) for this

measurement. The mean difference is important as it

provides the effect size — the consistent difference be-

tween scores produced by two tools if they have a high

correlation and a low spread (standard deviation). That

is, even if two tools are found to be different with sta-

tistical significance10, they may not be practically dif-

ferent if the mean difference is in small percentages.

Similarly a large spread (standard deviation) indicates

that there is a wide variation in the difference, while a

small spread indicates that the mean difference is con-

sistent across samples.

For each measure, one common question was whether

the phase of generation or target audience have an im-

pact. To answer this question, we rely on analysis of

variance. By running ANOVA11 on a model contain-

ing project, phase and audience we determine whether

the factor considered has an impact in predicting muta-

tion score. The ANOVA equations in general are given

in Equation 1, where we compare the ability of each

model to predict the variability in the measure being

analyzed.

µ{Measure|Project, Phase}= Project+ Phase
µ{Measure|Project, Audience}= Project+Audience

µ{Measure|Project, Tool}= Project+ Tool
µ{Measure|Project}= Project

(1)

Another question is the impact of tools after con-

trolling for the number of mutants produced. To answer

10 Statistical significance is the confidence we have in our
estimates. It says nothing about the effect size. That is, we
can be highly confident of a small consistent difference, but
it may not be practically relevant.
11 Analysis of variance — ANOVA — is a statistical proce-
dure used to compare the goodness of fit of statistical models.
It can tell us if a variable contributes significantly (statisti-
cal) to the variation in the dependent variable by comparing
against a model that does not contain that variable. If the
p-value — given in tables as Pr(> F) — is not statistically
significant, it is an indication that the variable contributes
little to the model fit. Note that the R2 reported is adjusted
R2 after adjusting for the effect of complexity of the model
due to the number of variables considered.

this question, we sampled 100 mutants at a time from

each project 100 times.

We use the following measures for evaluating the

quality of mutants

3.4.1 Raw mutation score

The simple mutation scores are one of the traditional

means of comparison between tools, with tools produc-

ing low mean scores deemed to have created hard to

detect, and hence good mutants. There is little gain in

randomly sampling test suites both for raw and refined

mutation analysis. Hence, we chose to sample the test

suites only for computing refined mutation score.

3.4.2 Refined mutation score

The problem with equivalent mutants is that, without

identifying them, the true mutation score can not be

determined. This means that the premise of mutation

analysis — an exhaustive analysis of all faults implies an

exhaustive analysis of all failures — can not be fulfilled.

As done in previous studies [27, 72–74] we remove the

mutants that were not detected from our pool, leaving

mutants that were detected by at least one test case.

Next, we randomly sample progressively smaller frac-

tions of test suites, with 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 and 1

64 of the

original test suite. This is repeated 100 times, and the

mutation scores of each sample are taken.

3.4.3 Minimal set of mutants

One of the problems with mutation analysis is that a

number of faults map to the same failure. This leads

to redundant mutants which may inflate the mutation

score of a program if any one of them is killed, thus

skewing the results. Ammann et al. [48] came up with a

practical means of avoiding the effects of redundant mu-

tants. They make use of the concept of dynamically sub-

suming mutants. A mutant is dynamically subsumed by

another if all the tests that detect the former is guaran-

teed to detect the latter — which in effect means that

the latter is weaker than the former. A minimal test

suite for a set of mutants is any test suite from which

removing even a single test case causes the mutation

score to drop. That is, the minimal set of mutants is as

effective as the full set of mutants, and hence may be

considered as a reasonable measure of the effectiveness

of a set of mutants.

An adequate test suite is called a minimum test suite

when it is the smallest test suite that is sufficient to kill

all mutants produced from a program. A set of mutants

is called a minimal set of mutants or a disjoint set of

Does Choice of Mutation Tool Matter? 9

mutants when such a set is the smallest set of mutants

that requires all test cases in the minimum test suite

for complete detection.

3.4.4 Surface mutants

One of the problems with the minimal set of mutants

from minimal test suites is that it is rather extreme

in terms of reduction. The total number of mutants

in a minimal set of mutants is same as the minimal

test suite, and hence is bounded by the size of the test

suite. However, the test suite of most programs is much

smaller than the complete set of mutants. Hence, it may

be argued that minimal set of mutants as given by Am-

mann et al. [48] may miss actual mutants which map

to different failures than the ones uniquely checked for

by the minimal test suite. To avoid this problem, we

relax our definition of minimality in mutants. That is,

we remove the requirement that we use the minimal

test suite before removing subsumed mutants, and in-

stead use the results from full test suite to obtain non-

subsumed mutants, which we call surface mutants.

A set of test cases is called unique or distinct when

no two tests in that set have the same mutant kills. A

set of mutants is called a surface set of mutants when

such a set is the smallest set of mutants that requires all

test cases in a unique test suite for complete detection.

3.4.5 Covariance between mutants

We have shown previously [40] that for mutation analy-

sis, the maximum number of mutants to be sampled for

a given tolerance has an upper bound provided by the

binomial distribution. The covariance between mutants

determines the size of the sample required. That is, the

larger the covariance (or correlation) between mutants,

the smaller the diversity. Hence, the sum of the covari-

ance can be used to measure the independence of the

underlying mutants. For a detailed discussion on covari-

ance, see Appendix A.2. The most useful set of mutants

only includes mutants that are completely independent

of each other, and the least useful set of mutants only

includes mutants that are completely dependent (re-

dundant).

3.4.6 Mutual information between mutants

Covariance between mutants is a measure of the qual-

ity of mutants. The more independent mutants are, the

lower the covariance. There is a measure from infor-

mation theory that lets us evaluate the redundancy of

mutants more directly — mutual information. See Ap-

pendix A.3 for further information on mutual informa-

tion.

3.4.7 Entropy carried by mutants

The measures we introduced (minimal set, surface set,

covariance) evaluated the redundancy in a set of mu-

tants. Another way to think about a set of mutants is

to think of mutants as expressing all possible divergence

from the specifications of a program, and a test suite

can be thought of as carrying information about the

specification of the program. This suggests that a mea-

sure of information contained in the mutant×test-case

matrix can be reasonable measure of goodness of a set

of mutants. See Appendix A.4 for more information on

entropy.

4 Results

4.1 Raw mutation score

annotation−cli

asterisk−java

beanutils

beanutils2

clazz

cli

collections

commons−codec

commons−io

config−magic

csv

dbutils

events

faunus

java−api−wrapper

java−classmate

jopt−simple

mgwt

mirror

mp3agic

ognl

pipes

primitives

validator

webbit

0.00 0.25 0.50 0.75
Mutation score

P
ro

je
ct

Tool Pit Major Judy

Fig. 4: Distribution of raw mutation score by different

tools: mutation scores from different tools rarely

agree, and none of the tools produce a consistently

larger or smaller score compared to the other tools.

We use different visualizations to inspect the distri-

bution of mutation scores. Figures 4 and 5 show the

distribution of mutation score, and the mean values re-

spectively. Note that this is for raw mutants (without

removing equivalent mutants and sampling). The cor-

relations between mutation tools are given in Table 5.

A few observations are in order. The first is that the

correlation between the mutation scores from different

10 Rahul Gopinath et al.

Pit

Major

Judy

0.00 0.25 0.50 0.75
Mutation score

To
ol

Fig. 5: Mean raw mutation score produced by different

tools. Mutation scores produced by different tools are

on average not consistently larger or smaller compared

to other tools.

Table 5: Correlation between mutation tools

R2 τb %Difference µ σ
Judy × Pit 0.37 0.27 -3.97 26.93
Judy ×Major 0.52 0.41 -0.99 23.72
Pit×Major 0.67 0.54 2.98 17.53

Table 6: Model Fit – mutation score for raw mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.12 0.0000
phase 1 0 0 0.06 0.8034
Residuals 49 1.30 0.03

Model fit with phase R2 =0.5

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.18 0.0000
audience 1 0.02 0.02 0.77 0.3836
Residuals 49 1.28 0.03

Model fit with audience R2 =0.51

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.10 0.0000
tool 2 0.02 0.01 0.40 0.6713
Residuals 48 1.28 0.03

Model fit with tool R2 =0.5

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.20 0.0000
Residuals 50 1.30 0.03

Base model fit R2 =0.51

tools is weaker than we expected for a standard mea-

sure. However, the mean difference in mutation scores

is less than 4% (paired t− test p < 0.05). The standard

deviation is high, indicating a large spread.

Q: Does the phase of generation or target audience have

an impact?

As Table 6 shows, ANOVA suggests that there is

no evidence that a complex model containing either of

the variables phase or audience contributes to a better

model fit for raw mutation scores.

Table 7: Correlation between mutation tools for

refined mutants (1
2x test suite sample)

Tool R2 τb %Difference µ σ TestSuite
Judy × Pit 0.55 0.41 1.07 11.94 1/2
Judy ×Major 0.54 0.42 0.92 12.16 1/2
Pit×Major 0.66 0.44 -0.16 7.74 1/2
Judy × Pit 0.56 0.44 3.14 15.76 1/4
Judy ×Major 0.63 0.47 2.22 14.70 1/4
Pit×Major 0.61 0.45 -0.92 11.37 1/4
Judy × Pit 0.52 0.42 3.07 19.78 1/8
Judy ×Major 0.61 0.49 1.82 18.26 1/8
Pit×Major 0.62 0.49 -1.25 12.70 1/8
Judy × Pit 0.47 0.35 3.10 19.57 1/16
Judy ×Major 0.61 0.46 1.41 17.28 1/16
Pit×Major 0.63 0.50 -1.69 12.63 1/16
Judy × Pit 0.52 0.39 0.67 17.27 1/32
Judy ×Major 0.63 0.48 -0.69 15.64 1/32
Pit×Major 0.69 0.52 -1.36 10.65 1/32
Judy × Pit 0.51 0.38 0.35 14.22 1/64
Judy ×Major 0.57 0.44 -0.53 13.39 1/64
Pit×Major 0.65 0.50 -0.88 9.72 1/64

4.2 Refined mutation scores

The mutation scores using randomly sampled fractions

of the original test cases are given in Table 7.

Figure 6 visualises the relationship of mutation scores

by different tools. In the figure, the fraction of test suite

determines the darkness of the point. Larger fractions

have darker colors. We can see that the light colors clus-

ter near the origin, while darker colors cluster around

unity as expected (larger fractions of test suite will have

higher mutation scores, and hence darker colors).

The refined mutation scores produced after remov-

ing the undetected mutants also tend to follow the same

pattern. In Table 7, we see that the maximum R2 is

0.69, with high spread. Further, maximum Kendall’s τb
is 0.52. This suggests that the mutation scores often do

not agree. However, the mean difference in mutation

score is still less than 3%, which suggests that none of

the tools produce mutants with consistently higher or

lower mutation scores.

