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ABSTRACT 

Search-based approaches are successfully used for generating 

unit tests for object-oriented programs in Java. However, these 

approaches may struggle to generate sequence method calls with 

specific values to achieve high coverage due to the large size of the 

search space. This paper proposes a memetic algorithm (MA) 

approach in which static analysis is used to identify method 

dependence relations (MDR) based on the field access. This 

method dependence information is employed for reducing the 

search space and used to guide the search towards regions that lead 

to full (or at least high) structural coverage. 

Our approach, MAMDR, combines both a genetic algorithm 

(GA) and Hill Climbing (HC) to generate test data for Java 

programs. The former is used to produce test cases that maximize 

the branch coverage of the CUT, while minimizing the length of 

each test case. The latter is used to target uncovered branches in the 

preceding search phase using static information that guides the 

search to generate sequences of method calls and values that could 

cover target branches. We compare MAMDR with pure random 

testing, a well-known search based approach (EvoSuite), and a 

simple MA on several open source projects and classes, and show 

that the combination of MA and MDR is effective. 

Keywords 

Search Based Software Testing, Memetic Algorithms, Static 
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1. INTRODUCTION  

Achieving high coverage in object-oriented programs like Java 

is a very challenging and expensive task. Creating a unit test to 

achieve a high structural coverage, e.g. branch coverage, of a class 

under test (CUT) requires a desirable sequence of method calls that 

create and put objects into particular states. These objects can be 

used as the receiver or arguments of the method(s) under test 

(MUT). When automatically performing unit test generation, the 

primary goal is to ensure that all, or at least a large number of the 

control statements in the CUT are executed, which gains 

confidence in the CUT’s quality and functionality. 

There are many automated test generation approaches, 

including random testing, symbolic execution-based, and search-

based approaches. Random testing approaches [11, 29] are easy to 

implement, applicable, and the fastest in execution [42]. Despite 

the advantages that random testing provides, it is still considered 

weak for achieving high structural coverage. The main reason for 

low coverage is that random testing faces a challenge in producing 

a sequence of method calls with specific arguments for complex 

programs. Approaches based on symbolic executions (e.g., KLEE 

[10]) explore path conditions in the program under test and collect 

constraints on all inputs from the branch statements. If the collected 

constraints are feasible, then a constraint solver is used to generate 

input from them. However, these approaches face a challenge of 

scalability if the program under test is complex. Search-based test 

generation approaches (e.g., EvoSuite [13]) have already been 

shown to be effective for generating test data that achieves high 

code coverage and reveals failures [8, 13]. The search-based 

approaches consider more than one solution at the same time. They 

employ meta-heuristic optimization techniques, such as Genetic 

Algorithms, and use a fitness function that guides the search toward 

better solutions. However, in particular circumstances, these 

approaches face challenges which negatively affect their ability to 

achieve high structural coverage for certain programs. When we 

have a large number of methods to test, each of which can take 

some parameters as inputs, then finding the potential methods calls 

to optimize the solutions can be a challenge due to the large size of 

the search space [6, 16]. In addition, the efficiency of the search-

based approaches decreases as well for programs that have 

predicates using string constants. In this case, no heuristic can be 

defined to guide the search, since the fitness function landscape 

contains plateaus [6, 28].  

One potential way to alleviate these problems, and improve the 

effectiveness of the search-based approaches is to use static 

analysis and exploit the program under test to guide search-based 

test generation. This was the main motivation for this work: we 

focus on developing a search-based approach which generates test 

inputs for object-oriented programs and utilizes the source code of 

the program under test to overcome the aforementioned challenges.  

This paper presents an automated search-based technique that 

uses dependence relations among the MUT based on the fields they 

access [42]. The goal of this technique is to guide the search to look 

in the most promising regions of the search space by eliminating 

irrelevant method calls without reducing the search effectiveness. 

Fraser and Arcuri [14] conducted a study on 20 Java projects, 

concluding that the use of seeding can strongly improve 

performance of an evolutionary search. Consequently, we introduce 

seeding that uses constants provided by the source code of the 

program under test to help the search cover certain branches that 

are dependent on particular values.     

 

The main contributions of this paper are the following:  

1. We introduce a search-based approach to automatic test 

generation based on memetic algorithms. We extend global 

search (Genetic Algorithm) with a local search (Hill 

Climbing). 

2. We introduce a technique to reduce the search space for 

object oriented programs, based on method dependence 

relations [42]. 

3. We also introduce a way to seed constants into the search 

process when targeting uncovered branches.  

4. We present the results of an empirical study on 4 popular 

open source programs and 6 Java classes. Some of these 

classes are taken from recent experiments where search-

based approaches, like EvoSuite, struggled with challenges 

in achieving high coverage. The results show the 

effectiveness and impact of our approach.   

 

This paper is organized as follows. Section 2 introduces the 

concept of our approach with an illustrative example. Section 3 

provides background information, and related work is reviewed in 



Section 4. Section 5, describes in details our approach. Section 6 

discusses the evaluation setup of the empirical study. Section 7 the 

results of the evaluations of the approach are presented and 

discussed. Threats of validity are analyzed in Section 8. Finally, 

conclusions and future work in Section 9. 

2.  MOTIVATING EXAMPLE 

In this section, we illustrate some of the issues involved the 

search process, through an illustrative example taken from the 

NanoXML1 [16] project, shown in Figure 1.   

Figure 1 shows one class under test (CUT), CDATAReader, 

and we consider a method read as a method under test (MUT), 

which returns the number of characters read, or -1 if at EOF. For 

simplicity, we did not show constructors of the class 

StdXMLReader. 

