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Abstract. One of the chief advantages of model checking is the produc-
tion of counterexamples demonstrating that a system does not satisfy
a specification. However, it may require a great deal of human effort to
extract the essence of an error from even a detailed source-level trace
of a failing run. We use an automated method for finding multiple ver-
sions of an error (and similar executions that do not produce an error),
and analyze these executions to produce a more succinct description of
the key elements of the error. The description produced includes iden-
tification of portions of the source code crucial to distinguishing failing
and succeeding runs, differences in invariants between failing and non-
failing runs, and information on the necessary changes in scheduling and
environmental actions needed to cause successful runs to fail.

1 Introduction

In model checking [4], algorithms are used to systematically determine whether
a system satisfies a specification. One of the major advantages of model check-
ing in comparison to such methods as theorem proving is the production of
a counterexample that provides a detailed example of how the system violates
the specification when verification fails. However, even a detailed trace of how
a system violates a specification may not provide enough information to easily
understand (much less remedy) the problem with the system. Model checking is
particularly effective at finding subtle errors that can elude traditional testing,
but consequently the errors are also difficult to understand, especially from a
single error trace. Furthermore, when the model of the system is in any sense
abstracted from the real implementation, simply determining whether an error
is indeed a fault in the system or merely a consequence of modeling assumptions
or incorrect specification can be quite difficult.

We attempt to extract more information from a single counterexample pro-
duced by model checking in order to facilitate understanding of errors in a system
(or problems with the specification of a system). We focus in this work on finite
executions demonstrating violation of safety properties (e.g. assertion violations,
uncaught exceptions, and deadlocks) in Java programs. The key to this approach
is to first define (and then find) multiple variations on a single counterexample



(other versions of the “same” error). From this definition naturally arises that
of a set of executions that are variations in which the error does not occur. We
call the first set of executions negatives and the second set positives. Analysis of
the common features of each set and the differences between the sets may yield
a more useful feedback than reading (only) the original counterexample.

One approach to analysis would be to define the negatives as all executions
that reach a particular error state (all deadlocks, all assertion violations, etc.).
This definition has major drawbacks. A complex concurrent program, for exam-
ple, may have many deadlocks that have different causes. Attempts to extract
any common features from the negatives are likely to fail or be computationally
expensive (for example, requiring clustering) in this case. The second problem
is that positives would presumably be any executions not ending in the error
state, again making comparison difficult. In software, at least, we usually think
of errors as occurring at a particular place—e.g., a deadlock at a particular syn-
chronization, or a failure of a particular assertion or array-out-of-bounds error
at a particular point in the source code. We define negatives, therefore, as ex-
ecutions that not only end in the same error state, but that reach it from the
same control location. Rather than analyzing all deadlocks, our definition focuses
analysis on deadlocks that occur after the same attempt to acquire a lock, for
example. We believe that our definition formally captures a simplified version of
the programmer’s notion of “the same error.” Positives are the executions that
pass through that control location without proceeding to an error state.

We present three different analyses that can be automatically extracted from
a set of negatives and positives. The first is based on the transitions appearing
in the set. The second is based on data invariants over the executions. The last
analysis discovers minimal transformations between negatives and positives.

This paper is organized as follows: in Section 2 we discuss related work. The
definitions of negative and positive executions are then formalized in Section 3,
followed by a presentation of an algorithm for generating executions to analyze in
Section 4. The various analyses currently applied and their implementations are
discussed in Section 5 and Section 6, respectively. We then present experimental
results in Section 7, followed by conclusions and future work.

2 Related Work

The most closely related work to ours is that of Ball, Naik, and Rajamani [1].
They find successful paths to the control location at which an error is discovered
in order to find the cause of the error. Once a cause is discovered, they model
check a restricted model in which the system is restricted from executing the
causal transitions to discover if other causes for the error are possible. The
analysis provided is similar to our transition analysis; no method analogous to
invariant or transformation analysis is provided, nor are concurrent programs
analyzed. This error analysis has been implemented for the SLAM [2] tool.