Q: Does the phase of generation or target audience have

an impact?

The ANOVA in Table 8 shows no evidence to sug-

gest that phase and audience contribute towards model

fit for the refined mutation score.

4.3 Minimal set of mutants

Figure 7(a) provides the mean and variance for the size

of the minimum mutant set for all projects. The size

of minimal mutant set is given in Table 9 and a com-

parison between the tools is given in Table 10. As the

number of minimal mutants determines the strength

Does Choice of Mutation Tool Matter? 11

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●

● ●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Pit

Ju
dy

Pit and Judy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

● ●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Pit

M
aj

or

Pit and Major

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●

●●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Major

Ju
dy

Major and Judy

Fig. 6: The mutation scores of different tools plotted against each other for different fractions of the full test

suite. The mutation score at larger fractions of the full test suites are colored darker.

Table 8: Model fit with refined mutation score after

removing undetected mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.33 0.0000
phase 1 0 0 0.01 0.9084
Residuals 4,474 298.41 0.07

Model fit with phase R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.35 0.0000
audience 1 0.22 0.22 3.25 0.0715
Residuals 4,474 298.20 0.07

Model fit with audience R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.35 0.0000
tool 2 0.27 0.14 2.04 0.1306
Residuals 4,473 298.14 0.07

Model fit with tool R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.34 0.0000
Residuals 4,475 298.42 0.07

Base model fit R2 =0.098

of a set of mutants (the factor of reduction is not the

important aspect here), we provide the number rather

than the ratio of reduction.

Impact of minimal set: Mutant sets with larger sized

minimal sets are stronger. Hence, tools that produce

larger sized minimal sets are better.

Table 9: Minimal set of mutants from different

mutation tools

Project Judy Major Pit
annotation-cli 20 20 26
asterisk-java 121 142 171
beanutils 348 344 398
beanutils2 67 105 145
clazz 18 59 49
cli 106 130 136
collections 130 910 797
commons-codec 4 267 351
commons-io 33 477 570
config-magic 33 45 49
csv 64 91 99
dbutils 73 60 104
events 21 10 30
faunus 7 103 122
java-api-wrapper 10 42 90
java-classmate 98 108 184
jopt-simple 67 95 131
mgwt 55 70 74
mirror 127 112 173
mp3agic 54 108 116
ognl 14 27 81
pipes 29 81 95
primitives 9 662 445
validator 102 168 204
webbit 9 59 90
µ 64.76 171.80 189.20
σ 71.94 215.33 185.83

Table 10: Correlation between minimal set of mutants

from different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.34 0.34 -124.44 175.05
Judy ×Major 0.26 0.35 -107.04 208.59
Pit×Major 0.96 0.85 17.40 62.86

12 Rahul Gopinath et al.

(a) Full mutant set

● ●● ●●

● ●● ● ●

●

Pit

Major

Judy

0 250 500 750
Minimal Mutants

To
ol

(b) 100 mutant sample

●●●●● ●●● ●● ●●●●●●●●●● ●● ●●● ●● ●● ●●●

●●●●●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ●●●● ● ●●●

Pit

Major

Judy

0 25 50 75
Minimal Mutants

To
ol

Fig. 7: Minimal mutant set sizes of tools — larger is

better

Table 10 suggests that the correlation between dif-

ferent tools is a maximum of 0.96 (between Pit and

Major) which is very strong. However, Judy and Major

have a very low correlation (0.26). Similarly Kendall’s

τb is strong (maximum 0.85 between Pit and Major)

suggesting a stronger similarity between Pit and Ma-

jor.

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the size

of minimum mutant set.

The ANOVA (Table 11) suggests that audience is

a statistically significant (p < 0.05) factor. When com-

paring R2 of models containing both project and the

factors investigated, the variation explained by models

incorporating a given factor in addition to project are

as follows: phase 46%, audience 49%, tool 58%. Inves-

tigating the increase in explanatory power of complex

models over a model containing only project, the in-

crease in R2 (explanatory power) was as follows: phase

1.1%, audience 4.4%, tool 13%.

4.3.1 What is the impact of tools after controlling for

the number of mutants produced?

Figure 7(b) provides the mean and variance for the size

of minimum mutant set for all projects when controlling

for the number of mutants.

Table 12 suggests that the correlation between Pit

and Major is very strong (0.93), and that the correlation

Table 11: Model fit with minimum mutant set

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,440,910.19 60,037.92 3.59 0.0001
phase 1 33,480.54 33,480.54 2 0.1631
Residuals 49 818,380.79 16,701.65

Model fit with phase R2 =0.46

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,440,910.19 60,037.92 3.83 0.0000
audience 1 83,827.44 83,827.44 5.35 0.0250
Residuals 49 768,033.89 15,674.16

Model fit with audience R2 =0.49

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,440,910.19 60,037.92 4.61 0.0000
tool 2 227,046.96 113,523.48 8.72 0.0006
Residuals 48 624,814.37 13,016.97

Model fit with tool R2 =0.58

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,440,910.19 60,037.92 3.52 0.0001
Residuals 50 851,861.33 17,037.23

Base model fit R2 =0.45

Table 12: Minimal set of mutants from different

mutation tools (100-sample)

R2 τb Difference µ σ
Judy × Pit 0.49 0.35 -17.86 17.97
Judy ×Major 0.52 0.40 -15.05 17.49
Pit×Major 0.93 0.73 2.82 7.01

between Judy and Major improved. We find the same

with Kendall’s τb, with strong correlation between Pit

and Major (0.73). Finally, the spread is large compared

to the mean (except for Pit and Major).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the

size of the minimum mutant set, after controlling for

the number of mutants.

The ANOVA (Table 13) suggests that phase and

audience are statistically significant (p < 0.05) factors.

When comparing R2 of models containing both project

and the factors investigated, the variation explained

by models incorporating a given factor in addition to

project are as follows: phase 65%, audience 69%, tool

79%. Investigating the increase in explanatory power of

complex models over a model containing only project,

the increase in R2 (explanatory power) was as follows:

phase 2.2%, audience 6.2%, tool 16%.

Does Choice of Mutation Tool Matter? 13

Table 13: Model fit with minimal mutant set (100

sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,812,892.77 75,537.20 569.70 0.0000
phase 1 62,358.74 62,358.74 470.31 0.0000
Residuals 7,474 990,978.33 132.59

Model fit with phase R2 =0.65

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,812,892.77 75,537.20 645.12 0.0000
audience 1 178,199.56 178,199.56 1,521.89 0.0000
Residuals 7,474 875,137.50 117.09

Model fit with audience R2 =0.69

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,812,892.77 75,537.20 953.47 0.0000
tool 2 461,297.59 230,648.79 2,911.36 0.0000
Residuals 7,473 592,039.48 79.22

Model fit with tool R2 =0.79

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,812,892.77 75,537.20 536.05 0.0000
Residuals 7,475 1,053,337.06 140.91

Base model fit R2 =0.63

(a) Full mutant set

● ●●●

● ●● ● ●

●

Pit

Major

Judy

0 250 500 750 1000
Surface mutants

To
ol

(b) 100 mutant sample

●● ●● ●●●●●

●●●

Pit

Major

Judy

0 25 50 75
Surface mutants

To
ol

Fig. 8: Surface mutant sizes between tools – larger is

better

4.4 Surface mutants

Surface mutants are given in Table 14, and the relation

between different tools is given in Table 15. The mean

surface mutant sizes are plotted in Figure 8(a).

Table 14: Surface set of mutants from different

mutation tools

Project Judy Major Pit
annotation-cli 29 20 31
asterisk-java 148 170 211
beanutils 478 428 548
beanutils2 80 105 149
clazz 24 73 64
cli 157 174 207
collections 148 995 898
commons-codec 6 364 488
commons-io 30 552 692
config-magic 42 50 60
csv 67 104 139
dbutils 78 69 124
events 25 22 25
faunus 8 126 179
java-api-wrapper 12 72 137
java-classmate 116 136 217
jopt-simple 90 118 177
mgwt 58 77 85
mirror 148 124 205
mp3agic 88 149 160
ognl 20 39 379
pipes 41 110 130
primitives 10 723 685
validator 140 218 273
webbit 15 69 114
µ 82.32 203.48 255.08
σ 97.04 237.65 230.22

Table 15: Correlation between surface set of mutants

from different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.27 0.24 -172.76 223.98
Judy ×Major 0.25 0.31 -121.16 233.17
Pit×Major 0.94 0.76 51.60 78.48

Impact of surface set: Mutant set with a larger sur-

face set is stronger, and hence tools that produce larger

sized surface sets are better.

Table 15 suggests that the R2 correlation between

Pit and Major is strong (0.94), while that between Judy

and Pit is low (0.27), and that between Judy and Major

is low (0.25). Similarly with Kendall’s τb, which ranges

from 0.76 to 0.24. We also note that the values observed

are very close to those observed for minimal mutants,

which is as we expect given that the surface mutants

are obtained by a small modification to the definition

of minimal mutants.

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the size

of surface mutant set.

14 Rahul Gopinath et al.

Table 16: Model fit for surface mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,967,892.21 81,995.51 3.19 0.0003
phase 1 20,160.81 20,160.81 0.78 0.3800
Residuals 49 1,258,614.53 25,686.01

Model fit with phase R2 =0.41

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,967,892.21 81,995.51 3.76 0.0000
audience 1 209,739.21 209,739.21 9.61 0.0032
Residuals 49 1,069,036.13 21,817.06

Model fit with audience R2 =0.5

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,967,892.21 81,995.51 4.44 0.0000
tool 2 393,236.03 196,618.01 10.66 0.0001
Residuals 48 885,539.31 18,448.74

Model fit with tool R2 =0.58

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,967,892.21 81,995.51 3.21 0.0003
Residuals 50 1,278,775.33 25,575.51

Base model fit R2 =0.42

The ANOVA (Table 16) suggests that audience is

a statistically significant (p < 0.05) factor. When com-

paring R2 of models containing both project and the

factors investigated, the variation explained by models

incorporating a given factor in addition to project are

as follows: phase 41%, audience 50%, tool 58%. Inves-

tigating the increase in explanatory power of complex

models over a model containing only project, the in-

crease in R2 (explanatory power) was as follows: phase

-0.25%, audience 8.6%, tool 16%.

4.4.1 What is the impact of tools after controlling for

the number of mutants produced?

The correlation between different tools is given in Ta-

ble 17. The mean surface mutant sizes after controlling

number of mutants is plotted in Figure 8(b).

As we expect from the values for minimal mutants,

controlling for the number of mutants has a large im-

pact. Table 17 suggests that the correlation between

Pit and Major is very strong (0.92), while that between

Judy and Major improved, as did the correlation be-

tween Judy and Pit. Similarly for Kendall’s τb (0.72 to

0.34).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the

size of the surface mutant set, after controlling for the

number of mutants.