Creating the desired object states of the receiver or arguments 

of a MUT is required to achieve full or at least high coverage in the 

MUT. For example, creating a CDATAReader object of the 

method under test involves the creation of non-primitive 

parameters at line 5. Therefore, the CDATAReader object and the 

parameter StdXMLReader (a concrete implementation of the 

interface class IXMLReader) object must be in desired states to 

cover particular branches. Moreover, the read method contains 

some branches that require a particular character value, such as ‘]’, 

at line 18. If the size of the test cluster consists of a large number of 

classes and public methods, the search will struggle to randomly 

pick the right methods and arguments as candidates that help to 

cover the required branches. In fact, some branches predicates 

involve a Boolean value, such as B3 at line 19, i.e. the flag problem 

[28]. As a result, no heuristic can be defined that gives guidance on 

how to cover the target branch B3. In such cases, the search space 

will have large plateaus and the search will likely degenerate to 

pure randomness, since no information can be exploited to guide 

the search on how to change the flow of the execution [28]. 

1.  class CDATAReader extends Reader { 

2.  private IXMLReader reader; 

3.  private char savedChar; 

4.  private boolean atEndOfData; 

5.  CDATAReader(IXMLReader reader){ 

6.        this.reader = reader; 

7.        this.savedChar = 0; 

8.        this.atEndOfData = false; 

9.  } 

10.  public int read(…)throws IOException { 
11.  … 
12.    while (…) { 
13.      Char ch =this.savedChar; 
14.      if (ch == 0)  
15.         ch = this.reader.read();//B1 
16.      Else 
17.         this.savedChar = 0;  //B2 
18.      if (ch == ']') { 
19.        char ch2 = this.reader.read(); //B3 
20.         if (ch2 == ']') 
21.       … more if statements … 
22.       } 
23.    }… 
24.  } 
25.  … 3 more methods … 
26.  } 
27.  public class StdXMLReader  implements IXMLReader{ 
28.  … 
29.  public static IXMLReader stringReader(String str){ 
30.     return new StdXMLReader(new StringReader(str)); 
31.  } 
32.  … 20 more methods … 
33.  } 

Figure 1: Two classes taken from the NanoXML project. 

                                                                 
1 http://nanoxml.sourceforge.net/orig/ 

Searching through regions of the search space that do not 

produce a desired object state will increase the number of fitness 

function evaluations without any gain in covering useful code [6]. 

As revealed by our experimental results in section 6, pure random 

testing, a search-based approach (EvoSuite), and a simple MA [6, 

8] could achieve 69%, 68% and 77% branch coverage of the 

CDATAReader class, respectively. 

Our approach intelligently reduces and navigates the search 

space and recommends candidate methods or constructors that help 

to cover a target branch. The space search reduction approach used 

in this paper is based on the concept of Method Dependence 

Relations (MDR) [42]. We use static analysis to analyze a target 

branch predicate and identify the relevant member fields and/or 

parameters of MUT which will be responsible for covering the 

target branch. Removing irrelevant inputs can improve search 

performance. Furthermore, constant primitive values (e.g. numbers 

or strings) are extracted from target branches, and preferred over 

randomly generating new values.  

MAMDR uses two phases of static analysis to identify relations 

between methods. In the first phase, it statically identifies method 

dependence relations based on the read and written fields and then 

recommends all the public methods and constructors that write a 

particular field. In the second phase, the signatures of each 

recommended public method and constructor are analyzed; 

afterwards, all constructors that create instances and methods that 

return the same data type of the non-primitive parameters are added 

to the recommended list. For example, consider covering branch B3 

at line 19 (Figure 1). A necessary requirement to cover branch B3 

is that non-primitive field reader must contain character value 

‘]’. Consequently, MAMDR recommends the constructor of 

CDATAReader that writes the field reader. Then, MAMDR 

also recommends both the class constructor of StdXMLReader, 

and method stringReader at line 27, because they both return 

instances that can be used to replace the interface class type 

argument in the CDATAReader constructor. Finally, MAMDR 

uses the character constant ‘]’ to initialize the inputs of the 

arguments instead of randomly initializing them. For instance, if 

MAMDR picks the method stringReader to invoke, then the 

parameter of string type at line 27 is initiated with the character 

value ‘]’. This combined MDR and branch predicates constants 

extraction information allows MAMDR to generate more effective 

sequences of method calls that cover branches that require specific 

input values. Our results show that MAMDR achieves 96% branch 

coverage of the CDATAReader, which is 27% higher than pure 

random testing, 28% higher than EvoSuite and 19% higher than a 

simple MA. 

3. BACKGROUND 

In this section we describe some Search-Based Software 

Testing (SBST) algorithms that have been applied in software test 

data generation. 

3.1 Evolutionary Algorithms 

Evolutionary algorithms [28] are based on the idea of genetics 

and evolution in which new and fitter sets of candidate solutions, 

which are often called individuals or chromosomes, are created by 

combining portions of fittest candidate solutions. Genetic 

Algorithms (GA) are probably the most common technique in 

Evolutionary Algorithms [28]. GA starts with a random initial 

population of individuals. Then, the algorithm enters evolutionary 

iterations with the following order: First, each individual is 

executed and its fitness is computed. Second, individuals based on 

their fitness are selected. Then, a recombination operator is applied 

by taking two parent individuals and producing two new offspring. 



After recombination, a mutation is applied, which produces small 

random changes to the offspring. Finally, these new offspring fill 

the population of the next generation. The evolution is performed 

until a termination criterion is met, for example time budget or 

number of generations. To avoid the possible loss of the fittest 

individuals (elitism), the new population is always initialized with a 

number of best individuals without any modification. 

The individual length, population size, and the crossover and 

mutation probabilities values in GA are referred to as GA 

parameters. In addition, selection, crossover, and mutation are 

referred to as GA operators. 

There is also a subset of genetic algorithms [31], called Genetic 

Programming (GP), and sharing many characteristics with GA, 

such as the operators of selection, reproduction, and mutation. 

However, the difference between the two is the representation of 

the individuals: in GP the individual is normally represented as a 

tree-structure. 