Sharygina and Peled [13] propose the notion of the neighborhood of a coun-
terexample and suggest that an exploration of this region may be useful in



understanding an error. However, the exploration, while aided by a testing tool,
is essentially manual and offers no automatic analysis. No formal notion of other
versions of the same error is presented. Dodoo, Donovan, Lin and Ernst [5] use
the Daikon invariant detector to discover differences in invariants between pass-
ing and failing test cases, but propose no means to restrict the cases to similar
executions relevant for analysis or to generate them from a counterexample.

Jin, Ravi and Somenzi [11] proceed from the same starting point of analyzing
counterexamples produced by a model checker. Their goal is also similar: pro-
viding additional feedback in addition to the original counterexample in order
to deal with the complexity of errors. Fate and free will are terms in a game
in which a counterexample is broken into parts depending on whether the en-
vironment (attempting to force the system into an error state) or the system
(attempting to avoid error) controls it. This approach produces a different kind
of explanation (an alternation of fated and free segments).

The work of Andreas Zeller was also an important influence on this work.
Delta debugging is a technique for minimizing error trails that works by con-
ducting a modified binary search between a failing run and a succeeding run of a
program [17]. Zeller has extended this notion to other approaches to automatic
debugging, including modifying portions of a program’s state to isolate cause-
effect chains [16] and discovering the minimal difference in thread scheduling
necessary to produce a concurrency-based error [3]. Our computation of transfor-
mations between positive and negative executions was inspired by this approach,
particularly in that we look for minimal transformations.

3 Definitions

The crucial definitions are those of negatives and positives, the two classes of
executions we use in our analysis. While manual exploration of paths near a
counterexample can be useful [13], a formal definition of a variation on a coun-
terexample is necessary before proceeding to the more fruitful approach of au-
tomatic generation and analysis of relevant executions. Intuitively, we examine
the full set of finite executions in which the program reaches the control location
immediately proceeding the error state.

A labeled transition system (LTS) is a 4-tuple 〈S, S0, Act, T 〉, where S is a
finite non-empty set of states, S0 ⊂ S is the set of initial states, Act is the set
of actions, and T ⊂ S × Act × S is the transition relation. We assume that
S contains a distinguished set of error states (with no outgoing transitions),
Π = {π0, · · · , πn} (representing, e.g. deadlock, assertion violation, uncaught ex-
ception. . . ). We also introduce a set C of control locations and a set D of data
valuations, such that S = (C×D)∪Π, and introduce partial projection functions
c : S → C and d : S → D. We write s α−→ s′ as shorthand for (s, α, s′) ∈ T .

A finite transition sequence from s0 ∈ S is a sequence t = s0
α1−→ s1

α2−→
· · · αk−→ sk, where 0 < k < ∞. We refer to k as the length of t, also denoted
by |t|. We say that a finite transition sequence t = s0

α1−→ s1
α2−→ · · · αk−→ sk

is a prefix of a finite transition sequence t′ = s′0
α′1−→ s′1

α′2−→ · · ·
α′
k′−→ sk′ if



0 < k < k′ and ∀i ≤ k . (i ≥ 0 ⇒ si = s′i) ∧ (i > 0 ⇒ αi = α′i). We say that
a finite transition sequence t = s0

α1−→ s1
α2−→ · · · αk−→ sk is a control suffix of

a finite transition sequence t′ = s′0
α′1−→ s′1

α′2−→ · · ·
α′
k′−→ sk′ iff 0 < k < k′ and

∀i ≤ k . (i ≥ 0 ⇒ c(sk−i) = c(s′k′−i)) ∧ (i > 0 ⇒ αk−i = α′k′−i). We also define
the empty transition sequence, emp as consisting of no states or actions, where
|emp| = 0.

We consider the class of counterexamples that are finite transition sequences
from s0 ∈ S0. Given an initial counterexample t = s0

α1−→ s1
α2−→ · · · αk−→ sk,

where sk ∈ Π, we define a negative as an execution that results in the same
error state from the same control location (the original counterexample is itself
a negative). Formally:

Definition: Negative: A negative (with respect to a particular t, as noted

above) is a finite transition sequence from s′0 ∈ S0, t′ = s′0
α′1−→ s′1

α′2−→ · · ·
α′
k′−→ s′k′ ,

where 0 < k′ <∞, such that:

1. c(sk−1) = c(s′k′−1) ∧ αk = α′k′ and
2. sk = s′k′ .