Table 17: Correlation between surface set of mutants

from different mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.47 0.34 -17.28 18.12
Judy ×Major 0.51 0.39 -14.66 17.69
Pit×Major 0.92 0.72 2.62 7.08

Table 18: Model fit for surface mutants (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,708,095.67 71,170.65 539.73 0.0000
phase 1 60,356.53 60,356.53 457.72 0.0000
Residuals 7,474 985,549.60 131.86

Model fit with phase R2 =0.64

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,708,095.67 71,170.65 603.93 0.0000
audience 1 165,130.22 165,130.22 1,401.25 0.0000
Residuals 7,474 880,775.91 117.85

Model fit with audience R2 =0.68

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,708,095.67 71,170.65 868.84 0.0000
tool 2 433,760.06 216,880.03 2,647.64 0.0000
Residuals 7,473 612,146.07 81.91

Model fit with tool R2 =0.78

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1,708,095.67 71,170.65 508.65 0.0000
Residuals 7,475 1,045,906.13 139.92

Base model fit R2 =0.62

The ANOVA (Table 18) suggests that phase and

audience are statistically significant (p < 0.05) factors.

When comparing R2 of models containing both project

and the factors investigated, the variation explained

by models incorporating a given factor in addition to

project are as follows: phase 64%, audience 68%, tool

78%. Investigating the increase in explanatory power of

complex models over a model containing only project,

the increase in R2 (explanatory power) was as follows:

phase 2.2%, audience 6%, tool 16%.

4.5 Covariance between mutants

Figure 9(a) shows the mean covariance across the dif-

ferent tools.

Impact of sum of covariance: Mutant sets with

smaller sum of covariance are more independent com-

pared to other sets of similar size, and hence tools that

produce mutants with a smaller sum of covariance are

better.

Does Choice of Mutation Tool Matter? 15

(a) Full mutant set

● ●●

●● ● ●●

●●●

Pit

Major

Judy

0 25 50 75 100
Sum of covariance

To
ol

(b) 100 sample

● ●● ●●●● ●●● ●●● ●●● ●●●●●● ● ●● ●●●●●● ●●● ●●●●●●● ●●● ●●●●● ●●●● ●●●● ●●● ●● ●●●●● ●●●● ●● ●● ●●● ●●●● ●●●● ●●●●●●● ●●●● ●●●

●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●●

● ●

Pit

Major

Judy

0 1 2 3 4
Sum of covariance

To
ol

Fig. 9: Covariance between mutants produced – larger

is better

Table 19 provides the sum of covariance for different

projects, and Table 20 provides the correlation between

the sum of covariance from different tools. Table 20 sug-

gests that in terms of sum of covariance, Judy and Pit

are in closest agreement (0.45), with medium correla-

tion, while the correlation between other tools is low.

However, Kendall’s τb indicates a medium correlation

between all tools (0.43, 0.43, 0.57).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which
models are given in Equation 1. The measure is the sum

of covariance of mutant kill matrix.

The ANOVA (Table 21) suggests that audience is

a statistically significant (p < 0.05) factor. When com-

paring R2 of models containing both project and the

factors investigated, the variation explained by models

incorporating a given factor in addition to project are

as follows: phase 14%, audience 18%, tool 17%. Inves-

tigating the increase in explanatory power of complex

models over a model containing only project, the in-

crease in R2 (explanatory power) was as follows: phase

0.62%, audience 5% tool 3.4%. We note that project is

not a statistically significant factor.

4.5.1 What is the impact of tools after controlling for

the number of mutants produced?

Figure 9(b) shows the mean covariance across the dif-

ferent tools after controlling for the number of mutants.

Table 19: Covariance different mutation tools

Project Judy Major Pit
annotation-cli 4.69 2.71 11.27
asterisk-java 0.74 0.44 1.36
beanutils 5.13 1.31 3.77
beanutils2 3.42 1.25 1.56
clazz 22.76 6.86 2.22
cli 1.93 1.04 4.60
collections 0.10 0.20 0.13
commons-codec 0.41 2.34 2.01
commons-io 0.04 0.28 0.38
config-magic 1.59 0.97 4.44
csv 4.38 2.69 5.13
dbutils 0.80 1.40 0.73
events 15.60 4.05 5.32
faunus 0.12 6.79 8
java-api-wrapper 0.34 9.59 7.27
java-classmate 4.15 1.68 7.19
jopt-simple 3.86 2.69 9.92
mgwt 1.53 0.54 1.22
mirror 2.64 0.26 2.04
mp3agic 9.09 22.17 30.40
ognl 15.65 1.50 118.63
pipes 2.10 1 1.57
primitives 0.03 0.20 0.15
validator 1.02 0.94 5.90
webbit 4.16 13.15 22.53
µ 4.25 3.44 10.31
σ 5.73 5.05 23.64

Table 20: Correlation of sum of covariance between

different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.45 0.43 -6.06 21.65
Judy ×Major 0.29 0.43 0.81 6.45
Pit×Major 0.19 0.57 6.87 23.23

Table 22 provides the correlation between sum of

covariance from different tools after controlling for the

number of mutants. We see that both R2 and τb in-

creases across all the tools, with the Pit and Major cor-

relation being highest (0.68), with medium correlation.

Similar improvement is also seen over Kendall’s τb —

highest is between Judy and Major (0.66).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the sum

of covariance of mutant kill matrix, after controlling for

the number of mutants.

The ANOVA (Table 23) suggests that phase and

audience are statistically significant (p < 0.05) factors.

When comparing R2 of models containing both project

and the factors investigated, the variation explained

by models incorporating a given factor in addition to

project are as follows: phase 65%, audience 66%, tool

68%. Investigating the increase in explanatory power of

16 Rahul Gopinath et al.

Table 21: Model fit for covariance

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6,407.53 266.98 1.48 0.1229
phase 1 245.55 245.55 1.36 0.2495
Residuals 49 8,858.36 180.78

Model fit with phase R2 =0.14

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6,407.53 266.98 1.56 0.0945
audience 1 696.10 696.10 4.06 0.0495
Residuals 49 8,407.81 171.59

Model fit with audience R2 =0.18

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6,407.53 266.98 1.53 0.1057
tool 2 704.28 352.14 2.01 0.1448
Residuals 48 8,399.62 174.99

Model fit with tool R2 =0.17

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6,407.53 266.98 1.47 0.1261
Residuals 50 9,103.91 182.08

Base model fit R2 =0.13

Table 22: Correlation of sum of covariance between

different mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.50 0.61 0.34 0.86
Judy ×Major 0.60 0.66 0.29 0.80
Pit×Major 0.68 0.61 -0.05 0.41

Table 23: Model fit for covariance (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,320.14 96.67 547.48 0.0000
phase 1 16.69 16.69 94.53 0.0000
Residuals 7,174 1,266.77 0.18

Model fit with phase R2 =0.65

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,320.14 96.67 564.47 0.0000
audience 1 54.82 54.82 320.09 0.0000
Residuals 7,174 1,228.64 0.17

Model fit with audience R2 =0.66

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,320.14 96.67 611.28 0.0000
tool 2 149.07 74.54 471.31 0.0000
Residuals 7,173 1,134.39 0.16

Model fit with tool R2 =0.68

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,320.14 96.67 540.43 0.0000
Residuals 7,175 1,283.46 0.18

Base model fit R2 =0.64

(a) Full mutant set

●

●● ●

●

Pit

Major

Judy

0 1000 2000
Mutual information

To
ol

(b) 100 sample

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●

●●●● ●●●● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ●●●●● ● ●●●●● ●●●●●● ●●●●●●●●● ● ●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●●●●●●●●●● ●● ●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●

Pit

Major

Judy

0 20 40
Mutual information

To
ol

Fig. 10: Mutual Information of the mutant set

produced – larger is better

complex models over a model containing only project,

the increase in R2 (explanatory power) was as follows:

phase 0.46%, audience 1.5%, tool 4.1%. We note that

project is statistically significant once number of mu-

tants is controlled.

4.6 Mutual information (Total correlation) between

mutants

Figure 10(a) shows the mean mutual information be-

tween mutants produced.

Impact of mutual information: Mutant sets with

smaller mutual information have more diverse mutants

compared to similar sized mutant sets. Hence tools that

produce mutants with smaller mutual information are

better.

Table 24 shows the mutual information of different

tools across projects, and Table 25 provides the corre-

lation of mutual information by different tools.

Table 25 suggests that the correlation between dif-

ferent tools is rather weak in terms of both R2 (0.29 to

-0.063) and τb (0.43 to -0.14).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the

mutual information of mutant kill matrix.

The ANOVA (Table 26) suggests that audience is

a statistically significant (p < 0.05) factor. When com-

Does Choice of Mutation Tool Matter? 17

Table 24: Mutual information different mutation tools

Project Judy Major Pit
annotation-cli 90.94 58 173.20
asterisk-java 130.34 96.99 297.53
beanutils 320.20 150.88 461.81
beanutils2 84.11 37.02 114.10
clazz 159.27 227.02 129.75
cli 202.29 127.75 360.27
collections 13.81 106.72 103.23
commons-codec 2.86 329.49 460.89
commons-io 3.06 140.78 250.94
config-magic 75.37 42.38 185.80
csv 98.43 115.39 271.59
dbutils 46.28 53.06 75.68
events 125.51 35.33 83.69
faunus 3.54 340.23 616.76
java-api-wrapper 9.73 121.26 235.57
java-classmate 118.77 80.57 288.54
jopt-simple 83.76 80.80 301.70
mgwt 79.93 45.56 126.94
mirror 103.04 24.29 169.21
mp3agic 162.77 465.32 677.62
ognl 176.89 43.10 2,665.86
pipes 56.44 87.35 225.87
primitives 0.27 137.59 69.53
validator 98.11 178.66 450.97
webbit 31.03 239.10 497.23
µ 91.07 134.59 371.77
σ 75.57 110.12 507.05

Table 25: Mutual information correlation of different

mutation tools

R2 τb Difference µ σ
Judy × Pit 0.29 0.19 -280.70 490.79
Judy ×Major -0.06 -0.14 -43.52 137.45
Pit×Major 0.10 0.43 237.19 507.78

paring R2 of models containing both project and the

factors investigated, the variation explained by models

incorporating a given factor in addition to project are as

follows: phase -0.015%, audience 19%, tool 18%. Inves-

tigating the increase in explanatory power of complex

models over a model containing only project, the in-

crease in R2 (explanatory power) was as follows: phase

-64%, audience -46%, tool -47%.

4.6.1 What is the impact of tools after controlling for

the number of mutants produced?