3.2 Local Search Algorithms 

In contrast to GA, local search algorithms aim to improve one 

individual by exploring its neighbors [28]. Hill Climbing (HC) is a 

well known local search algorithm. It usually starts with a random 

individual, and then it considers the set of near neighbors to this 

individual. If a fitter neighbor is found, HC moves to it and again it 

investigates its neighbors. If HC gets trapped in a local optimum, 

which there is no better neighbor is found, it randomly restarts from 

a new individual. 

3.3 Alternating Variable Method (AVM) 

The Alternating Variable Method (AVM) is a similar technique 

to HC, and developed by Korel [26]. AVM tries to optimize each 

input variable in isolation. The chosen variable is randomly 

modified by increasing or decreasing a small amount, which is 

called an exploratory move. If the changes affect the fitness 

function, AVM applies a large amount in the same direction, which 

is called pattern moves. The pattern search is applied in the same 

direction as long as the fitness function is improved. The pattern 

search ends when it fails to optimize the fitness function. In this 

case, the search goes back to the exploratory moves to indicate a 

new direction on the same input variable. Once there are no further 

improvements of the input variable, the search moves to consider 

another variable, repeating the same process, until the branch is 

covered or no more variables can be improved.  

3.4 Memetic Algorithms 

Memetic algorithms (MA) combine both evolutionary 

algorithms and local search algorithms (e.g., a GA with a HC). In 

this case, MA implements a GA; additionally, at each generation, 

on each individual, a HC is applied to improve its fitness and reach 

a local optimum. MAs have been successfully applied to testing 

and showed better performance than evolutionary algorithms and 

local search algorithms in some cases [6, 8, 16]. 

4. RELATED WORK 

In this section, we discuss the most closely related SBST 

approaches. In additions, the impact of the search space reduction 

on the performance of testing object oriented programs is explored.  

4.1  Search-Based Unit Testing 

Evolutionary Algorithms have already been applied to the 

problem of automated test data generation and have shown 

significant success. Tonella [36] applied GA to generate test cases 

for Java programs, and presented eToc tool for the Evolutionary 

Testing of Object Oriented (OO) software. In this approach, a 

population of individuals represents the test cases. New test cases 

were generated when a new branch is targeted. The fitness function 

is used to count the number of control dependences covered during 

test execution. One of the problems faced in separately tackling 

each branch, which is called the structure-oriented approach [28], 

is that when an uncovered branch is chosen as a target branch, the 

predicate of that branch might not be executed by any of the test 

cases in the population. In addition, no guidance is provided to the 

search on how to enter nested branches and cover them [28]. 

Several works addressed the issue of the structure-oriented 

approach and proposed fitness functions to guide the search 

process [3, 7, 27, 38]. Mainly, the fitness function combined two 

kinds of information: the approach level and the branch distance. 

The first is used to show how many of the conditional statements 

were not executed by a particular input to reach the target branch. 

The second computes the difference between a predicate value and 

a data input to execute the branch that leads to the target branch. 

The branch distance involves only numbers. As a result, if a 

predicate contains Boolean values, then it has only two different 

outcomes. This problem is called the flag problem [28]. In this 

case, several techniques were proposed for handling flag problems, 

for example testability transformations [21], and the chaining 

approach [12]. 

Arcuri and Yao [6] applied and analyzed different search 

algorithms on the testing of Java container classes. HC with 

random restarts, GA and MA were used and compared. Their 

empirical results showed that the MA results were the best among 

the algorithms. Moreover, a more advanced fitness function was 

proposed that maximize the number of branches and minimize the 

length of test cases.  

EvoSuite [13] automatically generates and optimizes whole test 

suites towards satisfying a coverage criterion, e.g. branch coverage. 

EvoSuite uses GA that evolves and optimizes whole test suites to 

alleviate the problem that derive from infeasibility and difficulty of 

individual coverage goals. Recently, the GA search in the EvoSuite 

has been combined with local search (AVM) to optimize the values 

in a specific test case of a test suite [16]. Their result showed that 

the combined techniques increased the branch coverage by up 32% 

over GA. 

Barsei et al. [8] proposed a hybrid global-local search (MA) 

tool for Java classes called TestFul. Their approach combines GA 

and HC, to generate tests that exercise the maximum number 

branches on the CUT. The former is used to search for the test that 

has higher coverage and reach all the interesting internal states of 

the CUT. The latter is used to target uncovered branches and 

analyze the controlled conditions of those branches to pick that 

ones are involved with numbers to cover. Our approach uses an 

algorithm that is derived from [6, 8] but which additionally 

incorporates a constant seeding strategy and uses method 

dependency relations (MDR). 

4.2 Search Space Reduction 

The goal of search-based algorithms for testing OO software is 

not only to generate test cases that instantiate the CUT followed by 

calling a sequence of method calls, but also to generate the 

desirable constructor parameters and the right method arguments. 

The large search space of distinct method numbers and parameter 

values can possibly hinder the search process. Thus, search space 

reduction deals with the elimination of the irrelevant methods and 

variable inputs from the input domain of the CUT, thereby reducing 

the size of the search space, which could potentially enhance the 

search process [31]. In spite of the large body of work on search-

based software testing (SBST), there has been little investigation 

that addresses the relationship between search space and 

performance of search-based algorithms. 



Harman et al. [20] were the first to empirically explore the 

search space reduction for the SBST. Their study analyzes the 

relationship between removing irrelevant input variables and SBST 

algorithms, including GA, HC and MA. In their work, static 

analysis was used to remove input variables that are irrelevant for 

determining whether a target branch will be executed or not, 

thereby reducing the search space. Their empirical study showed 

that irrelevant input removal improved the performance of the 

aforementioned SBST algorithms. However, the study focused on 

procedural programs and primitive parameters values. In a separate 

study, Binkley and Harman [9] conducted a simple experiment to 

show how the analysis of a predicate’s dependence on parameters 

of a procedure can be used to reduce test data generation effort in 

evolutionary testing. Their initial results showed that the 

combination of analysis of predicate dependency with the 

optimized search required fewer fitness evaluations. 

More recently, some researchers have addressed the issue of 

reducing the input domain of OO test data generation problems. 