We then define neg(t) as the set of all negatives with respect to a counterex-
ample t. The original counterexample itself is one such negative, and is used as
such in all analyses.

Definition: Positive: A positive (with respect to t) is a finite transition

sequence from s′0 ∈ S0, t′ = s′0
α′1−→ s′1

α′2−→ · · ·
α′
k′−→ s′k′ , where 0 < k′ < ∞ such

that:

1. c(sk−1) = c(s′k′−1) ∧ αk = α′k′ ,
2. s′k′ 6∈ Π, and
3. ∀t′′ ∈ neg(t) . t′ is not a prefix of t′′.

We define pos(t) as the set of all positives with respect to a counterexam-
ple t, and var(t) as neg(t) ∪ pos(t), the set of all variations on the original
counterexample. We will henceforth refer to neg and pos, omitting the implied
parameterization with respect to t.

Figure 1 shows an example. The numbers inside states indicate the control
location of the state, c(s), and the letters beside the arrows are the labels of ac-
tions (in this case drawn from the alphabet {a, b}). The original counterexample
ends in the state A ∈ Π, indicating an assertion violation. The negative shown
takes a different sequence of actions but also passes through the control location
3, takes an a action, and transitions to the error state A. The positive reaches
control location 3 but in a data state such that taking an a action transitions to
a non-error state.

These basic definitions, however, give rise to certain difficulties in practice.
First, the set of negatives is potentially infinite, as is the set of positives. On the
other hand, the set of positives may be empty, as an error in a reactive system is
often reachable from any other state. For reasons of tractability we generate and
analyze subsets of the negatives and positives. When only a subset of negatives
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Fig. 1. A counterexample, a negative, and a positive.

are known the third condition in the definition of positives cannot be checked;
we therefore replace it with the weaker requirement that t′ not be a prefix of
any negative we generate.

4 Generation of Positives and Negatives

The algorithm for generating a subset of the negatives (and a set of potential
positives, per the modified prefix condition) uses a model checker to explore
backwards from the original counterexample. We describe an explicit state algo-
rithm, but are investigating a SAT-based approach.

We assume that the model checker (MC) can be called as a function during
generation with an initial state s from which to begin exploration, a maximum
search depth d, a control state to match c, an error state π, and a visited set
v. The model checker returns two (possibly empty) sets: n (negatives) and p
(potential positives) and a new visited set v′. The check for whether a state
is the last in a positive or negative is a simple safety property relying only on
a state’s control location and the preceeding control location and action (see
the above definitions), and should not pose difficulties. Removal of prefixes of
negatives is done in a final stage and need not be taken into account by the
model checker.

The generation algorithm (Figure 2) takes as input an initial counterexample
t = s0

α1−→ s1
α2−→ · · · αk−→ sk and a search depth d.

The model checking algorithm used is not specified, but we make a few as-
sumptions about its behavior. If a depth limit is not given each call to the
model checker will only terminate upon exploring the full reachable state space
from si, so we assume that the model checker allows the use of depth limits.
We also require that the model checker be able to report multiple counterex-
amples (paths to all states satisfying the properties for defining negatives and
positives). Both of these assumptions can easily be met by various explicit state
model checkers—e.g. SPIN supports depth limits as well as multiple counterex-



generate (t, d)
v := neg := pos := ∅
i := k − 1
while i >= 0

(n, p, v) := MC(si, t, d, v)
neg := neg ∪ n
pos := pos ∪ p
i := i− 1

for all t ∈ pos
for all t′ ∈ neg

if t is a prefix of t′

pos := pos \ t
return (neg, pos)

Fig. 2. Algorithm for generation of negatives and positives.

amples. The counterexamples can be split into negatives and positives after being
returned, if necessary.