Figure 10(b) shows the mean mutual information be-

tween mutants produced, after controlling for the num-

ber of mutants.

Table 27 provides the correlation of mutual infor-

mation by different tools after controlling number of

mutants. Table 27 suggests that the correlation between

different tools improves across all tools in terms of both

R2 (0.86 to 0.78) and τb (0.59 to 0.53).

Table 26: Model fit for mutual information

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,457,752.40 102,406.35 0.98 0.5078
phase 1 156,285.44 156,285.44 1.49 0.2274
Residuals 49 5,125,806.30 104,608.29

Model fit with phase R2 =-0.00015

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,457,752.40 102,406.35 1.20 0.2840
audience 1 1,117,537.88 1,117,537.88 13.15 0.0007
Residuals 49 4,164,553.86 84,990.90

Model fit with audience R2 =0.19

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,457,752.40 102,406.35 1.19 0.2997
tool 2 1,141,207.98 570,603.99 6.61 0.0029
Residuals 48 4,140,883.76 86,268.41

Model fit with tool R2 =0.18

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2,320.14 96.67 540.43 0.0000
Residuals 7,175 1,283.46 0.18

Base model fit R2 =0.64

Table 27: Mutual information correlation of different

mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.86 0.53 0.14 6.48
Judy ×Major 0.85 0.59 -0.42 6.73
Pit×Major 0.78 0.58 -0.56 8.13

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the mu-

tual information of the mutant kill matrix, after con-

trolling for the number of mutants.

The ANOVA (Table 28) suggests that phase and

audience are statistically significant (p < 0.05) factors.

When comparing R2 of models containing both project

and the factors investigated, the variation explained

by models incorporating a given factor in addition to

project are as follows: phase 90%, audience 90%, tool

90%. Investigating the increase in explanatory power of

complex models over a model containing only project,

the increase in R2 (explanatory power) was as follows:

phase 0.06%, audience 0.039%, tool 0.065%.

4.7 Entropy carried by mutants

The entropy of the set of mutants produced by each

tool is given in Table 29, and the comparison between

18 Rahul Gopinath et al.

Table 28: Model fit for mutual information (100

sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980,113.02 40,838.04 2,575.91 0.0000
phase 1 672.77 672.77 42.44 0.0000
Residuals 7,174 113,735.56 15.85

Model fit with phase R2 =0.9

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980,113.02 40,838.04 2,570.60 0.0000
audience 1 437.78 437.78 27.56 0.0000
Residuals 7,174 113,970.54 15.89

Model fit with audience R2 =0.9

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980,113.02 40,838.04 2,577.02 0.0000
tool 2 737.74 368.87 23.28 0.0000
Residuals 7,173 113,670.58 15.85

Model fit with tool R2 =0.9

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980,113.02 40,838.04 2,561.12 0.0000
Residuals 7,175 114,408.33 15.95

Base model fit R2 =0.9

Full set of mutants

● ●●

●●● ●

Pit

Major

Judy

0 2 4 6
Entropy

To
ol

100 sample

●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●●●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●● ●

Pit

Major

Judy

1 2 3 4 5
Entropy

To
ol

Fig. 11: Entropy of the mutant set produced – larger

is better

different tools in terms of entropy is given in Table 30.

Figure 11(a) shows the entropy carried by the mutants.

Impact of entropy: Mutant sets with higher entropy

carry more information. Hence tools that produce mu-

tant sets with higher entropy are better.

Table 29: Entropy of different mutation tools

Project Judy Major Pit
annotation-cli 2.81 2.69 3.38
asterisk-java 4.37 5.13 5.27
beanutils 5.71 6.37 6.44
beanutils2 3.97 4.13 4.80
clazz 1.06 4.62 3.20
cli 5.27 5.22 5.28
collections 1.51 6.34 4.41
commons-codec 0.23 5.80 6.27
commons-io 1.52 6.35 6.67
config-magic 4.19 4.35 4.41
csv 3.34 4.72 5.06
dbutils 4.10 4.07 4.73
events 3.48 1.95 3.94
faunus 0.35 4.99 4.91
java-api-wrapper 0.72 4.59 4.82
java-classmate 4.01 4.30 5.35
jopt-simple 4.41 4.79 5.34
mgwt 3.79 4.34 4.50
mirror 4.22 4.76 5.63
mp3agic 3.93 5.10 5.15
ognl 0.89 1.82 4.70
pipes 3.53 4.77 4.88
primitives 0.47 6.85 2.87
validator 3.36 5.40 5.62
webbit 1.29 4.42 4.88
µ 2.90 4.71 4.90
σ 1.66 1.23 0.92

Table 30: Entropy correlation of different mutation

tools

R2 τb Difference µ σ
Judy × Pit 0.28 0.25 -2 1.66
Judy ×Major -0.07 0.01 -1.81 2.13
Pit×Major 0.35 0.41 0.19 1.25

We compare the number of mutants produced by

each tool (Figure 3) and entropy from mutants by each

(Figure 11(a)). As expected, a larger number of mutants

can carry more information.

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the

entropy of the mutant kill matrix.

The ANOVA (Table 31) suggests that audience is

a statistically significant (p < 0.05) factor. When com-

paring R2 of models containing both project and the

factors investigated, the variation explained by models

incorporating a given factor in addition to project are

as follows: phase 0.66%, audience 8%, tool 41%. Inves-

tigating the increase in explanatory power of complex

models over a model containing only project, the in-

crease in R2 (explanatory power) was as follows: phase

6.9%, audience 14%, tool 47%.

Does Choice of Mutation Tool Matter? 19

Table 31: Model fit for entropy

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.88 0.6293
phase 1 11.03 11.03 4.47 0.0396
Residuals 49 120.95 2.47

Model fit with phase R2 =0.0066

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.95 0.5468
audience 1 19.92 19.92 8.71 0.0048
Residuals 49 112.07 2.29

Model fit with audience R2 =0.08

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 1.46 0.1298
tool 2 61.04 30.52 20.65 0.0000
Residuals 48 70.95 1.48

Model fit with tool R2 =0.41

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.82 0.6971
Residuals 50 131.99 2.64

Base model fit R2 =-0.062

Table 32: Entropy correlation of different mutation

tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.53 0.40 -1.03 1.17
Judy ×Major 0.54 0.35 -0.92 1.18
Pit×Major 0.69 0.50 0.11 0.74

4.7.1 What is the impact of tools after controlling for

the number of mutants produced?

Figure 11(b) shows the entropy carried by the mutants,

after controlling the number of mutants.

Table 32 provides the correlation of entropy of mu-

tants produced by different tools for different projects.

As in other statistical measures, we note an across the

board improvement in both correlation measures — R2

(0.69 to 0.53) and τb (0.5 to 0.35).

Q: Does the phase of generation or target audience have

an impact?

We use ANOVA to answer this question, for which

models are given in Equation 1. The measure is the

entropy of the mutant kill matrix, after controlling for

the number of mutants.

The ANOVA (Table 33) suggests that phase and

audience are statistically significant (p < 0.05) factors.

When comparing R2 of models containing both project

and the factors investigated, the variation explained

by models incorporating a given factor in addition to

project are as follows: phase 62%, audience 63%, tool

73%. Investigating the increase in explanatory power of

Table 33: Model fit for entropy (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5,963.01 248.46 467.59 0.0000
phase 1 290.32 290.32 546.37 0.0000
Residuals 7,174 3,812.02 0.53

Model fit with phase R2 =0.62

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5,963.01 248.46 474.42 0.0000
audience 1 345.22 345.22 659.18 0.0000
Residuals 7,174 3,757.12 0.52

Model fit with audience R2 =0.63

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5,963.01 248.46 659.32 0.0000
tool 2 1,399.24 699.62 1,856.53 0.0000
Residuals 7,173 2,703.10 0.38

Model fit with tool R2 =0.73

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5,963.01 248.46 434.55 0.0000
Residuals 7,175 4,102.34 0.57

Base model fit R2 =0.59

complex models over a model containing only project,

the increase in R2 (explanatory power) was as follows:

phase 2.9%, audience 3.4%, tool 14%.

5 Discussion

We evaluated an ensemble of measures including tradi-

tional mutation scores, strength of mutants using mini-

mal and surface mutants, statistical measures of diver-

sity of mutants, and information content in the mutant

kills to find whether any tool produced mutants that

were consistently better.

5.1 Comparison of difficulty of detection with

mutation scores

We include two measures in the traditional comparison;

the raw mutation score (Section 4.1), and the refined

mutation score (Section 4.2). Considering the raw mu-

tation scores that were reported by different tools, we

find that Pit produces a much larger number of mu-

tants than other tools (Figure 3), and that the mean

mutation scores across projects produced by different

tools are quite close (Figure 5). Surprisingly, the cor-

relation between the mutation scores produced ranges

from 0.37 (Judy × Pit) to 0.67 (Pit ×Major). Simi-

larly Kendall’s τb ranges from 0.27 (Judy×Pit) to 0.54

(Pit×Major). We also see a large standard deviation

— up to 27 (Judy × Pit).

20 Rahul Gopinath et al.

Our measures of correlation are markedly different

from those obtained from mutation scores reported by

Delahaye et al. (Table 2) where the three tools we com-

pare were found to have high correlation. However, we

note that we have a much larger variety of subject pro-

grams, and that the data from Delahaye et al. is incom-

plete (only 4 complete observations with all the three

tools under consideration), which may explain the dis-

crepancy. We also note that the tools we have not con-

sidered — Jumble, and Javalanche — have even worse

correlation with other tools in Delahaye’s data. How-

ever, Madeyski [42] reports that Judy and Jumble had

a high correlation (0.89). Taken together, this corrob-

orates our finding that the relationship between tools

varies based on the project being tested.

Our data from raw mutation scores suggests that

tools rarely agree with each other on mutation score,

and often differ by a large amount. However, we find no

tool consistently under or over reporting the mutation

scores.

This suggests two things: (1) the mutation score from

a single tool can be severely misleading; (2) there is

no single tool that can be said to produce consistently

hard-to-detect mutants or easy-to-detect mutants.

For raw mutation scores, we do not consider the

impact of equivalent mutants. For our second measure

(Section 4.2), we removed all undetected mutants, and

for the remaining mutants, evaluated mutation scores

produced by partial test suites containing a fixed frac-

tion of the original test suite. Our results for refined

mutants corroborate our findings with raw mutation

scores. As Table 7 shows, the differences between Judy

and Pit reduced in terms of both R2 and τb, while

measurements of other pairings remain very close. The

spread, while slightly smaller than raw mutation scores,

still remains high.

