
Resource Adaptation via Test-Based Software
Minimization

Arpit Christi
School of EECS

Oregon State University
Corvallis, Oregon, USA
christia@oregonstate.edu

Alex Groce
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, Arizona, USA

agroce@gmail.com

Rahul Gopinath
School of EECS

Oregon State University
Corvallis, Oregon, USA

gopinatr@oregonstate.edu

Abstract—Building software systems that adapt to changing
resource environments is challenging: developers cannot antic-
ipate all future situations that a software system may face,
and even if they could, the effort required to handle such
situations would often be too onerous for practical purposes.
We propose a novel approach to allow a system to generate
resource usage adaptations: use delta-debugging to generate
versions of software systems that are reduced in size because they
no longer have to satisfy all tests in the software’s test suite. Many
such variations will, while retaining core system functionality,
use fewer resources. We describe a tool for computing such
adaptations, based on our notion that labeled subsets of a test
suite can be used to conveniently describe possible relaxations of
system specifications. Using the NetBeans IDE, we demonstrate
that even without additional infrastructure or heuristics, our
approach is capable of quickly and cleanly removing a program’s
undo functionality, significantly reducing its memory use, with no
more effort than simply labeling three test cases as undo-related.

I. INTRODUCTION

Modern software systems are often complex, and use nu-
merous resources – obvious ones, such as memory, storage,
and network bandwidth – and less obvious “resources” such
as software libraries. While developing such software sys-
tems, implicit or explicit assumptions are often made about
their resource usage or the availability of resources. For
example, a mobile navigation app assumes availability of
location provider services via network, GPS or other means.
A problem occurs when the software is used in a situation it
was not designed for, where the original resource assumptions
made during development no longer hold. For example, the
navigation app may no longer be able to access the network
or GPS satellite when in the middle of a forest or under water.
Moreover, the availability of such resources is often subject
to change, with older resources obsoleted and discarded by
newer technology. These advances in underlying technology
can often force software developers to adapt or evolve their
software. For instance, a change in a library that the software
depends on can force its developers to refactor or rewrite part
of the software. These rewrites often require multiple cycles
of development and testing before the application can be fully
adapted, which is costly, time consuming and error prone. One
way to tackle these problems is to let the software evolve
itself in response to change [1]. Adaptations may manifest

as restricted functionality, altered functionality, or enhanced
functionality [2].

We are working with a group of developers trying to build
a real world resource adaptive software system for military
applications called the Tactical Situational Awareness System
(TSA). One of the components of TSA is its location provider.
It continuously sends the location of the device to the server.
The location information typically includes actual location
coordinates, images, and streaming video of the location. The
location provider of TSA needs to be available in extreme
locations such as remote battlefields, forests, or under the sea
where resource availability is drastically different from the ex-
pected environment. That is, devices that TSA is deployed on
may have varying hardware depending upon the environment,
and parts of available hardware may not function in some
environments. Hence, the quantity and quality of resources is
not known in advance and will vary drastically. Two primary
strategies are employed by developers to make the software
adapt to varying resource availability: 1) Reduction: use
reduced versions of original components that do not satisfy
all aspects of the original specification, achieved by removing
or avoiding executing part of the code. 2) Replacement: use
components that are altered from the original components –
these new components use different libraries, data structures,
hardware, and resources.

The reduction strategy is often used when it is possible to
lower resource usage by relaxing invariants or specifications.
It may be accomplished either by turning off some features or
by not executing certain parts of the code such that a resource
under stress will be less utilized, or not utilized at all. The
replacement strategy is used when it is possible to come up
with completely different components with different resource
profiles. Usage of these changed components should alter the
resource usage so that the application can weather the resource
degradation gracefully.

Currently, both strategies are executed manually. A de-
veloper has to carefully observe component resource needs
and consider the impacts on system specifications in order
to come up with correct adaptations. Further, adapted com-
ponents have to be identified, associated with resources, and
verified against their resource consumption. Changes have to
be verified against the new or reduced set of specifications

they are going to satisfy. All these steps are manual, error-
prone and tedious, and trigger new cycles of development
and testing. In this paper we focus on a method to allow
systems (broadly considered) to perform reduction adaptations
themselves, using only their own test suites.

Resource adaptive software systems1 are designed and
implemented mostly for mission critical software systems.
Hence, they are often accompanied by a high quality test
suite that captures and verifies the specification of the system
adequately. When we perform adaptation by reduction, some
of this specification may have to be sacrificed. For reduction
based adaptations, the sacrificability of specifications can often
be represented cleanly and simply by annotating the test
suite. These annotations may be at the test case level, at
the invariant/property level, or use a combinations of these
methods. The annotations may take the form of marking test
cases that exercise a given feature or turning off specific asserts
or invariant checks. Given such annotated test suites, we show
that an automated program reducer can automatically adapt a
system to use fewer resources.