To provide more negatives and positives to analyze we also propose one al-
teration to the internal behavior of the model checker. When the depth limit is
reached, we attempt to extend the execution to match the original counterexam-
ple. This causes the depth limit to behave as an edit-distance from the original
counterexample: negatives and positives may deviate from the original execution
for a number of actions limited by d. The algorithm for extension, proceeding
from a state s at depth i is given in Figure 3. Briefly, the algorithm checks the
state at which exploration terminates due to depth limiting to see if it matches
control location with any state further along the original counterexample. For
all matches, the actions taken in the original counterexample are repeated if en-
abled in order to reach either a negative or a positive. The extension algorithm
is depth-first, but can be integrated into both breadth-first and heuristic-based
model checking algorithms.

j := i
while j < k

if c(sj) = c(s)
s′ := s
l := j + 1
broken := false
while l < k ∧ ¬ broken

if ∃ s′′ . s′
αl−→ s′′ ∧ c(s′′) = c(sl) ∧ s′′ 6∈ v

s′ := s′′

else
broken := true
l := l + 1

if ¬ broken

if s′
αk−→ s′′

if s′′ ∈ Π
add transition sequence to s′′ to current set of negatives

else
add transition sequence to s′′ to current set of positives

j := j + 1

Fig. 3. Algorithm for extension.



We use neg and pos below to denote the sets returned by this generation
algorithm, not the true complete sets of negatives and positives.

5 Analysis of Variations

Once the negatives and positives have been generated, it remains to produce
from them useful feedback for the user. Even without such analysis, the traces
may prove useful, but our experience shows that even tightly limited searches will
produce large numbers of traces that are as difficult to understand in isolation
as the original counterexample. It is not the traces in and of themselves that
provide leverage in understanding the error; any negative could have generally
been substituted for the original counterexample, and a positive simply shows
an instance of the program reaching a control location without error.

5.1 Transition Analysis

The various analyses we employ are designed to characterize (1) the common
elements of negatives/positives and (2) the difference between negatives and pos-
itives. For this analysis, we examine the presence of transitions in the executions
in each set. In particular we compute sets containing projected transitions, pairs
〈c, α〉, where c ∈ C is a control location and α ∈ Act is an action. We say that
the finite transition sequence t = s0

α1−→ s1
α2−→ · · · αk−→ sk contains 〈c, α〉 iff

∃n < k . c(sn) = c ∧ αn+1 = α. The analysis below can also be computed using
only projected control locations, ignoring actions (or also projecting on some
portion of a composite action, when this is possible).

Transition Analysis Set Definition
trans(neg) 〈c, α〉|∃t ∈ neg . t contains 〈c, α〉
trans(pos) 〈c, α〉|∃t ∈ pos . t contains 〈c, α〉
all(neg) 〈c, α〉|∀t ∈ neg . t contains 〈c, α〉
all(pos) 〈c, α〉|∀t ∈ pos . t contains 〈c, α〉
only(neg) trans(neg)\trans(pos)
only(pos) trans(pos)\trans(neg)
cause(neg) all(neg) ∩ only(neg)
cause(pos) all(pos) ∩ only(pos)

Table 1. Transition analysis set definitions.

In transition analysis, we compute a number of sets of transitions, listed in
Table 1. trans(neg) and trans(pos) are complete sets of all transitions appearing
in negatives and positives, respectively. The sets all(neg) and all(pos) (transi-
tions appearing in all negatives or positives) are reported directly to the user.
These may be sufficient to explain an error, either by indicating that certain code
is faulty or that execution of certain code prevents the error from appearing. Also
reported to the user are the transitions appearing only in negatives/positives,
only(neg) and only(pos). Finally, potentially causal transition sets are reported.



The rationale for computing causal sets is that in many cases all(neg) and
all(pos) will contain a number of common elements, due to common initialization
code and aspects of execution unrelated to the error. only(neg) and only(pos)
may also be large sets if the error induces differing behavior in the system be-
fore the point at which the error is detected. When non-empty, cause(neg) and
cause(pos) denote sets that are potentially much smaller and denote precisely
the common behavior that differentiates the negative and positive sets. The er-
ror cause localization algorithm used in SLAM is comparable to reporting either
cause(neg) or only(neg), as SLAM analyzes one error trace at a time [1].