Arcuri and Yao [6] proposed a technique called Dynamic Search 

Space Reduction (DSSR) that can be applied to any type of OO 

software. Their technique dynamically eliminates the read-only 

methods that do not change the state of the object from the search 

space. However, the study focused on a simple subset of Java 

programs, containers. As a result, a database for the common 

method names (e.g. insert, add, push) was used with string 

matching algorithms to determine whether a method is a read-only 

method or not. The empirical results showed that DSSR usage 

improved the efficiency of the search algorithms, particularly HC 

search, in terms of speed and number of steps to reach a global 

optimum, but applicability to non-containers was unclear.  Some 

studies have suggested that containers have quite different behavior 

than more general code [19]. 

Barsei et al. [8] also proposed a semi-automated approach to 

augment the efficiency and speed-up the test generation with the 

TestFul tool. This is achieved by requiring the user to provide data 

regarding the effects of each method. A method can be: (1) a 

mutator, when it may change the object’s state; (2) a worker, when 

it does not change the object’s state but it may perform some 

computations, or (3) an observer, when it does not change the 

object’s state and does not perform any additional computation. 

TestFul exploits the information and prunes methods from the test 

case that have no impact on the targeted branch before starting the 

HC search. 

  lcianu and  inard [32] described a purity analysis technique 

for Java programs. Purity analysis is able to identify pure methods 

that have no side effects when executed, and can also recognize 

read-only and safe parameters even when the method is not pure. A 

parameter is read-only if the method does not mutate it and a safe 

parameter if it is read-only and the method does not produce any 

new externally visible heap paths to the objects reachable from 

these parameters.  

EvoTest [33] and eCrash [31] approaches leverage purity 

analysis to reduce the input space of OO programming. The usage 

of the technique almost doubles the coverage/time performance of 

EvoTest. However, the user of the tool manually adds the “pure” 

annotation to complement the information generated automatically. 

On the other hand, the eCrash approach involves representing and 

evolving test cases using the Strongly-Typed Genetic Programming 

technique. The Extended Method Call Dependence Graph 

(EMCDG) is employed for constructing a method call sequence 

that puts the CUT into specific states. Then, parameter purity 

analysis is performed on the parameters of the method under test 

(MUT) and the purified EMCDG is obtained by removing the 

edges representing safe and read-only parameters from the 

EMCDG. Based on their empirical results, the inclusion of a 

parameter purity analysis phase into the process of test data 

generation has a significant improvement in the number of 

generation and computational time. Harman et al. [22] also 

proposed a domain reduction technique to exclude irrelevant 

parameters in the search space for aspect-oriented programs. They 

performed backward slicing to identify such irrelevant parameters 

[39]. The slice criterion is the predicate of a target aspectual 

branch, and the resulting program slice is used to exclude irrelevant 

parameters of target methods. Despite the fact that defined public 

fields were not considered in their domain reduction, their results 

showed a decrease in test effort with reduction, and an increase in 

the number of branches covered. 

All approaches mentioned followed an approach similar to 

ours, but omit one or two pieces of information that are provided by 

our static analysis technique. Our static analysis provides 

information can be very helpful to reduce the search space and 

guide the search to create both values and sequences of method 

calls to exercise features that have impact on a target branch. 

Regarding the reduction of the search space based on member 

class fields, we are aware of the work of Thummalapenta et al. 

[35]. In that work, the Seeker tool combines both dynamic 

symbolic execution (DSE) and static analysis. However, static 

analysis used in MAMDR differs completely from the static 

analysis used in their approach. Their approach uses method-call 

graphs while MAMDR uses Method Dependency Relations [42]. 

5. PROPOSED APPROACH 

In this section, the concepts of our search-based approach are 

presented. Figure 2 illustrates MADMA’s architecture.  

The original source code is instrumented at bytecode level to 

measure the coverage values and calculate the fitness functions. In 

our experiments, we used Soot [40] for analyzing and 

instrumenting Java bytecode. The static analysis is used to identify 

method dependency relations based on the set of the fields that may 

be read or written by each method [42] and collect specific 

primitive values from predicates. The results are stored in a 

repository and used later by HC search. Then, GA is used to 

produce test cases that maximize the branch coverage of the CUT 

while minimizing the length of each test case. Finally, HC search 

attempts to cover every uncovered branch in the preceding search 

phase but exploits MDR to generate sequences of related method 

calls and initializes values using constants collected from the 

source code that would cover the target branches.  

 

 

 

 

 

 

 

 

 

 

Figure 2: MADMR tool architecture 

5.1 Method Dependency Relations 

Zhang et al. [42] have introduced a systematic Method 

Dependence Relations (MDR) approach based on a hypothesis that 

two methods have dependence relations if the fields they read or 

write overlap. Their approach statically computes two types of 

dependence relations: write-read and read-read. 
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write-read relation: Given two methods   and  ;   reads field 

  and g writes it, it is declared that f has write-read dependence 

relation on g. 

read-read relation: If methods f and g both read the same field  , 

each method has a read-read dependence relation on the other. 

More interestingly, their approach is able to define and merge 

the effects of the method calls: if a callee is a private method, it 

recursively merges its access field set into its callers. This helps 

reduce the search space size by only considering public methods 

that lead to executing targeted private methods.  

In most cases, methods require instances of other classes to be 

used as arguments. To deal with that, we analyze the signatures of 

each public method and identify whether two methods have a 

possible dependence in terms of accessed data, (i.e. accessed-data 

relation) [41]. 

accessed-data relation: If a method   returns a non-primitive type 

and method   uses it as an a argument, it is declared that   has 

accessed-data dependence relation on  . 

MDR is useful for testing two write-read related methods, as it 

has a high chance of exploring new program behaviors and states 

[42]. In addition, it is especially useful in the context of SBST, as 

the input domain of OO programs can be reduced by automatically 

identifying and eliminating read-read related methods that cannot 

give any further help from the search problem. In addition, MDR 

can also identify candidate methods that modify a specific member 

class field [6]. 