We perform program reduction using a modified hierarchi-
cal delta debugging technique combined with statement dele-
tion mutation. The program is reduced until a locally minimal
version of the program is found that can still pass all tests
corresponding to a certain level of preserved specification sat-
isfaction. Delta-debugging [3] is a binary-search like algorithm
intended to reduce the size of failing test cases. It removes
components of a test that are not required in order for the
test to fail. Hierarchical-delta-debugging (HDD) [4] modified
the algorithm to produce better results for tree-structured test
inputs, especially, e.g., programs input to compilers. Cause
reduction [5], [6] further proposed that delta-debugging/HDD
are not limited to reducing tests with respect to the property
“the test fails” – they can also reduce a test so that it is
shorter but covers the same code, uses the same amount of
memory, and so forth. In this paper, we argue that HDD’s aim
of reducing inputs that are themselves source code means that
delta-debugging-like methods can also be used to reduce actual
programs, with respect to the property that the program still
passes a set of tests representing required program behavior.
The basic idea is mentioned in the cause reduction journal
paper [5]; our insight is to exploit this concept for resource
adaptation, by only requiring the program to pass some tests,
rather than all tests. At heart, we are proposing labeling of
tests (and using them to control reduction adaptations) as
a response to the need for a requirements vocabulary that
expresses flexibility and uncertainty proposed in a research
roadmaps for software engineering for self-adaptive systems
by Cheng et al. [7]. The advantage of our approach is that it is
both conceptually simple and practically applicable to existing
systems: simply by labeling some tests, a potential reduction
can be defined. Unlike a novel requirements language, devel-
opers already tend to “speak” the language of tests.

1Often abbreviated as RASS.

final static Logger log =
Logger.getLogger(logname);

...
log.info("Begin transmit ",b,"bytes");

...
if (failed) {

log.error("Transmit ",b," failed");
handle_failure();

} else
log.info("End transmit ",b,"bytes");

Fig. 1: A fragment of a Java program with potentially over-
aggressive logging.

A. A Simple Example: Removing Logging

Consider the code in Figure 1. Suppose that this is part of
the code for a system that sometimes operates in an embedded
environment with very limited flash file storage, and where
core system functionality requires storing critical image files.
These files require only constant sized space (they are held
until they can be transmitted), but unfortunately the logging
information on transmissions and other events fills the limited
flash storage. While the logging stops when the space is filled,
the system does not have an automatic way to reclaim the
space taken by the logs. Of course, the developers could write
such a behavior, explicitly, and modern logging systems are
usually relatively easy to configure on the fly. However, it is
possible to automatically construct a version of the program
with either less logging or no logging, depending upon our
needs, that conforms not to a programmer’s possibly erroneous
model of which logging is essential, but to a much more
concrete specification of what the system must log, and how
important it is: which tests fail when the logging is removed.
Our assumption is that in the long run, critical software
systems require tests that fail when any important functionality
is removed; the novel aspect is that we also believe it would
be highly beneficial to have test suites that, at a high level,
mark which functionality each test checks.

Imagine that the test suite for the system in Figure 1
has 250 very thorough tests. Of these tests, only 3 check
the behavior of the logging of transmission beginning and
ending. An additional 5 tests check that when a transmission
fails, that error is properly logged. Furthermore, suppose
the 3 tests checking begin/end log messages are labeled
logtransmission and the 5 tests checking for failure
messages are labeled logfailtransmission. Finally, 50
tests are labeled critical: if these tests fail the system
cannot be said to provide its most basic, essential functionality.
Other tests may have other labels (and some tests will have
more than one label). The most basic version of automatic
reduction adaptation proceeds as follows: the system selects
some set (to start with, of size 1) of labels that does not include
critical. Tests marked with these labels are allowed to fail
– the labels specify sacrificability of specifications. We use an
algorithm based on methods for minimizing test cases and

T1 T2 T4 T5T3 T7T6
T10
AT8 T9 T12 T13

T22

T11
A

T14
A

T17
B

T18
B

T24
C T27

T15
B T16 T9 T20 T21

T23 T26T25
C

T28
D

Original	System hddRASS Adapted	System

Removed	
Code

T1 T2 T4 T5T3 T7T6
T10
AT8 T9 T12 T13

T22

T11
A

T14
A

T17
B

T18
B

T24
C T27

T15
B T16 T19 T20 T21

T23 T26T25
C

T28
D

A

B

C
D

Annotated	Tests	(all	pass	for	original	system)

Labels	A-D	can
be	sacrificed
for	resources

Fig. 2: The test-based approach to resource adaptation by program minimization

detecting weaknesses in test suites to automatically generate
a version of the system that 1) passes all tests that are not
marked with the selected sacrificed labels and 2) is otherwise
as small as possible, within the limits of the algorithm we
use to find code to remove (a locally minimum program). In
this case, if the label selected is logtransmission, the
reduced version of the system will remove both info logging
calls (and the entire else block of the if statement) but
no other code. If the label is logfailtransmission the
code removed will be the error logging call. Finally, if both
labels are sacrificable, all logging calls will be removed and
the creation of the log object will also be deleted. Running
the still-passing tests, a resource monitor can observe that use
of storage was reduced on average (not all tests will have
transmissions, but if some do the change is visible), and add
these removals to a database of adaptations to mitigate storage
resource issues. Moreover, in addition to storage usage, the
adaptation removing all logging is also applicable in the event
that the system migrates to a platform with a new, incompatible
API for logging (so the old system will not even build, or will
crash when it attempts to access logging).

As discussed below, there are many possible variations on
this basic idea, including on-the-fly generation of variants
during system operation rather than pre-computing reduced
variants to apply; however, the basic concept remains: de-
termine a set of tests representing specification aspects that
can be sacrificed in pursuit of resource savings, and compute
a version of the system that is reduced with respect to the

constraint that it still passes all other tests. Figure 2 shows
the general concept. Assume that we are willing to sacrifice
the aspects of the specification/functionality represented by
test labels A-D2. Tests that are not circled have other labels,
and must still pass (and tests 1-9, in bold, are critical tests
that can never be sacrificed). Our hddRASS tool (available at
https://github.com/amchristi/hddRASS) takes this sacrificabil-
ity of specifications and computes a reduced version of the
original system that fails most of the tests labeled A-D (one
test still passes, because it actually tests only behavior required
by other labels), and has less code. The resources used by the
removed code are no longer consumed by the system.