1 int got lock = 0; public static void lock () {
2 do { Verify.assertTrue (LOCK == 0);
3 if (Verify.chooseBool ()) { LOCK = 1;
4 lock (); }
5 got lock++;
6 }
7 if (got lock != 0) {
8 unlock (); public static void unlock () {
9 } Verify.assertTrue (LOCK == 1);
10 got lock--; LOCK = 0;
11 } while (Verify.chooseBool ()); }

Fig. 4. Example 1.

Example of Transition Analysis The Java code in Figure 4 (adapted from a
BLAST example [10]) calls lock and unlock methods that assert that the lock
is not held and the lock is held, respectively. Verify.chooseBool () indicates a
nondeterministic choice between true and false (see Section 6). The bug (line
10 should be inside the scope of the if starting at line 7) can appear as a violation
of either the lock or unlock assertion. Depth-30 analysis from a counterexample
in which the unlock assertion is violated (1 −→ 2 −→ 3 F−→ 7 −→ 10 −→
11 T−→ 3 F−→ 7 −→ 8 −→ A) discovers two positives and two negatives.

Transition Analysis Set Elements
all(neg) {1, 2, 〈3, F 〉, 7, 8, 10, 〈11, T 〉}
all(pos) {1, 2, 〈3, T 〉, 4, 5, 7, 8}
only(neg) {〈3, F 〉, 10, 〈11, T 〉}
only(pos) ∅
cause(neg) {〈3, F 〉, 10, 〈11, T 〉}
cause(pos) ∅

Table 2. Transition analysis example results.

In this case cause(neg) is unchanged by our use of the weaker prefix con-
straint for positives (there are no real positives in this program: the error can
occur in an extension of every trace ending at line 8). Here cause(neg) notes



the key points of the unlocking error: the system chooses not to lock (〈3, F 〉),
which means that the decrement of got lock (10) is incorrect (the lock’s status
has not been changed this time through the loop). Reiterating the loop (〈11, T 〉)
makes it possible to try to unlock when the lock has not been acquired.

5.2 Invariant Analysis

Transition analysis is useful when the control flow or action choices independent
of ordering are sufficient to explain an error. However, the same actions from the
same control locations may be present in both negatives and positives; it may
be that the choice of an action with respect to d(s) rather than c(s) is crucial.
A set-based approach projected on d(s) rather than c(s) faces the problem that
only certain data values are likely to be relevant, rather than the full state.

Instead, we compute data invariants over the negatives and compare them to
the invariants over the positives. Specifically, the user may choose certain control
locations as instrumentation points. The value of d(s) (or some projection over
certain variables of the data state) is recorded for each transition sequence every
time the control flow reaches the instrumentation locations. We then compute
invariants using Daikon [6] (see Section 6 for details) with respect to each of
the instrumentation points over all negatives and all positives. The invariants
for negatives are then compared to the invariants for positives, and the user is
presented with this difference. Daikon’s analysis is dynamic and thus unsound;
however, the invariants reported over a set of traces (which is precisely what we
are concerned with here) are always correct for those traces. Choosing instrumen-
tation points and how deeply to instrument (by default all local primitive-typed
variables, but JPF can also report on object fields and other frames) is not
automated and must be guided by user knowledge the other analyses.

int a = Verify.choose(4); int b = Verify.choose(4); // nondeterministic 0-4
int c = Verify.choose(4); int d = Verify.choose(4); // nondeterministic 0-4
int temp = 0;
Verify.instrumentPoint("pre-sort");
if (a > b) {

temp = b; b = a; a = temp; } // Swap
if (b > c) {

temp = c; c = b; b = temp; } // Swap
if (c > d) {

temp = d; d = c; c = temp; } // Swap
if (b > c) {

temp = c; c = b; b = temp; } // Swap
Verify.instrumentPoint("post-sort");
Verify.assertTrue((a <= b) && (b <= c) && (c <= d));

Fig. 5. Example 2.