Note that mutation score is often the only measure

from a set of mutants that is obtained by testers and re-

searchers interested in the quality of a test suite. Hence,

irrespective of the other measures of quality, the low

agreement between tools for such a standard measure

is disheartening. Interestingly, Pit and Major are polar

opposites in both dimensions we evaluate — phase of

generation, and target audience. However, we find that

they show a consistently higher correlation with each

other when compared with Judy. This suggests that at

least as far as mutation score is concerned, the impact

of phase of generation and target audience is minimal.

5.2 Comparison of mutant strength with minimal

mutation sets

The strength of a set of mutants irrespective of the size

of the set provides a good measure of the quality of a set

of mutants. We analysed (Section 4.3) the minimal mu-

tants from different tools across the subject programs

using both the entire set of mutants, and also restricting

the number of mutants to just 100.

Our results from Section 4.3 suggest that the min-

imal set of mutants produced by different tools varies

widely, from 0.26 (Judy×Major) to 0.96 (Pit×Major).

Kendall’s τb ranges from 0.35 (Judy ×Major) to 0.85

(Pit×Major). We also see the maximum standard de-

viation of 209 (Judy ×Major). Further, the mean dif-

ference between minimum mutants produced by tools

ranges from -124 mutants (σ =175) (Judy×Pit) to 17

mutants (σ =63) (Pit × Major). Note that we com-

pare count of minimal mutants rather than the fraction

of reduction. The reason is that, the strength of a set

of mutants for the same program is determined by the

size of the minimal mutant set irrespective of the size of

the full mutant set. Unfortunately, this also means that

one can not normalize the size of minimal mutant set.

The most interesting information here is the ordering

between the tools, with Pit producing the strongest set

of mutants, closely followed by Major.

Interestingly, the situation is different when the num-

ber of mutants is controlled for. We see a correlation be-

tween the minimum set from different tools from 0.49

(Judy×Pit) to 0.93 (Pit×Major). Similarly Kendall’s

τb ranges from 0.35 (Judy×Pit) to 0.73 (Pit×Major).

The mean difference between minimum mutants pro-

duced by tools ranges from -18 mutants (σ =18) (Judy×
Pit) to 2.8 mutants (σ =7) (Pit×Major). That is, in

our comparison, the tools that exhibit high correlation

— Pit and Major — differ only by a mean small amount

compared to either the total number of mutants, or the

mean for Judy × Pit.
We find a similar result from our analysis of sur-

face mutants (Section 4.4). Surface mutants are similar

to minimal set of mutants, but with a small relaxation

in their construction — we do not require that the test

suite be minimized. Rather, we remove all mutants that

are dynamically subsumed by another. This results in a

slightly larger, but more accurate estimation of redun-

dancy. The measures vary from 0.25 (Judy ×Major)

to 0.94 (Pit ×Major). Kendall’s τb ranges from 0.24

(Judy×Pit) to 0.76 (Pit×Major). We also see a max-

imum standard deviation of 233 (Judy×Major). Fur-

ther, the mean difference between minimum mutants

produced by tools range from -173 (Judy × Pit) to 52

(Pit×Major).

Does Choice of Mutation Tool Matter? 21

We find a similar result as that of minimal mutants

when the number of mutants is controlled for. We see

a correlation between the minimum set from different

tools from 0.47 (Judy × Pit) to 0.92 (Pit ×Major).

Similarly Kendall’s τb ranges from 0.34 (Judy×Pit) to

0.72 (Pit×Major). As before, the mean difference be-

tween minimum mutants produced by tools range from

-17 (Judy × Pit) to 2.6 (Pit ×Major). That is, like

in minimum mutants, the tools that exhibit high cor-

relation — Pit and Major differ only by a mean small

number of mutants on average.

Finally, note that Pit produces the strongest set of

mutants, as measured by size of minimal and surface

sets, irrespective of whether the size of mutant set is

controlled for. However, we note that characteristics of

projects is a significant factor, and have a strong impact

on the size of minimal or surface mutant sets.

Using strength of mutants measured as by minimal

and surface mutant sets, Pit and Major produce high

strength mutants, and only differ by a small amount.

However, the characteristics of the project has a signif-

icant impact even after accounting for the number of

mutants considered.

5.3 Comparison of mutant diversity with statistical

measures

We had shown before [40] that sum of covariance of a

set of mutants reduces the fraction of mutants that can

represent the mutation score accurately. A smaller sum

of covariance is strong evidence that one set of mutants

is more varied than a set with a larger sum of covariance

if both have a similar number of mutants.

Our evaluation (Section 4.5) shows that the corre-

lation between tools for covariance ranges from 0.19

(Pit ×Major) to 0.45 (Judy × Pit). The Kendall τb
correlation ranges from 0.43 (Judy×Pit) to 0.43 (Pit×
Major). These values are small, as expected. Remem-

ber that a larger covariance essentially means a smaller

fraction of mutants can represent the full mutant set.

Here, the number of mutants is different, and hence

not really comparable. The interesting part is the mean

difference. That is, if the mutants are comparable we

would expect a larger difference in covariance between

Pit and other tools since it generates a larger set of

mutants. Similarly, Major and Judy should differ little.

This is confirmed by our results, where the mean dif-

ferences are 6.9 (Pit×Major), -6.1 (Judy × Pit) and

0.81 (Judy ×Major).

Controlling the number of mutants should on the

other hand lead to a higher correlation and smaller dif-

ference. Our results show that this is as expected, with

mean difference ranging from -0.053 (Pit×Major) to

0.34 (Judy × Pit).
Our mutual information observations (Section 4.6)

paint a similar picture. A low correlation between tools,

but larger difference in mutual information between

mutants produced by tools generating a larger number

of mutants and those producing a smaller number, with

mean differences of -281 (Judy×Pit) 237 (Pit×Major)

and -44 (Judy ×Major).

As before, if the number of mutants is controlled,

we have higher correlation ranging from 0.86 (Judy ×
Pit) to 0.78 (Pit×Major). and small mean differences

ranging from 0.14 (Judy×Pit) to -0.56 (Pit×Major).

These measures show that there is very little dif-

ference between mutants generated by different tools,

although Pit comes out slightly better once the number

of mutants is controlled.

Our statistical measures of diversity of mutants show

that once the number of mutants is controlled, there

is little difference in the diversity of mutants produced

by different tools.

5.4 Comparison of information carried with entropy

Similar to diversity measures, we expect little corre-

lation when number of mutants is not controlled for.

The correlation ranges from -0.066 (Judy ×Major) to

0.35 (Pit×Major). We expect a larger set of mutants

to have more entropy, and smaller set of mutants to

have less entropy. The mean difference ranges from -2

(Judy × Pit) to 0.19 (Pit×Major).

Once the number of mutants is controlled for, we see

a larger correlation ranging from 0.54 (Judy×Major)

to 0.69 (Pit × Major), but little difference in mean,

ranging from -2 (Judy × Pit) to 0.19 (Pit×Major).

For entropy, we again find Pit and Major better than

Judy. Pit and Major have similar values, with Pit lead-

ing by a slight margin. However, note that once the size

of the mutant set is controlled for, the characteristics

of the project assumes significance.

In terms of entropy, the leaders are Pit and Major, with

Pit leading by a small margin. However, the character-

istics of the project is a significant factor, even after

accounting for the number of mutants considered.

5.5 Tool Assessment

In general, we found that, tool is a significant factor in

almost all measures we examined. Further, the impact

22 Rahul Gopinath et al.

of tool remains significant even when the number of mu-

tants is controlled for. This points to the fact that the

particular tool used is an important factor in the qual-

ity of mutations produced. Next, provide assessments

of each tool examined.

5.5.1 Judy

Judy is a tool oriented towards a research audience, and

produces bytecode based mutants. We see that Judy

produces the smallest number of mutants, compared to

Major and Pit. In terms of raw mutation score, Judy

has a slight advantage over other tools, with Judy pro-

ducing the lowest mean mutation score. However, the

difference is small, further reduced if non-detected mu-

tants are removed first. In terms of mutant strength

with either minimal mutants or surface mutants, the

other two tools (Major and Pit) perform better than

Judy. In terms of covariance between mutants, while

Judy is better than Pit and Major on average when

number of mutants is not considered, both Pit and Ma-

jor are better than Judy when we restrict the number of

mutants. In terms of multi information, Judy is better

than Pit and Major when full sets of mutants are con-

sidered. However, this is likely to be due to the small

number of mutants produced by Judy, as shown by the

sampled measure. That is, for a constant sized sam-

ple of mutants, Pit and Major produced more diverse

mutants than Judy. The entropy measure also suggests

that mutants from Pit and Major contain more infor-

mation about the program than Judy.

5.5.2 Major

Major is one of the few tools in use that is source

based. It is also oriented towards the research commu-

nity. In terms of raw mutation score, Major produces

a medium mean mutation score score compared to Pit

(higher) and Judy (lower). However, the mean differ-

ence is marginal. The conclusions are similar for refined

mutation scores, with a difference of a few percentage

points between mean mutation score across projects

with other tools. In terms of minimal and surface mu-

tant sets, without controlling for the number of mu-

tants, Major produces the best mean mutant set. How-

ever, this advantage disappears once we control the

number of mutants, with Pit producing better mean

mutant set. In terms of diversity measures, sum of co-

variance and mutual information, Major occupies a mid-

dle rank between Pit and Judy both with and without

control for number of mutants, with Judy better when

the number of mutants is not controlled, and Pit better

when the number of mutants is controlled. For entropy,

Major is better than Judy, while Pit is better than Ma-

jor. We also note that Mutants from Major and Pit are

very close in most measures.

5.5.3 Pit

Pit is a tool firmly focused on an industrial audience. It

is bytecode based, and in terms of ease of use, pro-

vides the best user experience. Pit produces a large

number of mutants compared to Major and Judy. In

terms of mean raw mutation score, the mutants pro-

duced by Pit are marginally easier to detect than those

produced by other tools (the difference decreases if re-

fined mutants are used). In terms of size of minimal

and surface mutant sets, Pit occupies a middle ground

between Judy (smaller) and Major (larger). However,

when the number of mutants is controlled, Pit produces

the strongest mutant set. For diversity measures such as

sum of covariance and mutual information, controlling

for the number of mutants, Pit produces mutants with

the most diversity. In terms of information content, Pit

produces mutants with the largest entropy both when

number of mutants is controlled or otherwise.

5.6 Impact of phase of generation

There is no evidence that phase of generation had any

impact on the mutation score — either raw or refined.

For strength of mutants — using minimal or surface sets

— there was no evidence that phase mattered when the

number of mutants was not controlled. While the vari-

able phase could explain some of the variability in muta-

tion score with statistical significance once the number

of mutants was controlled, the actual effect was only

a few percentage points, and was dwarfed by the vari-

ability introduced by the tool. For measurements of di-

versity of mutants — sum of covariance and mutual

information — we found similar results. While statisti-

cally significant effect was observed once the number of

mutants was controlled, the effect was less than a per-

centage point, and was dwarfed by the difference due

to tool. For entropy, the effect of phase was statistically

significant both with and without control for number

of mutants. However, as for the measures of diversity,

the variability explained was small, and dwarfed by the

variability due to tool.