B. Contributions

The contributions of this paper include: 1) a novel way to
capture sacrificability of specifications using annotated tests;
2) a reduction tool, hddRASS, that can build an adapted
version of a program based on annotated tests; 3) a case
study adapting the NetBeans IDE to use significantly less
memory simply by labeling 3 tests corresponding to the undo-
redo functionality and applying hddRASS and 4) an empirical
evaluation of reduction achieved using randomly annotated test
suites for real-world open source programs.

2Note that we say “specification/functionality” for a reason: while the
concepts of specifications and functionalities in a software system are not
identical, tests tend to conflate specification and functionality, and our ap-
proach in many ways does the same, because its concept of either specification
or functionality is purely test-based.

https://github.com/amchristi/hddRASS

II. RELATED WORK

The field of self adaptive systems has seen renewed interest
in recent years. Salehie et al. [8] summarize some recent work.
Different engineering approaches to building adaptive software
systems are discussed by Kruptizer et al. [1]; fundamental
methods include model-based approaches [9] and architecture-
based approaches [10]. Cheng et al. [7] suggest adaptive
requirements engineering to capture uncertainty in an adaptive
software system. They envision a new requirement language
that captures what a system might do instead of what a
system will do. Our idea of sacrificability of specifications is
a limited but simple version of adaptive requirements, where
the only possible adaptation of requirements is the possibility
of removing certain requirements as represented by labeled
tests. Delemos et al. [11] categorize self-adaptive systems as
self-managing systems which rely on explicit pre-computed
adaptations in contrast to self-organizing systems which rely
on implicit runtime adaptations. Fredericks et al. [12] suggest
choosing only a subset of test cases to execute based on
resource constraints for runtime adaptations.

Delta-debugging [3] is an algorithm for reducing the size
of failing test cases or test inputs. Hierarchical delta debug-
ging [4] was proposed to efficiently reduce test inputs that are
hierarchical in nature. Cause reduction extends these ideas
to a much more general applicability, including our use of
reducing programs with respect to tests they pass [6], [5]. The
idea that modifications of a program that are both useful and
computationally tractable to identify are likely to be deletions-
only was proposed by Qi et al. [13] in their criticism of much
work in automatic program repair. Conceptually, this relates
to the statement-deletion mutation operator [14], a special
instance of deletion mutation operators [15] that achieves a
good balance between the number of mutants generated and
the subtlety of faults produced. Our hddRASS algorithm is a
kind of combination of the ideas behind HDD and statement-
deletion, with heuristic optimization to the case where the
program is nearly minimal already, and dependencies tend to
flow forward in the source code.

III. CORE CONCEPTS

Building resource adaptive systems [2] requires the avail-
ability of adaptations corresponding to different resource avail-
ability profiles. The adaptations required may either be pre-
computed by developers or may be computed at runtime, based
on sacrificability of specifications. We use test annotations to
capture the relaxation of a specification, to drive the production
of a smaller program that still satisfies part of a system’s
specification. Because it has less code, the adaptation can be
expected to use fewer resources, especially as resources are
often associated with functionalities of a system.

A. Test Annotations

We propose test annotation as one of the ways to capture
adaptive requirements [7]. The idea is that a formal specifi-
cation of different aspects of a specification, and how those
aspects relate, is difficult to produce, and seldom available for

existing systems. However, most systems, especially critical
systems, have test suites, and the tests in such suites are
often possible to group by what they test. In a complete
instantiation of the approach proposed by this paper, anno-
tations would likely be multi-dimensional, specifying priority
of tests, aspects of behavior covered by tests (as in the example
above), and the resources used by the tests (which relate to
the resources used by different functionalities of the system).
However, the technique works so long as the labeling of tests
allows us to select some tests that are not required to pass.
In this paper, we assume a simple one-dimensional labeling
scheme, mostly based on priority. Tests labeled 0 are critical
tests – if these fail, the system is not useful. Higher label values
indicate a higher degree of sacrificability of the specification(s)
embodied in the labeled test. We primarily assume labeling
is applied to tests, but it could also be applied to system
invariants that apply across tests, or to individual assertions or
checks inside a single test. Such a system clearly has a finer
granularity, but also imposes more burden on a user. Labeling
some sets of tests as 1) related and 2) potentially sacrificable
in exchange for resource adaptation seems to be a relatively
light burden for a user. In the long run, we would like to
automatically produce approximate annotations, perhaps based
on recently proposed schemes for naming tests [16].

B. (1-)Minimal Program

Zeller and Hildebrandt. [3] define various notions of mini-
mality for test-case reduction. The most important such notion
in delta-debugging is the idea of a 1-minimal test (for us,
program). In normal delta-debugging, a test is 1-minimal when
no single component of the test can be removed without the
test passing (recall that delta-debugging’s goal is to produce
small failing tests from large failing tests). A program is 1-
minimal if no single candidate element of a program can be
removed without the program failing some required test. That
is, given a program P and a test suite T ′ ⊂ T (where T
is the full test suite for the program), P is 1-minimal iff
∀t ∈ T ′.pass(t, P) and ¬∃P ′ such that ∀t ∈ T ′.pass(t, P ′)
and P ⇒ P ′, where ⇒ represents a single step of reduction
(in our case, removing certain parts of the syntax tree for P).
1-minimality is obviously a local minimality; there may exist
some smaller subset of P that passes T ′, but would require
applying multiple removals at once to produce a consistent
program. Searching for such a program is prohibitively ex-
pensive, in that it would essentially require enumerating all
valid subsets of a program.