Example of Invariant Analysis The code in Figure 5 is intended to sort
the variables a, b, c and d in ascending order. The last line asserts that the



variables are ordered. However, the comparisons are not sufficient to ensure
ordering. Verify.instrumentPoint indicates a point at which d(s) is recorded
(and a name for that instrumentation point). Applying invariant analysis with
a search depth of 30 yields the following differences (values after sorting, at the
instrumentation point post-sort, are indicated by primed variable names):

Instrumentation Point Positive Invariant Negative Invariant
pre-sort a >= 0 a >= 1

b <= d
a <= b
a > c
b > c

post-sort a’ >= 0 a’ >= 1
a’ <= b’ a’ > b’
a’ <= c’
b’ <= d’ b’ < d’
d’ >= temp d’ > temp

Table 3. Invariant analysis example results.

We observe from the negative invariants that a’ may be greater than b’.
Because invariant analysis is complete over the negative and positive runs, the
absence of an a’ <= c’ invariant for negatives also indicates that a’ is greater
than c’ in at least one negative. Adding only the a, b comparison to the code
before again model checking and analyzing the resulting counterexample gives
the remaining crucial invariant difference: b’ <= c’ (positive) vs. b’ > c’ (neg-
ative). Adding this comparison results in code that satisfies the sorting assertion.

5.3 Transformation of Positives into Negatives

Our final analysis is based on the intuition that when both negatives and posi-
tives exist, we can imagine “breaking” a positive by changing the least number
of actions required to produce a negative. If a positive and a negative follow the
same path for a long sequence of states and actions, then diverge for a period
before again rejoining paths, the difference in actions in the divergent section
may give important insights into the cause of the error. Our extension algorithm
(Figure 3) is intended to find such pairs of negatives and positives. A transfor-
mation is a pair of smaller finite transition sequences, demarcating precisely the
diverging portions of the negative and positive (the portions before and after
the transformation segments in each are identical until the point of error).

The largest prefix of a finite transition sequence t is the prefix p of t that
maximizes |p|, or, more simply, t with its final action and state removed. The
largest prefix of a set of finite transition sequences T is the finite transition
sequence that is a prefix of all elements of T with the largest |p|. We say that
there is a transformation of a positive t = s0

α1−→ s1
α2−→ · · · αk−→ sk into a

negative t′ = s′0
α′1−→ s′1

α′2−→ · · ·
α′
k′−→ s′k′ when:
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1. ∃p . p is a finite transition sequence which is a prefix of both t and t′.
2. ∃u . u is a finite transition sequence which is a control suffix of both the

largest prefix of t and the largest prefix of t′.

As the final states of t and t′ do not share a control location, we must take
the largest prefixes of both in order to allow for the existence of u.

A minimal transformation from t to t′ always exists when there is a transfor-
mation from t to t′. We define the minimal transformation as a 3-tuple 〈kt, tp, tn〉
where 0 ≤ kt < |t| and tp and tn are either finite transition sequences or the
empty transition sequence, emp. We may also write (tp) → (tn) when we are
considering only the actual sequences replaced and not the location from which
they begin (discarding kt allows us to see when the same alteration of actions
from different positions causes an error in a number of positives).

1. Find the p such that p is largest prefix of the set {t, t′}.
2. Find the u such that u is the largest finite transition sequence which is a

control suffix of both the largest prefix of t and the largest prefix of t′ and u
satisfies the constraint that |u|+ |p| ≤ min(|t|, |t′|).

3. kt = |p|.
4. tp = skt

αkt+1−→ · · · sk−|u|. If kt > k − |u| then tp = emp.

5. tn = s′kt
α′kt+1−→ · · · sk′−|u| If kt > k′ − |u| then tn = emp.

The last two definitions select the diverging portions of t and t′ as the positive
(tp) and negative (tn) portions of the transformation (see Figure 6).