5.2 Genetic Algorithm 

For an algorithm to be considered genetic, we need to define a 

representation of test cases as individuals, a fitness function, and 

the genetic operations. 

A. Individual representation: An individual can be viewed as a 

sequence of functions calls. In this paper, we decided to use an 

individual representation similar to [8, 13], because it is easy to 

apply and manipulate. Each individual consists of a set of 

statements that are either a constructor or method call: 

a. Constructor statement: represents a constructor call to generate 

a new instance of a selected class, e.g. CDATAReader 

CDATAReader_0= new CDATAReader 

(StdXMLReader_0).  

b. Method statement: represents a public method call, e.g. 

CDATAReader_0.read(charArry_0,10,20). Parameters of 

constructors and method classes can be randomly generated 

and initialized depends on their types. 

For a given CUT, the test cluster [37] is automatically defined. 

This is done by performing a static analysis of all the signatures of 

the public methods and constructors of the CUT, and adding each 

type encountered to the cluster. Returned non primitive objects are 

stored in a pool and served as a target object or parameter object for 

succeeding statement calls. 

B. Fitness Function: GA uses fitness functions to determine if an 

individual is to be selected for reproducing in the subsequent 

generations. In this work, individual fitness is based on branch 

coverage, branch distance, and the length of the individual. In the 

GA search our goal is reaching the maximum number of covered 

branches while minimizing the length individuals [6, 8]. Thus, we 

use the fitness function in equation (1) to guide the GA search, and 

it is combined two objectives in a single function [6]:  

                     
 

        
                 (1) 

While branch distance often gives good results, it can deceive 

the search and lead to longer individuals without increasing the 

coverage, which is called bloat [15]. As a result, we omit the 

branch distance in equation (1). This is because at the end of the 

search, we are only seeking to achieve high coverage with short 

length individuals [6].  

C. Genetic Operations: in this work, common genetic operators 

are implemented: 

a. Selection: In this operation two parents are selected for 

reproductions. We implement tournament selection [28]. In 

this selection mechanism, two individuals are randomly 

selected. Then, a random number   is generated      . 

Finally, we select the better individual if   is less than      
    , otherwise the less fit individual is selected.  

b. Crossover: this operator produces new individuals from the 

selected individuals. There are many different ways to 

implement crossover, such as single or multiple crossover 

points. We implement a single crossover point, where the two 

selected individuals are cut at a random single point. 

c. Mutation: After crossover, the individuals are subjected to 

mutation. We randomly apply one of the following operations 

with probability    : 

- Remove: A random number   is generated, where   
   , and r statements are removed from the individual at 

any random position in the individual. 

- Insert: A random number   is generated, where     
  , and r statements are added to the individual at any 

random position in the individual. The input parameters for 

the statements are randomly generated  

- Change: A random number   is generated, where     
 , and r statements have their parameters replaced with 

randomly selected values.  

d. Elitism: At each new generation, the 10% of the population that 

have high fitness values are directly copied to the next new 

generation without any modification. 

5.3 Hill Climbing 

When the GA results stagnate, we employ hill climbing (HC) 

as the local search, similar to [6, 8]. For each branch uncovered in 

the GA, the individual that achieved best fitness for each reached 

branch is stored and used as a starting point for HC. Thus, the input 

of the HC is a list of all uncovered branches and the fittest 

individual for each branch. Every branch in the provided list is then 

processed in an attempt to cover it. 

A branch is reached if its predicates are executed, while a 

branch is covered if its predicates are evaluated as true or false. An 

individual that reaches a branch is mutated and executed until the 

branch is covered or the stopping criterion is met, for example 

number of attempts. At each execution of the mutated individual, 

we keep track of new covered and reached branches and 

accordingly update the test suite. 

A. Fitness Function: The fitness function that guides HC is similar 

to that which was used by Arcuri and Yao [6]. We apply the branch 

distance (BD) in the HC search because we target a single branch at 

a time and focus on the predicates of the target branch. 

Consequently, we use equation (2) for measuring BD.  

         

                                          
                                    

                                                       

   (2) 

Where   is a normalizing function, and we use the 

normalization function [3]:          , and   shows how far a 



predicate is from obtaining its opposite value. For instance, for 

predicate      when the value of   is 2, then the distance to the 

false branch is        [13]. Finally, we integrate BD with the 

total branches coverage of the individual to guide the HC search in 

the following way:  

                         (3) 

HC uses equation (3) as a fitness function to compare between 

the current and the mutated individual. However, if the two 

individuals have the same fitness, HC always picks the shortest 

individual [6]. 

Our approach explores the large space to generate candidate 

methods as well as specific constant values that help to cover target 

branches. Consequently, we analyze the targeted branch’s 

predicates and precisely identify the type of elements that are 

involved in executing of the branch, e.g. member field, parameter 

method, or/and constant values. Then, we recommend methods 

and/or constant values for the following types of elements being 

involved in the condition’s target branch: 

a. Member field: To deal with class member fields, we followed a 

similar approach to the ones used by Thummalapenta et al. 

[35]. We precisely identify a member field and also leverage 

MDR to identify the related methods that write the targeted 

member field and help to achieve a desired value. If the target 

branch belongs to a non-public method, i.e. private, we also 

leverage MDR to identify all the public methods that call the 

targeted private method and recommend the identified related 

methods list to HC. 

b. Parameter of method: We identify a parameter of method and 

also determine the type of the parameter, as well as the type 

of the method either public or private. Then, we also leverage 

MDR to identify the methods that call and/or have write-read 

relation with the targeted method. However, in some 

instances, it is impossible to reduce search space based on the 

parameters, because all parameters of a method can be 

involved in deciding whether a target branch is covered [20]. 