Is a 1-minimal program just a program that contains only
the code covered by the tests in T ′? No. While this may be true
for some extremely thorough test suites, it is not only possible
but quite common for a test to execute code that it does not
actually check for correctness. Schuler and Zeller propose a
notion of checked coverage [17], which only includes code that
is not only executed, but that has data flow to values checked
by some assertion in a test. Our notion is similar in that it goes
beyond mere coverage, but even stronger, in that code covered

and “checked” may be removed from a 1-minimal program.
Consider the following Python program:

Listing 1: Program fragment
1 def toDiceThrow(val):
2 val = val % 6
3 return val
4

5 def test_toDiceThrow():
6 assert(toDiceThrow(1) == 1)

Here, line 2 is considered checked (since the value com-
puted flows to the assertion at line 6), but it can be removed
without the test failing, and so would not appear in a 1-
minimal program for this test.

IV. COMPUTING (1-)MINIMAL PROGRAMS

The heart of our approach to resource adaptation is the task
of converting a program to a version that is 1-minimal with
respect to a subset of its test suite. We use a custom tool,
called hddRASS (hierarchical delta debugging + Resource
Adaptive Software Systems) for this purpose. From a high-
level perspective, our tool is very similar to other HDD and
delta-debugging tools. All such algorithms can be described
abstractly by a very simple loop. Ignoring the details of the
strategy for constructing candidate test cases, reducing a test
case tb is accomplished by iterating the following two steps
until the termination criteria is satisfied:

1) Construct the next candidate reduction of tb, denoted by
tc (where |tc| < |tb| because tc (tb). Terminate if no
tc remain (tb is 1-minimal).

2) Execute tc by calling pred(tc). If pred returns True
then tc is a reduction of tb. Set tb = tc.

The purpose of this loop is to reduce a test case (or program)
until it has as few components as possible, while still satisfying
some property. We adapt this by reducing a program (or class,
or other program element) Pb rather than a test, and by using
“passes a set of tests” as our pred .

From a high level point of view, this change is all that is
required to use delta-debugging/HDD for resource adaptation.
However, our purposes are quite different, which motivates
certain modifications that are intended to improve performance
and effectiveness.

A. Most Programs are Nearly 1-Minimal: Inverted HDD

Delta-debugging and HDD are aimed at minimizing failing
tests. Frequently, a failing test can be reduced in size by one
or two orders of magnitude. Most of the test is not relevant
to the failure. Unsurprisingly, this is not the case in our
context. It would be a very unusual software system in which
the vast majority of the code base consisted of optional and
sacrificable functionality, and we expect most adaptations to
remove only a small part of the code base. Traditionally HDD
begins by attempting to remove large portions of the syntax
tree by working from coarsest to finest granularity, applying
standard delta-debugging with each component size selected.
Obviously, unless the set of tests chosen has relaxed a great

deal of the specification, most classes, methods, and other high
level parts of a program cannot be removed. We therefore
invert the traditional order of HDD and begin by attempting
to remove the furthest leaf nodes from the root first, then
progressively attempt to remove larger and larger sub-trees
rooted at nodes closer to the top of the tree.

Algorithm 1 Hierarchical Delta Debugging

1: procedure HDDRASS(inputTree)
2: level← HEIGHT(inputTree)
3: nodes← TAGNODES(inputTree, level)
4: while nodes 6= ∅ do
5: minConfig ← DDMIN(nodes, inputTree)
6: PRUNE(inputTree, level,minConfig)
7: level = level − 1
8: nodes← TAGNODES(inputTree, level)
9: end while

10: end procedure

Here DDMIN is the standard delta-debugging algorithm [3],
as also used as a subroutine in HDD [4]. We modify DDMIN
in one additional way: we order attempts to reduce at a given
level by reverse order of program elements. For example, if
there are two statements, s1 and s2, at the same level of the
syntax tree of the program, we try to remove s2 first, since
it is possible that s2 depends on s1, but once s2 is removed,
s1 can be removed. For instance, consider a method that first
opens a file, then writes to it four times, then closes it. Our
approach will first remove the close, then the writes, then the
open. While the order does not matter in all cases, removing
the open last is necessary. Combined with moving upwards
from deeper nodes (e.g., removing a use of a variable nested
in an if before its declaration in an enclosing context), this
limits failed attempts to remove code, which are costly when
checking the predicate requires running the entire test suite.
Since DDMIN starts over after every removal, it is useful to
try likely-successful reduction attempts first.