When S0 contains a single state, there will exist a minimal transformation
for every pair in pos × neg. Sorting this set by a metric of transformation size
(|tp| + |tn| is one reasonable choice, though this ignores similarities within the
transformation) yields a description of increasingly complex ways to cause a
successful execution to fail. This set (along with the associated positive(s) and
negative(s) for each transformation) can aid understanding of aspects of an error
(such as timing or threading issues) that are not expressible by either transition



or invariant analysis. For example, if a positive can be transformed into a nega-
tive by changing actions that represent thread/process scheduling choices only,
an error can be immediately classified as a concurrency problem. Additionally,
we reapply the transition analysis with the values of tp replacing pos and the
values of tn replacing neg. This may yield causal transitions when none are dis-
covered by the first analysis (because the context in which the transitions are
executed is important).

Returning to the example in Figure 4, running transformation analysis gives
us two distinct minimal transformations: (3 T−→ 4 −→ 5 −→ 7)→ (3 F−→ 7 −→
10 −→ 11 T−→ 3 F−→ 7) and (3 T−→ 4 −→ 5 −→ 7) → (3 F−→ 7 −→ 10 −→
11 T−→ 3 T−→ 4 −→ 5 −→ 7 −→ 10 −→ 11 T−→ 3 F−→ 7 −→ 8 −→ 10 −→ 11 T−→
3 F−→ 7). The first of these can be read as “the error will occur in this execution
if, rather than choosing to acquire the lock (tp), the system, in a state where
get lock == 0, decrements get lock, then chooses to loop around and again
chooses not to acquire the lock (tn).” The second example produces the negative
in which the lock is acquired once—only on the second iteration through the
loop does get lock’s value become incorrect with respect to the guard in line 7.

6 Implementation

We implemented our algorithm for generating and analyzing variations inside
the Java PathFinder model checker [15]. Java PathFinder (JPF) is an explicit
state on-the-fly model checker that takes compiled Java programs (i.e. bytecode
class-files) and analyzes all paths through the program for deadlock, assertion
violations and linear time temporal logic (LTL) properties. In this implemen-
tation we only consider safety properties. We hope to consider the analysis of
LTL counterexamples in future work. Actions of an environment not under the
control of the Java program are represented in JPF as nondeterministic choices,
introduced with special Verify.chooseBool() or Verify.choose(int i) calls
which are trapped by the model checker. For example, Verify.choose(2) will
nondeterministically return a value in the range 0–2, inclusive. In terms of the
LTS model used above, Act = (t×n), where t is a non-negative integer identifying
the thread executing in the step, and n is either a non-negative integer indicating
a nondeterministic choice resulting from a Verify call (or -1, indicating no such
call was made). Π is the set {deadlock, assertion, exception} indicating that
there is a deadlock, an assertion was violated, or that an uncaught exception
was raised. States are the various states of the JVM (including states for each
member of Π). c(s) returns a set of control locations (bytecode positions), one
for each thread in the current state, allowing for further projection of the control
location along each thread.

Our implementation of error explanation makes use of JPF’s various search
capabilities to provide a wide range of possible searches during the generation
of variations, including heuristic searches [8].

We have added the ability to produce Daikon [6] trace files to JPF. Daikon
is a tool that takes trace files generated by instrumented code and discovers



invariants over the set of traces. We use Daikon for invariant analysis. The other
analysis techniques are implemented inside JPF. In JPF, all executions start
from the same initial state of the JVM, so the full transformation set always
exists. For transition analysis JPF allows various projections on actions, such
as ignoring nondeterministic choice or selected thread, as well as analysis based
only on control location. In the JPF implementation, we universally use, rather
than the c(s) defined above, a projection that produces only the control location
of the thread that is executed from a state (c(s, α)), an improvement in almost
all cases where there are well-defined control locations for threads or processes.

7 Experimental Results

We applied error explanation to determine the cause of a subtle error in an early
version of the DEOS real-time operating system used by Honeywell in small
business aircraft. We studied this system originally [12] knowing only that an
error was present. When we found the error it took us hours to determine that
the counterexample given was non-spurious (a time abstraction was used) and
showed the error sought. Given this experience and the fact that the DEOS
error is very subtle we believed this to be a good test of the error explanation
approach. We analyzed a 1500 line Java translation of (a slice of) the original
C++ system.