In summary, there is little evidence of a large impact

of phase of generation on the variability of mutants.

Does Choice of Mutation Tool Matter? 23

5.7 Impact of target audience

There is no evidence that target audience had any im-

pact on the mutation score — either raw or refined. For

strength of mutants — using minimal or surface sets —

the variable audience is a statistically significant fac-

tor. For both minimal and surface sets, the variance

explained by audience is less than that explained by

tool for both full set of mutants, and constant number

of sampled mutants. Considering the measurements for

diversity of mutants — sum of covariance and mutual

information — we found that audience is indeed statis-

tically significant, and the impact is larger than that of

considering tool separately when considering the full set

of mutants. However, when considering a constant sam-

ple of mutants, the impact of tool is larger for sum of

covariance. For mutual information, the variation due

to project dwarfs the variation due to tool or audience.

For entropy, the impact of tool is again much larger

than that due to audience.

In summary, there is some evidence of a practical

impact of target audience on the variability of mutants

using some of the measures. However, the variability

due to tool is larger than the variability due to target

audience, except for diversity measures, and for diver-

sity measures, the effect disappears when the number

of mutants is controlled.

The target audience has an impact on the variability

of mutants. However, this may be an artifact of the

particular tools used, and the number of mutants pro-

duced.

5.8 Impact of project characteristics

In every measure tested, even after accounting for ob-

vious factors such as number of mutants, and quality

of test suites, the variation due to individual character-

istics of the project was the single highest factor con-

tributing to the variation of measurements for different

tools. Note that since we control for number of mutants

and test suite quality, this means that some underlying

semantic property of each project is the driving factor,

not mere size or test effort.

The characteristics of individual projects were the most

important factor determining the effectiveness of differ-

ent tools by a large margin.

That is, the interaction of syntactic and seman-

tic characteristics of the project seems to determine

whether a particular mutation tool will perform well

with a given project or not. This is an area where fur-

ther investigation is required to understand what these

factors are both in generation and detection of mutants,

and especially how they affect the quality of mutants

produced. A more immediate implication is that, until

we have an understanding of the factors involved, re-

searchers should be wary of relying on a small number

of projects for evaluation of their techniques. Finally,

evolving a consensus on the standardization of mutants

produced is important for the validity of mutation anal-

ysis in further research.

5.9 Need for standardization

We find that in terms of mutation score, there is very

little mean difference between different tools. However,

we have a more worrying result. Even though there was

negligible mean difference, the standard deviation and

different forms of correlation indicated that the mu-

tant sets seldom agree on the mutation scores, and of-

ten even disagreed on how to rank two test suites in

terms of effectiveness. This is especially worrying given

that a number of research papers rely on small differ-

ences in correlation between mutation scores and other

measures to show that a particular technique works

well [72, 73, 75, 78]. This means that the research con-

ducted so far is strongly tool dependent. Further, the

relatively large spread of mutation scores suggests that

some mutation tools may judge a test set to be effective

by some benchmark, and others may not, which makes

using any target mutation score (e.g., 80%) problematic

as a guideline for testing practice. It is unsafe to rely

on any single tool to measure adequacy of a test suite.

Our findings indicate a need to standardize muta-

tion scores. We propose that we go back to the origi-

nal definition. That is, standardize the mutation scores

based on the actual exhaustive generation of all mutants

as permitted by the grammar of the language in ques-

tion. In fact, as Just et al. [7] shows, traditional “easy”

operators are not sufficient, and we have to be serious

about including all possible first order mutants includ-

ing function call mistakes, argument swapping, casts

etc. — all that are indicated by the language grammar.

Since even first-order changes can be infeasibly large,

we suggest that the changes to primitive types such

as integers be restricted to the well known traditional

boundary values such as 0, 1, -1, and (-)maxint .

Once a standard mutation framework is available,

for any new mutation tool or reduction technique that

targets test quality assessment we require that the mu-

tation score from the proposed technique be in high R2

correlation, of at least 0.95 with the standard, and the

coefficients β0, β1 of linear regression µstandard = β0 +

β1µnew be available. On the other hand, for tools and

24 Rahul Gopinath et al.

reduction techniques that target comparison of testing

techniques, we require that the new mutation scores be

in high Kendall’s τb correlation of at least 0.95 with the

standard.

There is a reason for insisting on different correla-

tion measures. For test assessment, it is only required

that the standard mutation scores can be predicted

from the new mutation score with the given accuracy.

That is, it does not matter if the difference is not consis-

tently positive or negative. However, for comparison be-

tween different testing techniques, it is important that

if the new technique finds a tool to be better than an-

other, it is in agreement with the standard mutation

analysis, also. Using Kendall’s τb also lets other tools

be more discriminating in specific areas than the stan-

dard, but still be in overall agreement.

Obviously, in the long run there may be new stan-

dards (e.g., more complete sets of mutation operators)

that replace the current standard; Such a tool needs

to offer an argument for its superiority, and measure its

statistical divergence from the standard to place results

using an older standard in context.

6 Threats to Validity

Our research makes use of multiple mutation tools, a

variety of measures, and a large number of subjects.

This means that our research is subject to the following

threats to validity.

The single most important threat to validity is the

applicability of our findings. Our subject programs were

open source Java projects from Github. While our choice

of subjects was driven by concerns about the size of

the project (the larger the better), the size of the test

suite (the larger the better), and the project’s ability to

complete mutation analysis successfully for the tools we

selected, none of which have any direct influence on the

measures, threats due to indirect unforeseen influences

can’t be ruled out. Further, our research results are only

directly applicable only to Java programs. Though we

expect our findings to be applicable to mutation tools

in other programming languages, there is no statistical

guarantee for such a belief other than the relative sim-

ilarity between languages, between possible bugs, and

hence between mutants.

While we tried very hard to use different kinds of

tools, the fact remains that only three tools could be

evaluated. This is not statistically adequate for any sort

of guarantee about the behavior of these tools. We base

our confidence on the observation that these tools are

actively developed, used by real world practitioners of

testing, and researchers, and also that the mutation op-

erators are reasonably complete. However, it is possible

that our tools may not be representative of the cate-

gories such as source based or bytecode mutation en-

gines, or a typical representative of a tool aimed at re-

search or industry. It is not clear if source and bytecode

is a reasonable representation of the variation in muta-

tion due to difference in phase of generation. More im-

portantly, since we have only three tools, large deviance

from any single tool is a threat to the validity of our

research.

Finally, software bugs are a fact of life, and it can’t

be ruled out either in the tools used or in the analysis

we performed.

While we have taken every care, the possibility of

these threats remain. Hence it is important that our

research be replicated on other languages with different

tools, and on tools using different phases for mutant

generation. To facilitate such a research, we place the

data from our research and also the source code of our

publication which can be regenerated from new data in

the given format in public domain [93].

7 Conclusion

We evaluated mutants produced by different mutation

tools for Java across a large number of projects using

diverse measures of tool effectiveness. Using these mea-

sures, we find that the tool targeting industry — Pit

— produced the best mutants, although the difference

with other tools was often very small. We also find that

the influence of project, even after controlling for fac-

tors such as test suite and number of mutants (which

usually follows source code size of the project), is still

the dominant contributor to the variation between the
measurements from different tools.

We find that in terms of mutation score, while there

is very little mean difference between different tools,

there was often large standard deviation suggesting that

tools seldom agree. Our findings indicate that in order

to be useful as a measure of software quality, there is

a need for standardization of mutation scores. We pro-

pose an approach for such a standardization.

In the meantime, we make a recommendation for

languages such as Java where there are multiple tools,

with no single tool consistently better than others. We

suggest that researchers use a much larger set of projects,

and multiple tools to evaluate mutation scores, since a

large number of projects tend to reduce the ill effects of

an incomplete set of mutants. For practicing testers, for

whom a large number of projects is not appropriate, we

recommend using multiple tools to compute the muta-

tion score. A low mutation score reported by any tool

used should be a cause for concern, and be manually

reviewed and verified.

Does Choice of Mutation Tool Matter? 25

References

1. R. J. Lipton, “Fault diagnosis of computer programs,”
Carnegie Mellon Univ., Tech. Rep., 1971.

2. T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Say-
ward, Mutation analysis. Yale University, Department
of Computer Science, 1979.

3. M. Daran and P. Thévenod-Fosse, “Software error anal-
ysis: A real case study involving real faults and muta-
tions,” in ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, 1996, pp. 158–
171.

4. J. H. Andrews, L. C. Briand, and Y. Labiche, “Is muta-
tion an appropriate tool for testing experiments?” in In-
ternational Conference on Software Engineering. IEEE,
2005, pp. 402–411.

5. J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin, “Using mutation analysis for assessing and com-
paring testing coverage criteria,” IEEE Transactions on
Software Engineering, vol. 32, no. 8, pp. 608–624, 2006.

6. H. Do and G. Rothermel, “On the use of mutation faults
in empirical assessments of test case prioritization tech-
niques,” Software Engineering, IEEE Transactions on,
vol. 32, no. 9, pp. 733–752, 2006.

7. R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser,“Are mutants a valid substitute
for real faults in software testing?” in ACM SIGSOFT
Symposium on The Foundations of Software Engineer-
ing. Hong Kong, China: ACM, 2014, pp. 654–665.

8. Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

9. M. Delahaye and L. Du Bousquet, “A comparison of
mutation analysis tools for java,” in Quality Software
(QSIC), 2013 13th International Conference on. IEEE,
2013, pp. 187–195.

10. T. A. Budd and A. S. Gopal, “Program testing by spec-
ification mutation,” Computer Languages, vol. 10, no. 1,
pp. 63–73, Jan. 1985.

11. V. Okun, “Specification mutation for test generation
and analysis,”Ph.D. dissertation, University of Maryland
Baltimore County, 2004.

12. B. H. Smith and L. Williams, “An empirical eval-
uation of the mujava mutation operators,” in Test-
ing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE, 2007, pp. 193–202.

13. Y. Jia and M. Harman, “Milu: A customizable, runtime-
optimized higher order mutation testing tool for the full
c language,” in Practice and Research Techniques, 2008.
TAIC PART’08. Testing: Academic & Industrial Con-
ference. IEEE, 2008, pp. 94–98.

14. A. Derezińska and K. Ha las, “Analysis of mutation op-
erators for the python language,” in International Con-
ference on Dependability and Complex Systems, ser. Ad-
vances in Intelligent Systems and Computing. Springer
International Publishing, 2014, vol. 286, pp. 155–164.