B. Statement Deletion as Fundamental Operation

Finally, the above algorithm is still not what hddRASS
does in practice. The gains in removing code are essentially
all obtained by removing statements, because statements (in-
cluding declarations) are the program elements that consume
resources. Therefore, hddRASS considers the syntax tree of a
Java program to have leaf nodes that are statements. It does not
attempt to remove anything smaller than an entire statement,
nor does it attempt to remove classes and methods. If all calls
to a method are removed, or all code in the method is removed,
the effect on resources desired is already obtained, without the
problem of some modifications making the program fail to
compile, without a useful effect on resource usage. At heart,
our approach can be thought of as combining inverted HDD
with the statement deletion mutation operator [14]. Moreover,
focusing on statement deletion as our smallest granularity of
change means that to reject an adaptation as invalid, tests that

TABLE I: Average increase in memory use (mean M+) for
NetBeans IDE versions

10 minute run mean M+ (MB)
Run Original Adapted % Reduction

Run 1 34.34 15.75 54.13
Run 2 24.46 17.11 30.04
Run 3 24.9 19.18 22.97
Run 4 34.45 16.73 51.43
Run 5 30.87 19.30 37.47
Mean 29.80 17.61 39.21

5 minute run mean M+ (MB)
Run Original Adapted % Reduction

Run 1 22.34 13.39 40.06
Run 2 17.56 14.66 16.51
Run 3 24.22 19.82 18.16
Run 4 19.61 17.27 11.93
Run 5 23.13 14.10 39.04
Mean 21.37 15.85 25.14

have not been removed only need detect a fairly coarse change
to a program, not a subtle modification such as a function
parameter change or different logical operator.

Note that in theory, Algorithm 1 does not guarantee 1-
minimality with respect to statements in the program, and
certainly does not guarantee 1-tree-minimality [4]. This can
be (for 1-minimality with respect to statement components)
easily fixed by applying a final pass over all statements when
the procedure terminates, calling the procedure again if any
nodes are removed. In practice, this expensive final step does
not seem to actually improve results on real Java programs
to which we applied our tool, so we omit it and assume the
minimized program is either 1-minimal or very close to 1-
minimal. In fact, Misherghi and Su noted in their original
paper that 1-minimality per se is not the primary goal, in any
case. Their original HDD, unlike standard delta-debugging,
does not guarantee 1-minimality, but in practice produced
much better reductions in size than standard delta-debugging.

V. EXPERIMENTAL EVALUATION

A. NetBeans Case Study

We use the NetBeans IDE [18] (a popular IDE among Java
developers) as a subject for our proof-of-concept case study.
The NetBeans IDE version we used has 7,386,809 LOC. The
code base is well tested, with a large number of unit, function,
and performance tests for modules. The IDE uses significant
system resources including memory and CPU time. For this
study, we focus on reducing the memory requirements.

Undo and redo are commonly used features of the NetBeans
IDE (and most editors). In order for these to work correctly,
any editing step within the IDE has to be saved by the IDE.
However, saving every step is costly, and NetBeans IDE limits
the undo-redo buffer to just 1000 steps3.

3Bug 50411 [19] of NetBeans IDE bugzilla (increase undo stack size),
discusses user requests to increase the undo-redo buffer size. The 3rd comment
mentions that NetBeans IDE used to have a much larger limit, but that resulted
in unacceptable memory consumption and thus the limit was lowered.

0 100 200 300 400 500 600

0

2

4

6

8

Time (seconds)

lo
g 2
(M

+
)

(M
B

)

Adapted IDE
Original IDE

Fig. 3: Run 1 - 10 min

0 100 200 300 400 500 600

0

2

4

6

8

Time (seconds)

lo
g 2
(M

+
)

(M
B

)

Adapted IDE
Original IDE

Fig. 4: Run 2 - 10 min

The UndoManager implements the undo/redo functionality
and is a part of the openide.awt module. This module consists
of 11,284 lines of code, with 146 test cases. After studying
the module and corresponding tests, we chose three tests and
annotated these tests with the label 1 and all others with 0, the
designator for essential tests that must pass. We used hddRASS
to generate a reduced version of the NetBeans IDE based on
the suite without these tests, which took about 4 hours. The
tool removed 130 statements, none of which were more than 5
levels above a leaf node. In order to evaluate the effectiveness
of resource adaptation via hddRASS, we subjected the IDE to
a large number of complex edits.

1) Experimental setup: We ran both the original and the
resource-adapted IDE versions for the same sets of edits,
holding the runtime and remainder of the environment con-
stant. Each experiment was performed in a VirtualBox-hosted
Ubuntu instance with 4GB RAM. To ensure consistent load

0 100 200 300 400 500 600

−2

0

2

4

6

8

Time (seconds)

lo
g 2
(M

+
)

(M
B

)
Run 3

Adapted IDE
Original IDE

Fig. 5: Run 3 - 10 min

0 100 200 300 400 500 600

−2

0

2

4

6

8

Time (seconds)

lo
g 2
(M

+
)

(M
B

)

Run 4

Adapted IDE
Original IDE

Fig. 6: Run 4 - 10 min

during the experiment, we ran only the IDE and the data
collection tools required in each VM. We used the Linux
Desktop Project (ldtp) tool [20] to send the exact same edits
with the same delays between edits to both IDE versions. We
used a random (but shared between IDEs) mix of small (10%),
medium (20%), and large (60%) edits, combined with undo
(5%) and redo (5%) keystrokes.

We ran 5 sets of 5 minute and 10 minute runs on both IDE
versions (each time using a different seed and thus different
shared edits). We measured the memory consumed by the IDE
Java objects using the Jmap tool [21]. We called Jmap once
per second, collecting 300 data points for the 5 minute runs
and 600 data points for the 10 minute runs.