In spite of that, Harman et al. [20] showed that HC increases 

its search performance by removing irrelevant input 

variables: 

c. Primitive Values: Rather than using random values, we apply a 

similar approach to that of Alshahwan et al. [1]. First, we 

collect constants from the target branch predicates. Then, we 

make a few changes to the constants and based on their types 

as inputs to the recommended related methods parameters 

these are used as input. Finally, with a certain probability we 

apply the following modifications based on the type of the 

constant: 

- Integer and Long: We add/subtract a random number   

to the constant value, with       . 

- Float and Double: We add/subtract a random number   

to the constant value, with       . 

- Boolean: We only flip the value either true or false. 

- Character: We randomly replace the value with another 

character. 

- Strings: We apply one of three mutation operators as in 

[2]. (1) deletes the constant from the string value of the 

parameter methods in the individual. (2) inserts the 

constant in a random place into the string values of the 

parameter methods in the individual. (3) replaces the 

constant value with the parameter targeted method in the 

individual.  

d. Array Values: We first leverage our static analysis information 

to determine the exact index    for which an assignment helps 

to cover the target branch. Then, on the assignment of the 

index   , we generate input values depending on the 

component type of the array. We also use constant extracted 

from target branch predicates as input, rather than a random 

value.  

Finally, we apply three different mutation operations to 

produce a modified version of the individual [6, 8]: 

1- Insertion: Insert a random number  , where         of 

methods that are randomly chosen from the identified related 

methods list in a random position in the individual.  

2- Deletion: Remove a random number  , where        of 

chosen methods from the identified related methods list from 

the individual, as well as remove all the methods that do not 

exist in the list. 

3- Change: Change the parameters of a random number  , where 

       of chosen methods or constructors in the 

individual with the modified constant. 

Finally, the modified individual is then executed to see if the 

target branch is covered or if the fitness function is improved. In 

the former, the new individual is returned and is added to GA 

population and replaced with the least fit of an individual in the 

current population. In the latter, the fitter individual will be selected 

as a new starting point. HC repeats the aforementioned mutation 

operations until the attempt limit is reached. In this case, HC selects 

another uncovered branch, along with the individual that reaches 

the branch and tries to cover it. 

6. EVALUATION 

To validate our approach described in this paper, we compared 

its effectiveness against three different approaches: pure random 

testing, the EvoSuite [13] tool as a representative for search-based 

approaches, and a simple MA. EvoSuite is fully automatic and 

performs some code transformations to allow optimizations of 

string values. On the other hand, random testing (RT) has been 

recognized as an effective and fast testing technique, in which test 

cases consist of randomly selected methods with inputs randomly 

chosen from the input domain. Thus, to analyze the performance of 

random testing and MAMDR, we followed a random test 

generation strategy proposed by Ciupa et al. [11]. In addition, we 

compared a simple MA without method dependency relation 

(MDR) with our approach to show the effectiveness of our search 

space reduction approach in test data generation. MA uses both GA 

and HC [6, 8]. Unlike MAMDR, MA applies a simple HC to 

modify an individual. When HC targets an uncovered branch, it 

randomly performs one of the following actions: adding methods 

from the test cluster, removing statements, or changing the 

parameters of statements of the individual. 

  It would be very valuable to compare our approach 

performance with TestFul [8] and Seeker [35]. We could not use 

Seeker in our evaluation because it targets .Net programs, 

particularly C#, whereas MAMDR targets Java programs. In 

addition, TestFul is semi-automatic and it requires the user to 

provide some XML description of the CUT to enhance the 

efficiency of the approach. TestFul also requires the user to 

manually add additional classes which can be used as concrete 

implementations of the abstract classes and interfaces [8]. The large 

number of classes that we use in our experiments makes it harder to 

compare MAMDR with TestFul.     

To evaluate MAMDR we consider several types of programs. 

We chose 4 open-source Java programs as used in the EvoSuite 

experiments [16]. We also included DateTimeFormat and Fraction 

classes where search-based approaches, like EvoSuite, did not 

achieve high coverage. However, not all classes contain numeric or 

string constants nor predicates, which are easy to analyze. 



Therefore, this set of subjects contains three container classes, 

which are taken from the work of Sharma et al. [34], to see whether 

our approach has a negative effect on the performance of the search 

process when its power is not needed. Table 1 lists our evaluation 

subjects, including their number of public classes, lines of code2, 

and number of instrumented branches.  
Case Study # Classes LOC #Branches 

Commons CLI [8] 11 667 288 

Commons Codec [8] 26 2650 1371 

NanoXML [8] 12 1532 591 

org.jdom2 [8] 20 2869 1108 

org.joda.time.format.DateTimeFormat  [8] 1 365 145 

Fraction  [4] 1 252 140 

StringTokenizer  [28] 1 122 72 

AvlTree  [29] 1 306 148 

BinomialHeap  [29] 1 185 62 

TreeMap  [29] 1 481 158 

Table 1: Case Study Subjects 

6.1 Research Questions 

Having defined the case study subjects, we now address the 

following research questions: 

RQ1: Does MAMDR achieve higher branch coverage than 

representative test generation tools? 

To answer this question, we ran RT, EvoSuite, MA, and MAMDR 

on each target subject with a time limit. The original source code of 

each subject was instrumented to measure the branch coverage of 

each approach.  

RQ2: What is the impact of using constants from target 

branches predicates for seeding? 

For this question, we first ran two different versions of MAMDR, 

one version seeds the search process with the constant values 

(denoted as MWS), and the other version without seeding (denoted 

as MNS). 

6.2 Evaluation Setup 

We next describe our evaluation setup in order to answer the 

preceding two research questions. Search algorithms have many 

parameters to adjust; in this experiment we followed similar 

settings in [6]. The GA uses the fitness function defined in equation 

(1), with   = 0.5. The GA also uses a single point crossover with 

probability 0.8. Mutation probability of an individual is 0.9. The 

population size is 100, and the length of the individual is set to 80. 