DEOS is a real-time operating system based on rate-monotonic scheduling
that allows user-threads to make kernel calls during their execution; for exam-
ple, they can yield the CPU by making a WaitUntilNextPeriod call or remove
themselves by making a Delete call. Since threads can have different priority
they can be interrupted by a higher priority thread when a SystemTick happens
(indicating a new scheduling period starting), or they can use up all their allot-
ted time, indicated by a TimerInterrupt. We were checking a safety property
asserting time-partitioning—a thread always gets the amount of time it asked
for—checked whenever a new thread is to be scheduled.

JPF found the original error in 52 seconds (on a 2.2Ghz Pentium with 2GB
of memory), and then spent another 102 seconds performing a depth-limit 30
analysis (finding 131 variations on the error in the process). The resulting output
indicated the following key points:

– The Delete call is present in all negatives, but also in some positives.
– The shortest transformations from positive runs to negatives are:
• replacing a WaitUntilNextPeriod with a Delete call;
• inserting a TimerInterrupt and a SystemTick before a Delete call.

This shows that the Delete call is essential to the error, but only in specific
circumstances. This matches the cause of the known error, where a Delete call
is performed after a specific amount of time has elapsed. Note that making a
Delete call by itself is not sufficient to cause the error, since there are positives
containing this call. It took approximately 15 minutes to analyze the output file
produced from the error explanation to determine the cause.



One difficulty with the DEOS example is that we were already familiar with
the code and the problem. We applied error analysis to a mode-confusion in an
autopilot system [14]. In this case, a user unfamiliar with the code and error was
able to describe (relying primarily on the transformation analysis) the problem
and generalize to the sequences of actions in which it arises.

We also applied error analysis to concurrency errors such as those in the
Remote Agent [9] and the executive planner of a Mars planetary rover. Trans-
formation analysis identified concurrency errors in both cases and showed how
minimal scheduling changes resulted in error.

8 Conclusions and Future Work

We propose definitions for two kinds of variations on a counterexample discov-
ered during model checking and present an algorithm for generating a subset of
these variations. These successful and failing executions are then used by various
analysis routines to provide users with a variety of indications as to the important
aspects of the original counterexample. The analyses suggested provide feedback
on (1) control locations and actions key to the error (2) data invariant differ-
ences key to the error and (3) means of transforming successful executions into
counterexamples. While further experiments are needed, our results demonstrate
that this analysis can be useful in understanding complex errors.

An important feature of our approach is that we do not have to assume we can
compute the full set of reachable states in order to perform analysis—unlike in
the related approaches of [1] and [11]. In our experience, when a counterexample
can be found, error explanation to a useful search depth is also feasible. In
particular, we could find and explain concurrency errors in the Mars rover (8K
lines of code with a complicated control structure involving seven threads and
complicated exception handling) although it has a very large state space that
cannot be fully explored by JPF. Note that since we cannot always explore the
complete state space of a system, we might not be able to show that an error is
no longer present in a corrected system. In this case, however, we can use the
set of negatives for the original counterexample during regression testing.

The exploration algorithm used to generate negatives and positives can also
be used to find a counterexample by searching “close to” a path the user suspects
could lead to an error. As an example we used JPF’s race detection feature [15]
to find race conditions in the Remote Agent (without finding any deadlocks or
property violations), then fed the path to a race violation to the error explanation
facility as the “counterexample” and found a property violation (a deadlock).

The most important area of further research should be improving the meth-
ods of analysis both to provide more useful feedback and to do more automatic
classification of errors. While the goal of routinely reporting “change line i in the
following manner” is unlikely ever to be reached, we believe that better methods
than the rudimentary ones presented here may exist. In particular, automatic
analysis of the transformations between positives and negatives should be taken
a step further than merely noting concurrency-only differences. Another possi-



bility is to generate from the negatives an automaton for an environment that
avoids reproducing the error as in the work of Giannakopoulou, Păsăreanu, and
Barringer [7]. It is possible that in some instances such an assumption might
succinctly characterize the error, although as an assumption it would only be an
approximation of the most general environment for the program.
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