0 100 200 300 400 500 600
−2

0

2

4

6

8

Time (seconds)

lo
g 2
(M

+
)

(M
B

)

Run 5

Adapted IDE
Original IDE

Fig. 7: Run 5 - 10 min

2) Results: We measured average increase in memory uti-
lization (henceforth referred to as mean M+) over time. The
mean M+ is computed by ploting the data points of memory
usage collected during runs and averaging the area under each
curve. Table I shows mean M+ for each run plus mean values
across all runs. Figures 3-7 show the complete results for
the 10 minute runs. The differences in memory consumption
across data points within runs are all highly statistically
significant, by Mann-Whitney U test (p < 1.0 × 10−14 in
the least significant case). This shows two things 1) labeling a
small number of tests is a potentially simple and effective way
to identify sacrificable functionality and 2) adaptation based
on this type of specification of flexibility can produce real
improvements in resource utilization. Of course, the reduced
memory requirements come with the price of losing undo and
redo functionality, but in cases where the choice is between
operation with reduced functionality and not operating at all,
adaptation is necessary.

B. Reduction of Java Programs with Randomly Labeled Tests

To further check the robustness of the hddRASS tool and
investigate how much reduction can be obtained by removing
tests from a suite, we chose 7 Java projects. From each project,
we chose 3 classes at random. These classes had an average
of 398 LOC. The details are provided in Table II.

For our experiment, we chose to examine only tests that
had direct coverage of the class under “adaptation” to avoid
extraneous computation. This gave us 30 tests per class on
average (maximum 58, mean 7).

Next, we annotated each test case with a label of 0, 1,
or 2, randomly, with probabilities of 80%, 10%, and 10%,
respectively. The probabilities reflect what we expect to be
the typical case for adaptation: versions of a software system
removing more than 20% of all tests (and thus specifications)
are not, in most cases, likely to be very useful. Most useful

TABLE II: Subject Class Information. Stmt column counts
Java statements inside class methods as defined by
java.parser.ast.Statement. Meth is number of class methods. If
multiple classes are contained within a single Java file, LOC
counts all lines. Statements counts only statements within the
class under consideration.

Project Class LOC Meth Tests Stmt
CruiseControl AntBuilder 499 33 22 143
CruiseControl Schedule 383 30 18 127
CruiseControl Project 685 70 35 291
Ant Available 289 21 28 133
Ant Copy 679 48 24 179
Ant FixCRLF 385 17 34 23
Validator UrlValidator 218 11 21 82
Validator RegexValidator 93 4 7 40
Validator DomainValdiator 1302 15 20 74
Jexl3 Engine 296 30 38 103
Jexl3 JexlArithmetic 781 54 35 289
Jexl3 JexlEvalContext 102 17 37 29
Cli Option 404 48 9 85
Cli GnuParser 64 1 58 23
Cli PosixParser 141 6 58 37
Jena OntTools 289 29 4 65
Jena LocationMapper 292 21 10 138
Jena OntlClassImpl 464 60 27 133
Text ExtendedMessageFormat 301 17 14 137
Text LevenshteinDetailedDistance 220 6 12 142
Text AlphabetConverter 277 13 10 82

adaptation is probably obtained by removing at most 10-20%
of the system specification. We first reduced each class by
removing tests labeled 2 from the suite, then further sacrificed
the specifications represented by tests labeled 1.

We repeated the process for each of the 21 classes giving
us in total 420 “adapted” classes, 210 for label 2 and 210 for
labels 1 and 2. We collected the following information from
each run: (1) the reduction size, – the number of statements
removed – and (2) the reduction height – the highest distance
above a leaf node that was removed. The reduction size
measures the quantity of changes while the reduction height
measures the complexity of changes (if it is one, only leaf
statements were removed, no ifs or more complex structures
were removed). Note that height here is measured from the
bottom, whereas in the algorithm we use level in the opposite
sense, where the leaf nodes have higher values, as they are
deeper in the tree.

1) Results: Table III shows that relaxing the specification
of systems by removing a small number of randomly selected
tests, where the number of tests removed is similar to the
number found to be associated with a major feature of the
NetBeans IDE, does produce reduction in the code base. The
amount of reduction scales with the number of tests removed
from the system, and on average was interestingly similar
to the portion of tests removed. We suspect these reductions
are somewhat less than might be seen in real systems with
correctly labeled tests, since there is little cohesion between
the tests selected. It is likely that more than one test forces a
program element to exist, in many cases, and only reduction
based on removing all tests of that functionality (which should
be labeled the same) will allow any aspect to be removed.

Table IV show mean and maximum reduction heights over
the Java programs. The reduction is non-trivial (it is above
height 1 in most cases, on average, and in only one case was
the maximum reduction a leaf node), but is also very seldom
higher than a few nodes above the bottom of the syntax tree.
This suggests that our inversion of HDD is a good heuristic.
In fact, it suggests that the computational effort expended
checking the tree far above the leaf nodes is likely to be
wasted. However, we do suspect that more coherently labeled
tests would produce higher reductions, and the effort spent on
nodes far up the tree is usually relatively small, since there
are many fewer program elements to use as candidates for
reduction at those levels.

VI. THREATS TO VALIDITY

The key threat to validity is that our results concern one
actual use of our approach on a single larger application, and
a number of reductions (without any meaningful adaptation
with respect to valid labels) for a small set of additional
Java programs. Moreover, due to the computational resources
required, we opted to reduce with respect to only a small
subset of classes from the programs we selected. In short,
our results should be interpreted as a proof-of-concept for a
proposed method, not as complete experimental evaluation of
our approach to adaptation.