Tournament with size 2 is used in the selection phase. The elitism 

is set to 10% of the population size. HC uses the fitness function 

defined in equation (3). We apply HC after five consecutive 

generations without any further improvements in the total branch 

coverage, i.e. the population of the search had stagnated. The 

number of attempts for each target uncovered branch is set to 1,000 

which means each uncovered branch gets at least 1,000 fitness 

evaluations whenever being selected. We also considered the 

constant seeding from the branch predicates with the probability 

0.8.  

We ran EvoSuite with default configurations, and only tuned 

the running time for test generation to the required time limit. The 

length of test cases in the random testing is set to 200 [18]. The 

probability of creating a new instance of a chosen class rather than 

using existing ones = 0.25. However, with probability 0.1, the 

instance of the chosen class is set to null. For string values, 

characters are chosen randomly from the set of 95 printable ASCII 

characters (0x20–0x7E) [25]. All the experiments were conducted 

on a machine with Intel Core 2 Quad CPU @ 2.66 GHz and 8 GB 

RAM. 

                                                                 
2 http://Javancss.codehaus.org/ 

To evaluate the statistical difference of our approach, we 

followed the guidelines in [4]. For each approach, we set the time 

limit 5 minutes, and run 30 times for different random seeds on 

each test class (not per test subject program).  

7. Results 

This section provides a summary of the results with respect to 

the research questions.  

7.1 Coverage Results 

Table 2 summaries the result obtained by the experiment for all 

the test cases subjects. The table shows the average of the branch 

coverage value over the 30 runs with different random seeds. We 

highlighted in bold where the highest branch coverage is achieved 

by each approach with statistical significance, respectively. The 

statically difference has been calculated with Mann-Whitney U at 

the 95% confidence level. 

Test subject RT(%) EvoSuite(%) MA(%) MNS (%) MWS (%) 

Commons CLI 96.88 95.67 96.83 96.84 99.28 

Commons Codec 91.59 89.34 91.94 92.33 93.20 

NanoXML 63.32 59.20 65.67 70.85 73.68 

org.jdom2 82.50 80.19 80.11 82.40 86.39 

DateTimeFormat  82.09 68.69 81.15 83.75 89.06 

Fraction  93.52 85.45 90.36 93.10 92.93 

StringTokenizer 62.50 63.89 62.5 62.50 86.62 

AvlTree 95.27 70.50 95.27 95.27 95.27 

BinomialHeap 90.32 88.71 93.55 93.55 93.55 

TreeMap  82.91 82.91 82.91 82.91 82.91 

Average: 84.09 78.46 84.03 85.35 89.93 

Table 2: Average branch coverage Achieved by RT, EvoSuite, MA, 

MNS, and MWS. 

7.1.1 Comparison with RT 

The results in table 2 show that MNS outperforms RT on 3 test 

subjects in the branch coverage. Coverage levels were identical 

between MNS and RT for 4 test subjects, particularly container 

classes. NanoXML shows the highest improvement with a 7.53% 

increase in coverage. The reason why RT achieves a lower branch 

coverage than MNS can be explained by the fact that some 

constructors of classes in the NanoXML require instances of other 

classes and/or specific values used as arguments. For example, the 

constructor of class StdXMLReader requires a Reader object 

(the input for the XML data), and string values as arguments. RT, 

thus, creates many invalid objects of StdXMLReader due to the 

large size and complexity of the search space, and then fails to 

reach desirable states that help to cover target branches. On the 

other hand, static analysis used in MNS helps to identify related 

methods that lead to cover branches. For instance, MNS identifies 

the stringReader method, which only takes one string 

argument, and returns a valid StdXMLReader object instance, 

thereby reducing the search space size. Invoking stringReader 

allows MNS to create many valid StdXMLReader objects that 

can be used to reach many desirable states that help to cover 

branches. 

We also noticed that MNS showed no substantial branch 

coverage improvement over RT in Common Codec and Commons 

CLI, where RT previously observed to be very effective in testing 

Apache Commons programs [42]. One main reason is that 

Common Codec has few path constraints and its methods can be 

called without any specific order to initialize objects, suggesting 

MNS strength lies in testing classes that require complex input 

sequences.  Moreover, RT also did a little better than MNS for the 

Fraction class. This can be explained by considering that the 

Fraction class is immutable, which means constructors of the class 

updates its member fields, and if parameters of the constructors are 

not valid an exception is thrown, which hinders the search process 

[8]. In our experiments, the length of RT test cases was set to 200. 

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.util.StringTokenizer.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.util.StringTokenizer.html


 

That allows RT to randomly create many desirable object instances 

in each test case. The capability to generate a number of valid 

object instances helps RT to cover many branches of the Fraction 

class. However, the static analysis used in MNS helps to identify 

the constructor of the class is responsible of writing its fields. This 

helps MNS to concentrate on creating a valid Fraction object 

instance and avoiding throwing exceptions, and thus the search 

process is improved [8]. 

7.1.2 Comparison with EvoSuite 

Our results show that MNS achieved higher branch coverage 

than EvoSuite for all subjects. Although EvoSuite creates method 

call sequences with the assistance of transformed String methods 

like String.equals to calculate distance measurements to the 

branches [13], it fails to generate method call sequences that cover 

very difficult branches. We identified two possible reasons for the 

lowest branch coverage of EvoSuite. First, the measurement in the 

branch distance offers little guidance to explore a large search 

space and find input data to cover difficult branches. Second, when 

an individual in EvoSuite is a set of test cases, each of which 

consists of a sequence of method calls, then the size of the search 

space is very large [16]. As a result, it is difficult for EvoSuite to 

mutate a primitive value and find a desirable value input to cover a 

target branch, since the probability of it being mutated during the 

search is very low [16]. Thus, EvoSuite finds it hard to make 

progress towards the optimal solution by only using mutation and 

crossover operations. The aforementioned two reasons for branches 

to remain uncover are all related to the size of the search space, a 

weakness of EvoSuite observed in recent approaches [16, 17, 30]. 