15. D. Le, M. A. Alipour, R. Gopinath, and A. Groce,
“Mucheck: An extensible tool for mutation testing of
haskell programs,” in Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis.
ACM, 2014, pp. 429–432.

16. R. Just, “The major mutation framework: Efficient and
scalable mutation analysis for java,” in Proceedings of the
2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: ACM,
2014, pp. 433–436.

17. M. Kusano and C. Wang, “Ccmutator: A mutation
generator for concurrency constructs in multithreaded
c/c++ applications,” in Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference
on. IEEE, 2013, pp. 722–725.

18. H. Coles, “Pit mutation testing,” http://pitest.org/.
19. S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary,

S. Inglis, and M. Utting, “Jumble java byte code
to measure the effectiveness of unit tests,” in Test-
ing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE, 2007, pp. 169–175.

20. J. Duraes and H. Madeira, “Emulation of software faults
by educated mutations at machine-code level,” in Inter-
national Symposium on Software Reliability Engineering,
2002, pp. 329–340.

21. H. Coles, “Pit mutators,” http://pitest.org/quickstart/
mutators/.

22. M. Gligoric, V. Jagannath, and D. Marinov, “Mut-
mut: Efficient exploration for mutation testing of mul-
tithreaded code,” in Software Testing, Verification and
Validation (ICST), 2010 Third International Conference
on. IEEE, 2010, pp. 55–64.

23. J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke,
“Mutation testing of memory-related operators,” in Soft-
ware Testing, Verification and Validation Workshops
(ICSTW), 2015 IEEE Eighth International Conference
on. IEEE, 2015, pp. 1–10.

24. Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mu-
tation operators for java,” in International Symposium
on Software Reliability Engineering. IEEE, 2002, pp.
352–363.

25. Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an auto-
mated class mutation system,” Software Testing, Verifi-
cation and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

26. C. Zhou and P. Frankl, “Mutation testing for java
database applications,” in Software Testing Verification
and Validation, 2009. ICST’09. International Confer-
ence on. IEEE, 2009, pp. 396–405.

27. A. Siami Namin, J. H. Andrews, and D. J. Murdoch,
“Sufficient mutation operators for measuring test effec-
tiveness,” in International Conference on Software Engi-
neering. ACM, 2008, pp. 351–360.

28. A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf,“An experimental determination of sufficient mu-
tant operators,” ACM Transactions on Software Engi-
neering and Methodology, vol. 5, no. 2, pp. 99–118, 1996.

29. E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi,
“Toward the determination of sufficient mutant opera-
tors for c,” Software Testing, Verification and Reliability,
vol. 11, no. 2, pp. 113–136, 2001.

30. R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do
redundant mutants affect the effectiveness and efficiency
of mutation analysis?” in Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International
Conference on. IEEE, 2012, pp. 720–725.

31. B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and
L. Deng,“Mutant subsumption graphs,”in Software Test-
ing, Verification and Validation Workshops (ICSTW),
2014 IEEE Seventh International Conference on. IEEE,
2014, pp. 176–185.

32. D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mu-
tation testing by checking invariant violations,” in ACM
SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2009, pp. 69–80.

33. A. J. Offutt and W. M. Craft, “Using compiler optimiza-
tion techniques to detect equivalent mutants,” Software

http://pitest.org/
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/

26 Rahul Gopinath et al.

Testing, Verification and Reliability, vol. 4, no. 3, pp.
131–154, 1994.

34. D. Schuler and A. Zeller,“Covering and uncovering equiv-
alent mutants,” Software Testing, Verification and Reli-
ability, vol. 23, no. 5, pp. 353–374, 2013.

35. S. Nica and F. Wotawa, “Using constraints for equivalent
mutant detection,” in Workshop on Formal Methods in
the Development of Software, WS-FMDS, 2012, pp. 1–8.

36. M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon,
“Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant de-
tection technique,” in International Conference on Soft-
ware Engineering, 2015.

37. X. Yao, M. Harman, and Y. Jia, “A study of equivalent
and stubborn mutation operators using human analy-
sis of equivalence,” International Conference on Software
Engineering, pp. 919–930, 2014.

38. R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and
A. Groce, “On the limits of mutation reduction strate-
gies,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016.

39. ——, “Do mutation reduction strategies matter?”
Oregon State University, Tech. Rep., Aug 2015, under
review for Software Quality Journal. [Online]. Available:
http://hdl.handle.net/1957/56917

40. R. Gopinath, A. Alipour, A. Iftekhar, C. Jensen, and
A. Groce, “How hard does mutation analysis have to be,
anyway?” in International Symposium on Software Reli-
ability Engineering. IEEE, 2015.

41. H. Coles, “Mutation testing systems for java compared,”
http://pitest.org/java mutation testing systems/.

42. L. Madeyski and N. Radyk, “Judy–a mutation testing
tool for java,” IET software, vol. 4, no. 1, pp. 32–42, 2010.

43. P. K. Singh, O. P. Sangwan, and A. Sharma, “A study
and review on the development of mutation testing tools
for java and aspect-j programs,” International Journal
of Modern Education and Computer Science (IJMECS),
vol. 6, no. 11, p. 1, 2014.

44. J. Offut, “Problems with jester,” https://cs.gmu.edu/
˜offutt/documents/personal/jester-anal.html.

45. P. Ammann, “Problems with jester,” https:
//sites.google.com/site/mutationworkshop2015/
program/MutationKeynote.pdf.

46. J. Offut, “Problems with parasoft insure++,”
https://cs.gmu.edu/˜offutt/documents/handouts/
parasoft-anal.html.

47. M. Kintis, M. Papadakis, and N. Malevris, “Evaluat-
ing mutation testing alternatives: A collateral experi-
ment,” in Asia Pacific Software Engineering Conference
(APSEC). IEEE, 2010, pp. 300–309.

48. P. Ammann, M. E. Delamaro, and J. Offutt, “Establish-
ing theoretical minimal sets of mutants,” in International
Conference on Software Testing, Verification and Vali-
dation. Washington, DC, USA: IEEE Computer Society,
2014, pp. 21–30.

49. J. W. Nimmer and M. D. Ernst, “Automatic generation
of program specifications,”ACM SIGSOFT Software En-
gineering Notes, vol. 27, no. 4, pp. 229–239, 2002.

50. M. Harder, B. Morse, and M. D. Ernst, “Specification
coverage as a measure of test suite quality,” MIT Lab for
Computer Science, Tech. Rep., 2001.

51. M. Harder, J. Mellen, and M. D. Ernst, “Improving test
suites via operational abstraction,” in International Con-
ference on Software Engineering. IEEE Computer So-
ciety, 2003, pp. 60–71.

52. R. A. DeMillo, R. J. Lipton, and F. G. Sayward,“Hints on
test data selection: Help for the practicing programmer,”
Computer, vol. 11, no. 4, pp. 34–41, 1978.

53. T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward, “Theoretical and empirical studies on using
program mutation to test the functional correctness of
programs,” in ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1980, pp.
220–233.

54. T. A. Budd, “Mutation analysis of program test data,”
Ph.D. dissertation, Yale University, New Haven, CT,
USA, 1980.

55. A. P. Mathur and W. E. Wong, “An empirical compari-
son of data flow and mutation-based test adequacy crite-
ria,”Software Testing, Verification and Reliability, vol. 4,
no. 1, pp. 9–31, 1994.

56. A. J. Offutt and J. M. Voas, “Subsumption of condition
coverage techniques by mutation testing,” Technical Re-
port ISSE-TR-96-01, Information and Software Systems
Engineering, George Mason University, Tech. Rep., 1996.

57. K. S. H. T. Wah, “A theoretical study of fault coupling,”
Software Testing, Verification and Reliability, vol. 10,
no. 1, pp. 3–45, 2000.

58. ——, “An analysis of the coupling effect i: single test
data,” Science of Computer Programming, vol. 48, no. 2,
pp. 119–161, 2003.

59. A. J. Offutt, “The Coupling Effect : Fact or Fiction?”
ACM SIGSOFT Software Engineering Notes, vol. 14,
no. 8, pp. 131–140, Nov. 1989.

60. ——, “Investigations of the software testing coupling ef-
fect,” ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 1, pp. 5–20, 1992.

61. W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-
objective higher order mutation testing with genetic pro-
gramming,” Journal of systems and Software, vol. 83,
no. 12, pp. 2416–2430, 2010.

62. R. Gopinath, C. Jensen, and A. Groce, “Mutations: How
close are they to real faults?” in Software Reliability En-
gineering (ISSRE), 2014 IEEE 25th International Sym-
posium on, Nov 2014, pp. 189–200.

63. D. Baldwin and F. Sayward, “Heuristics for determin-
ing equivalence of program mutations.”DTIC Document,
Tech. Rep., 1979.

64. A. J. Offutt and J. Pan, “Automatically detecting equiv-
alent mutants and infeasible paths,” Software Testing,
Verification and Reliability, vol. 7, no. 3, pp. 165–192,
1997.

65. A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting
the orthogonal,” in Mutation testing for the new century.
Springer, 2001, pp. 34–44.

66. A. T. Acree, Jr., “On mutation,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, GA, USA, 1980.

67. A. Mathur, “Performance, effectiveness, and reliability is-
sues in software testing,” in Annual International Com-
puter Software and Applications Conference, COMP-
SAC, 1991, pp. 604–605.

68. W. E. Wong, “On mutation and data flow,” Ph.D. dis-
sertation, Purdue University, West Lafayette, IN, USA,
1993, uMI Order No. GAX94-20921.

69. W. Wong and A. P. Mathur, “Reducing the cost of mu-
tation testing: An empirical study,” Journal of Systems
and Software, vol. 31, no. 3, pp. 185 – 196, 1995.

70. A. J. Offutt, G. Rothermel, and C. Zapf, “An experi-
mental evaluation of selective mutation,” in International
Conference on Software Engineering. IEEE Computer
Society Press, 1993, pp. 100–107.

71. R. A. DeMillo, D. S. Guindi, W. McCracken, A. Offutt,
and K. King, “An extended overview of the mothra soft-
ware testing environment,” in International Conference
on Software Testing, Verification and Validation Work-
shops. IEEE, 1988, pp. 142–151.

http://hdl.handle.net/1957/56917
http://pitest.org/java_mutation_testing_systems/
https://cs.gmu.edu/~offutt/documents/personal/jester-anal.html
https://cs.gmu.edu/~offutt/documents/personal/jester-anal.html
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html

Does Choice of Mutation Tool Matter? 27

72. L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is
operator-based mutant selection superior to random mu-
tant selection?” in International Conference on Software
Engineering. New York, NY, USA: ACM, 2010, pp.
435–444.

73. L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid,
“Operator-based and random mutant selection: Better
together,” in IEEE/ACM Automated Software Engineer-
ing. ACM, 2013.