VII. DISCUSSION

There are numerous engineering decisions to be made
about how to use the basic idea proposed in this paper, and
many open related research questions. Resource adaptation via
test-based software minimization, where removing tests (or
possibly invariants) from a test suite is used as a simple way
to capture sacrificability of specifications, can be incorporated
into many adaptation workflows. Adaptations and resource
gains can be pre-computed during offline efforts before de-
ployment, with the adaptations simply enabled, rather than
discovered, in the field. A good method for predicting the
resource impact of each adaptation is important: in some cases,
dynamic analysis of test behavior can give good hints, but
in many cases tests do not resemble actual use in terms of
resource profiles. Is it possible to safely compose adaptations?
That is, if we compute an adaptation based on removing one
feature (represented by one set of tests) and then compute
another, based on a different set of tests, will the system
produced by applying both of these tend to 1) work correctly,
except for the sacrificed aspects of the specification and 2)
obtain resource gains similar to the sum of those obtained by
each separate adaptation. If composition works, then the effort
to produce useful adaptations may be much less than might
be expected, based on the number of test labels.

However, in a sense all of these questions are ignoring
what would appear to be the elephant in the room: our
method assumes that software systems have highly effective,
comprehensive, and easy-to-label test suites. There are three
responses to this objection. First, for many critical systems,
we suggest that if there does not exist such a test suite, one

TABLE III: Reduction size. Tests removed and reduction size are averaged across 10 runs. %Reduction is measured against
total statements in the class as defined by Table II
.

Label 2 Label 1
Class Tests Removed Reduction size % Reduction Tests removed Reduction size % Reduction
AntBuilder 3 6.45 4.54 4.4 9.53 6.73
Schedule 2.7 0.8 0.62 3.5 1 0.78
Project 3 11.27 3.87 6.1 43.27 14.86
Available 34.1 26.05 24 7.14 23.2 17.44
Copy 2.6 79 44.1 5.1 88.1 49.2
FixCRLF 3.1 10.1 16.55 6.4 12.3 20.16
UrlValidator 2.8 7.18 8.75 6.1 13.54 16.51
RegexValidator 1.4 2.4 6 2 3.6 9
DomainValidator 2.6 9.45 12.77 5.4 14.8 20
Engine 5.3 46 56 7.9 46 46
JexlArithmetic 4.2 1.2 0.41 7 4.4 1.52
JexlEvalContext 3.9 7.1 24.48 8.4 7.4 25.51
Option 1.3 6.3 7.41 1.6 8.3 9.76
GnuParser 4 2.2 9.56 4 2.2 9.56
PosixParser 0 0 0 0 0 0
OntTools 3.2 6.5 10.76 5.7 7.5 11.53
LocationMapper 1.6 11.66 8.44 2.83 12.66 9.17
OntlClassImpl 2.6 2.5 1.87 2.25 3.5 2.61
ExtendedMessageFormat 1.5 18.4 13.4 2.4 21.3 15.5
LevenshteinDetailedDistance 1.3 10.6 7.46 1.9 17.3 12.2
AlphabetConverter 1.4 8.1 9.87 2.3 10.5 12.8
MEAN 12.53 11.75 16.69 14.74
MEDIAN 7.18 8.75 10.5 12.18

TABLE IV: Reduction height

Label 2 Label 1
Class Mean Max Mean Max
AntBuilder 1.2 3 1.2 3
Schedule 0.4 2 0.8 4
Project 0.6 6 2.4 6
Available 0.8 2 2.6 3
Copy 2.5 8 3.6 8
FixCRLF 1.6 2 2 3
UrlValidator 1.6 3 2.2 3
RegexValidator 1.6 3 1.9 3
DomainValidator 1.3 3 1.85 3
Engine 3 3 3 3
JexlArithmetic 0.4 2 0.6 2
JexlEvalContext 1 1 1 1
Option 2.3 3 2.6 3
GnuParser 1.4 6 1.8 6
PosixParser 0 0 0 0
OntTools 2 2 2 2
LocationMapper 1.8 2 2 4
OntlClassImpl 2 3 2.5 3
ExtendedMessageFormat 2 2 2.3 3
LevenshteinDetailedDistance 2 2 2 2
AlphabetConverter 2 2 2 2
MEAN 1.55 1.85 2.76 3.14
MEDIAN 1.6 2 2 3

should be created as soon as possible. For instance, in the
Tactical Situational Awareness System effort that brought our
attention to the problem of self-adaptive software, it would
be negligent to not produce an effective test suite for all
system functionalities and important specifications. Second,
we believe that even if test suites are good but imperfect,

we can distinguish the signal of reduction based on removing
some tests from the noise of general test suite inadequacy. In
particular, we propose to establish a baseline for each software
system based on reducing it without removing any tests at
all. For very good test suites, this should not produce any
reduction at all, or reveal opportunities to simplify or optimize
the original system. For systems with useful but incomplete
test suites, the baseline can be locked in place: when reducing
by removing tests, any parts of the system that are removed,
even if those tests are present, is not removed. It is not related
to sacrificing the specification represented by the set of tests,
but an artifact of the inadequacy of the test suite in general.

Finally, for pre-computed adaptations it should be possible
to run a shadow version of a system in field use, and
compare behavior with the real system over the same inputs.
If the adaptation diverges in a way deemed unacceptable, the
adaptation can be removed from the database of adaptations,
and the behavioral difference stored as a basis for a future test
to capture the missing specification. Such shadow execution
of adapted versions of a system in conjunction with a standard
version can also serve to capture detailed and accurate resource
profiles for adaptations in actual use.

In the long run, we believe that producing complex, highly
adaptive, reliable software systems requires producing ex-
tremely good tests. Moreover, recent work on automated test
generation and advanced static and dynamic analysis brings
us closer to this goal. We therefore also propose that this
paper presents a first step towards thinking about what benefits,
besides improved system reliability, can be obtained in a world
where important software systems do, for the most part, have
extremely good test suites.