Indeed, the exclusion of irrelevant methods from the search space 

can effectively improve the performance of EvoSuite because the 

mutation operator will be concentrating its effort on methods that 

can influence coverage of a target branch [20]. 

7.1.3 Comparison with MA 

Table 2 also shows the comparison results on branch coverage 

achieved by MA and MNS. We can observe that MNS outperforms 

MA in 5 out of 10 test subjects. In the remaining five test subjects, 

MA and MNS achieve exactly the same coverage. Among these 

five subjects where MA and MNS achieve the same branch 

coverage is Commons CLI. Commons CLI has only a few 

constraints that need to be satisfied [42]. Therefore, the majority of 

Commons CLI branches are trivial and randomly picking methods 

and finding their arguments across the whole search space can 

achieve good results. In summary, input domain search space 

reduction can cause an increase in branch coverage, particularly, 

for programs that contain branches requiring specific method calls 

ordering or arguments. 

7.1.4 Impact of seeding constants 

As might be expected, seeding improves branch coverage 7 of 

10 test subjects (Table 2). Branch coverage was identical for 

container classes. Noticeable improvements were obtained for 

Commons Codec, Commons CLI, NanoXML, org.jdom2, and 

StringTokenizer. The highest improvement with 5.31% was 

recorded in DateTimeFormat test subject. In DateTimeFormat 

class, most of the branch targets are contained in private methods, 

and depended on a string values. Approaches like EvoSuite or RT 

Commons CLI Commons Codec NanoXML Jodm.git 

DateTimeFormat Fraction 
 

StringTokenizer 
 

AvlTree 

 

BinomialHeap 
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Figure 3: Average Branch Coverage of each of the 5 approaches on each test subject 
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might need to run for very long time to cover these branches. MWS 

can cover these target branches much quicker for two possible 

reasons. First, collecting constants from predicates of the target 

branches helps MWS to seed these constants into the search 

process, and cover branches that depend on these specific 

constants. Second, identifying related methods helps MWS to 

generate sequence of method calls to a target branch with desired 

values for member fields and method arguments.  
Figure 3 shows a box-plot of the actual average branch 

coverage achieved over 30 runs of each approach on each test 

subject. As the figure shows, in many test subjects MWS achieves 

higher branch coverage than other approaches.  For Commons CLI, 

Commons Codec, and StringTokenizer MWS shows the highest 

coverage. In each case, MWS seeded valid constant string values to 

the tested methods to cover specific branches which guided the 

search towards additional nested branches. However, these values 

are difficult to generate due to the randomized generation in each 

other approach. We also notice that MWS shows identical 

coverage over 30 runs compared to MNS for Fraction class. The 

primary reason is that this class is a number implementation and 

has methods that accept numbers, which contain few constant-using 

predicates. As a result, both approaches relied on fitness function to 

guide the search to generate input data that cover target branches.  

Despite MWS improving branch coverage on most test 

subjects, it still does not achieve 100% branch coverage. The 

simple explanation is that some classes might contain branches that 

are included in private methods which are not called by any public 

methods [16]. In addition, some branches required complex data 

inputs to be covered. For example, some methods in the 

StdXMLReader class, which in the NanoXML test subject, 

require a file containing XML data as input. These types of inputs 

are difficult to generate, and thus MWS generates ineffective tests. 

What came as a surprise is that RT outperforms EvoSuite in 

most test subjects. One explanation would be that the length of the 

test case for RT is 200 [18], which is three times as long as 

Evo uite’s.  Although it may be possible to find parameter settings 

for which EvoSuite performs better, discovering parameter settings 

can be considered computationally expensive [5]. For this reason, 

we postpone finding better parameters to future work. We will 

consider adopting different parameters settings across all different 

approaches; in particular, we are concerned to adopt the same 

settings on all representative approaches, such as the same length of 

the test case, when the defaults of tools may not be best.  

8. Threats to Validity 

In this section we discuss the main threats that could affect the 

validity of our results. 

8.1 Internal Validity: 

The major internal threat that could affect our results is the 

probability of having faults in our instrumentation. To minimize 

this threat, we carefully tested our instrumentation framework and 

manually tested instrumented source code for several program 

subjects. Another potential threat to internal validity could be with 

randomized algorithms. Therefore, we ran our experiments for 30 

times and applied rigorous statistical procedures. 

8.2 External Validity: 

The external validity is how generalizable our results are based 

on our selection of test subjects. The test subjects in this 

experiment were different types of programs and their size varied 

by an order of magnitude. We included open source projects and 

container classes. In addition, the selection test subjects have been 

widely used in other empirical studies in SBST.  

9. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed MAMDR, a fully automatic 

tool that utilizes three different approaches: genetic algorithms, hill 

climbing, and method dependence relations to achieve high code 

coverage. To evaluate MAMDR, we conducted evaluations on 

several open source programs and container classes. Our results 

showed that MAMDR demonstrated significant improvements in 

branch coverage compared to purely random testing and the search-

based EvoSuite.  

With our approach, related methods, which are based on their 

fields, are exploited to modify particular fields or arguments in 

order to cover a branch that is required for a certain execution path. 

This is particularly useful to handle a large search space and to 

generate sequences of method calls for classes with complicated 

constraints branches.   

The individual presented concepts of our automated search-

based test generation have (in many cases) been applied in other 

approaches to generate test cases for OO programs, like Java, but 

the combination of methods and exploiting of all information 

available is key to overall success. We showed that it can be 

difficult for search-based approaches to generate test cases that 

include good method sequences and arguments, due to the 

application of a pure randomized algorithm in the mutation phase. 

We also showed how our novel seeding approach exploited method 

dependence relations to increase the effectiveness of the SBST. 

In future work, we will focus on integrating method 

dependence relations into the genetic algorithm phase and 

enhancing its mutation operators. Further, we also plan to capture 

object instances from different search phases and then exploit these 

object instances to guide the search in generating test cases.  

Finally, we plan to conduct further experiments and analyses on 

MAMD ’s coverage and efficiency when these ideas are 

implemented. 
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