74. J. Zhang, M. Zhu, D. Hao, and L. Zhang, “An empirical
study on the scalability of selective mutation testing,” in
International Symposium on Software Reliability Engi-
neering. ACM, 2014.

75. M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov, “Comparing non-adequate test
suites using coverage criteria,” in ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis.
ACM, 2013.

76. X. Cai and M. R. Lyu, “The effect of code coverage on
fault detection under different testing profiles,” in ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 4.
ACM, 2005, pp. 1–7.

77. A. S. Namin and J. H. Andrews, “The influence of size
and coverage on test suite effectiveness,” in ACM SIG-
SOFT International Symposium on Software Testing and
Analysis. ACM, 2009, pp. 57–68.

78. R. Gopinath, C. Jensen, and A. Groce, “Code coverage
for suite evaluation by developers,” in International Con-
ference on Software Engineering. IEEE, 2014.

79. P. Ammann, “Transforming mutation testing from the
technology of the future into the technology of the
present,” in International Conference on Software Test-
ing, Verification and Validation Workshops. IEEE,
2015.

80. GitHub Inc., “Software repository,” http://www.github.
com.

81. Apache Software Foundation, “Apache commons,” http:
//commons.apache.org/.

82. M. Sridharan and A. S. Namin,“Prioritizing mutation op-
erators based on importance sampling,” in International
Symposium on Software Reliability Engineering. IEEE,
2010, pp. 378–387.

83. R. H. Untch, “On reduced neighborhood mutation analy-
sis using a single mutagenic operator,” in Annual South-
east Regional Conference, ser. ACM-SE 47. New York,
NY, USA: ACM, 2009, pp. 71:1–71:4.

84. P. Chevalley and P. Thévenod-Fosse, “A mutation analy-
sis tool for java programs,” International journal on soft-
ware tools for technology transfer, vol. 5, no. 1, pp. 90–
103, 2003.

85. Parasoft, “Insure++,” www.parasoft.com/products/
insure/papers/tech mut.htm.

86. J. Offutt, “Insure++ critique,” https://cs.gmu.edu/
˜offutt/documents/handouts/parasoft-anal.html.

87. Parasoft, “Insure++ mutation analysis,” http:
//www.parasoft.com/jsp/products/article.jsp?
articleId=291&product=Insure.

88. D. Schuler and A. Zeller, “Javalanche: Efficient muta-
tion testing for java,” in ACM SIGSOFT Symposium on
The Foundations of Software Engineering, Aug. 2009, pp.
297–298.

89. M. P. Usaola and P. R. Mateo, “Bacterio: Java mutation
testing tool: A framework to evaluate quality of tests
cases,” in Proceedings of the 2012 IEEE International
Conference on Software Maintenance (ICSM), ser. ICSM
’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 646–649.

90. Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: A muta-
tion system for java,” in Proceedings of the 28th Inter-
national Conference on Software Engineering, ser. ICSE
’06. New York, NY, USA: ACM, 2006, pp. 827–830.

91. I. Moore, “Jester-a junit test tester,” in International
Conference on Extreme Programming, 2001, pp. 84–87.

92. M. G. Macedo, “Mutator,” http://ortask.com/mutator/.
93. R. Gopinath,“Replication data for: Does Choice of Muta-

tion Tool Matter?” http://eecs.osuosl.org/rahul/sqj2015.
94. S. Watanabe, “Information theoretical analysis of multi-

variate correlation,” IBM J. Res. Dev., vol. 4, no. 1, pp.
66–82, Jan. 1960.

95. C. E. Shannon, “A mathematical theory of communica-
tion,” ACM SIGMOBILE Mobile Computing and Com-
munications Review, vol. 5, no. 1, pp. 3–55, 2001.

http://www.github.com
http://www.github.com
http://commons.apache.org/
http://commons.apache.org/
www.parasoft.com/products/insure/papers/tech_mut.htm
www.parasoft.com/products/insure/papers/tech_mut.htm
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
http://www.parasoft.com/jsp/products/article.jsp?articleId=291&product=Insure
http://www.parasoft.com/jsp/products/article.jsp?articleId=291&product=Insure
http://www.parasoft.com/jsp/products/article.jsp?articleId=291&product=Insure
http://ortask.com/mutator/
http://eecs.osuosl.org/rahul/sqj2015

28 Rahul Gopinath et al.

A Appendix

A.1 Measures of Correlation

We rely on two different correlations here: The first is R2,
which suggests how close variables are linearly. R2 (Pear-
son’s correlation coefficient) is a statistical measure of the
goodness of fit, that is, the amount of variation in one vari-
able that is explained by the variation in the other. For our
purposes, it is the ability of mutation scores produced by one
tool to predict the score of the other. We expect R2 = 1 if
either A) scores given by both tools for same program are the
same, or B) they are always separated by same amount. The
Kendall’s τb is a measure of monotonicity between variables
compared, measuring the difference between concordant and
discordant pairs. Kendall’s τb rank correlation coefficient is
a non-parametric measure of association between two vari-
ables. It requires only that the dependent and independent
variables (here mutation scores from two different tools) are
connected by a monotonic function. It is defined as

τb =
concordant pairs− discordant pairs

1
2
n(n− 1)

R2 and τb provide information along two different dimen-
sions of comparison. That is, R2 can be close to 1 if the scores
from both tools are different by a small amount, even if there
is no consistency in which one has the larger score. However,
such data would result in very low τb, since the difference
between concordant and discordant pairs would be small. On
the other hand, say the mutation scores of one tool is linearly
proportional to the test suite, while another tool has a differ-
ent relation to the test suite – say squared increase. In such a
case, the R2 would be low since the relation between the two
tools is not linear, while τb would be high. Hence both mea-
sures provide useful comparative information. Note that low
τb indicates that the troubling situation in which tools would
rank two test suites in opposite order of effectiveness is more
frequent — this could lead to a change in the results of soft-
ware testing experiments using mutation analysis to evaluate
techniques, just by changing the tool used for measurement.

While what can be considered high and low correlation is
subjective, for the purpose of this paper, we consider R2 ≤
0.40 to be low correlation, and R2 ≥ 0.60 to be high correla-
tion.

A.2 Covariance

We showed [40] that for mutation analysis, the maximum
number of mutants to be sampled for given tolerance has an
upper bound provided by the binomial distribution, and the
actual number is determined by the covariance.

Let the random variable Dn denote the number of de-
tected mutants out of our sample n. The estimated mutation
score is given by Mn = Dn

n
. The random variable Dn can

be modeled as the sum of all random variables representing
mutants X1..n. That is, Dn =

∑n

i
Xi. The expected value

of E(Mn) is given by 1
n
E(Dn). The variance V (Mn) is given

by 1
n2 V (Dn), which can be written in terms of component

random variables X1..n as:

1

n2
V (Dn) =

1

n2

n∑
i

V (Xi) + 2

n∑
i<j

Cov(Xi, Xj)

Using a simplifying assumption that mutants are more similar
to each other than dissimilar, we can assume that

2

n∑
i<j

Cov(Xi, Xj) >= 0

The sum of covariance will be zero when the mutants are
independent. That is, the variance of the mutants V (Mn) is
strictly greater than or equal to that of a similar distribution
of independent random variables.

This means that the covariance between mutants deter-
mines the size of the sample required. That is, the larger the
covariance (or correlation) between mutants, the smaller the
diversity.

A.3 Mutual Information

The mutual information of a variable is defined as the reduc-
tion in uncertainty of a variable due to knowledge of another.
That is, given two variables X and Y, the redundancy be-
tween them is estimated as:

I(X;Y) = I(Y ;X) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
To extend this to a set of mutants, we use one of the mul-
tivariate generalizations of mutual information proposed by
Watanabe [94] — multi information also called total corre-
lation. The important aspects of multi information that are
relevant to us are that it is well behaved — that is it allows
only positive values, and is zero only when all variables are
completely independent. The multi information for a set of
random variables xi ∈ X is defined formally as:

C(X1..Xn) =
∑

x1∈X1

..
∑

xn∈Xn

p(x1..xn)log

(
p(x1..xn)

p(x1)..p(xn)

)

A.4 Entropy

In information theory Shannon entropy [95] is a measure of
the information content in the given data. Entropy is related
to multi information. That is, multi information is the dif-
ference between the sum of independent entropies of random
variables and their joint entropy. Formally,

C(X1..Xn) =

N∑
i=1

H(Xi)−H(X1..Xn)

Another reason we are interested in the entropy of a set
of mutants is that the properties of entropy are also relevant
to how good we judge a set of mutants to be. That is, as
we expect from a measure of quality of a set of mutants,
the value can never be negative (adding a mutant to a set
of mutants should not decrease the utility of a mutant set).
Secondly, a mutant set where all mutants are killed by all test
cases has minimal value (think of a minimal set of mutants
for such a matrix). This is mirrored by the entropy property
that I(1) = 0. Similarly, a mutant set where no mutants are
killed by any test cases is also of no value (again consider
the minimal set of mutants for such a matrix), which is also
mirrored by entropy I(0) = 0. Finally, we expect that if two
mutant sets representing independent failures are combined,
the measure should reflect the sum of their utilities. With

Does Choice of Mutation Tool Matter? 29

entropy, the joint information of two independent random
variables is their sum of respective informations. Finally, the
maximum entropy for a set of mutants happens when none
of the mutants in the set are subsumed by any other mutants
in the set. The entropy of a random variable is given by:

I(p) = −p× log2(p)

	Introduction
	Related Work
	Methodology
	Project Selection
	Tool Selection
	Analysis
	Sampling

	Measures
	Raw mutation score
	Refined mutation score
	Minimal set of mutants
	Surface mutants
	Covariance between mutants
	Mutual information between mutants
	Entropy carried by mutants

	Results
	Raw mutation score
	Refined mutation scores
	Minimal set of mutants
	What is the impact of tools after controlling for the number of mutants produced?

	Surface mutants
	What is the impact of tools after controlling for the number of mutants produced?

	Covariance between mutants
	 What is the impact of tools after controlling for the number of mutants produced?

	Mutual information (Total correlation) between mutants
	What is the impact of tools after controlling for the number of mutants produced?

	Entropy carried by mutants
	What is the impact of tools after controlling for the number of mutants produced?

	Discussion
	Comparison of difficulty of detection with mutation scores
	Comparison of mutant strength with minimal mutation sets
	Comparison of mutant diversity with statistical measures
	Comparison of information carried with entropy
	Tool Assessment
	Judy
	Major
	Pit

	Impact of phase of generation
	Impact of target audience
	Impact of project characteristics
	Need for standardization

	Threats to Validity
	Conclusion
	Appendix
	Measures of Correlation
	Covariance
	Mutual Information
	Entropy