A. Heuristics for Faster Minimization

HDD and DDMIN are potentially expensive algorithms. In
practice, if reduction is mostly applied at the class level, our
current implementation may be fast enough for offline pre-
computed adaptations, especially if such adaptations compose.
However, it is far too slow for practical online use, and not
convenient for developers wanting to experiment with the
method. Moreover, for systems with very slow tests (such
as our own TSA), reduction is costly. A few heuristics to
improve the process are low-hanging fruit. First, if a statement
is not covered by a test suite, it is obvious that it can be
removed. Second, we can use checked coverage [17] to further
remove statements: if a statement’s computation does not flow
to any assertion in a test it is likely going to be removed (one
exception is that checked coverage cannot detect statements
that cause a crash rather than assertion violation). Our tool
also lets developers, or perhaps automated methods [12] select
and prioritize tests to use in reduction. One obvious approach
is to prioritize tests that tend to reject reductions.

VIII. CONCLUSIONS AND FUTURE WORK

Building robust resource-adaptive systems is critical if we
are to produce software systems that can effectively respond
to their changing computational (and physical) environments.
Because anticipating all possibilities for trading reduced func-
tionality for lower resource usage is extremely difficult for
developers, there is a grave need for methods for allowing
software to adapt without human intervention. In this paper, we
show that by removing labeled tests from a software system’s
test suite, we can represent the sacrificability of specifications
in a simple and relatively low-burden way. This representation
also allows us to automatically construct adapted versions of a
system that, on the one hand, sacrifice some functionality, but
trade this for advantages in resource usage. We demonstrate
our approach by marking three tests of the NetBeans IDE
as sacrificable, and obtaining a version of the IDE that lacks
undo/redo functionality but also uses significantly less memory
during operation. Examination of a set of Java classes shows
that program size reduction obtained over randomly labeled
tests seems to usually be proportional to the fraction of tests
removed, and most reduction is performed near the bottom of
the syntax tree.

As future work, we plan to extend and improve hddRASS,
especially in terms of improving its efficiency, and to integrate
our approach into a realistic, complex, self-adaptive system
such as the Tactical Situational Awareness System (TSA), in
the context of a complete framework for resource adaptation.
A key element will be effective prediction of resource profiles,
perhaps through shadow execution.

Acknowledgements: this work was partly funded by the DARPA BRASS [2] pro-

gram, and the authors would like to thank our collaborators at OSU and Raytheon/BBN.

REFERENCES

[1] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
Mob. Comput., vol. 17, no. PB, pp. 184–206, Feb. 2015.

[2] J. Hughes, C. Sparks, A. Stoughton, R. Parikh, A. Reuther, and
S. Jagannathan, “Building resource adaptive software systems (BRASS):
Objectives and system evaluation,” SIGSOFT Softw. Eng. Notes, vol. 41,
no. 1, pp. 1–2, Feb. 2016.

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[4] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 142–151.

[5] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction: Delta-debugging, even without bugs,” Journal of Software
Testing, Verification, and Reliability, accepted for publication.

[6] ——, “Cause reduction for quick testing,” in IEEE International Con-
ference on Software Testing, Verification and Validation, 2014, pp. 243–
252.

[7] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-
sai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,
and J. Whittle, “Software engineering for self-adaptive systems,” B. H.
Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Berlin,
Heidelberg: Springer-Verlag, 2009, ch. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pp. 1–26.

[8] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, May 2009.

[9] G. Karsai and J. Sztipanovits, “A model-based approach to self-adaptive
software,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 46–53, May 1999.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” IEEE Intelligent
Systems, vol. 14, no. 3, pp. 54–62, May 1999.

[11] R. De Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,
C. Prehofe, W. Schäfer, R. Schlichting, B. Schmerl, D. B. Smith, J. P.
Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns,
K. Wong, and J. Wuttke, “Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap,” in Software Engineering for
Self-Adaptive Systems, ser. Dagstuhl Seminar Proceedings, R. De Lemos,
H. Giese, H. Müller, and M. Shaw, Eds. Springer, 2013, vol. 7475, pp.
1–26.

[12] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-
time testing of dynamic adaptive systems,” in Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ser. SEAMS ’13, 2013, pp. 169–174.

[13] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in International Symposium on Software Testing and Analysis,
2015, pp. 24–36.

[14] L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement
deletion mutation operator,” in International Conference on Software
Testing, Verification and Validation, March 2013, pp. 84–93.

[15] M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion
mutation operators,” in International Conference on Software Testing,
Verification and Validation, 2014, pp. 11–20.

[16] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in International Symposium on Software Testing and Analysis, 2017, to
appear.

[17] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, March 2011, pp. 90–99.

[18] “NetBeans IDE.” [Online]. Available: https://netbeans.org/
[19] “Netbeans IDE bug 45011.” [Online]. Available: https://netbeans.org/

bugzilla/show bug.cgi?id=50411
[20] “Linux desktop project.” [Online]. Available: https://ldtp.freedesktop.

org/wiki/
[21] “Jmap.” [Online]. Available: http://docs.oracle.com/javase/7/docs/

technotes/tools/share/jmap.html

https://netbeans.org/
https://netbeans.org/bugzilla/show_bug.cgi?id=50411
https://netbeans.org/bugzilla/show_bug.cgi?id=50411
https://ldtp.freedesktop.org/wiki/
https://ldtp.freedesktop.org/wiki/
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html

