Alex Groce (agroce@gmail.com), Oregon State University

Edward R. Tufte’s The Visual Display of Quantitative Information is so well known that it may
need little introduction to most readers of this column. That it is a remarkable book, the most
widely-read and beloved examination of “data graphics,” is uncontroversial.

Why, however, is it particularly a book for software engineers? In one sense, it is not
particularly for software engineers, since the qualities that make it useful to software engineers
for the most part apply to all scientists and engineers. Why should every engineer or scientist
read Tufte? Because we are often required to present complex data to each other, to
non-technical audiences, and even to ourselves. Unfortunately, in most cases our training in
computer science does not give us much experience in doing so, and the sophistication of data
graphics in most textbooks is limited at best. This is particularly sad in an era when computers
make the production of high-quality graphics easier than ever before. Of course, computers
also make the production of terrible graphics easier than ever before, so the blessing is not
unmixed.

Tufte offers guidance in how not to produce terrible graphics. While the text of the book is
superb, much of Tufte’s method is to present a vast, dominating (the book’s substance, not the
reader), sequence of large-sized examples of data graphics, mostly chosen for their excellence,
occasionally chosen to demonstrate the way not to do things. The figures are eye-catching and
presented at an excellent size for close examination (this is a large book that won't fit on a small
shelf). They cover a historical period ranging from the Napoleonic wars, which inspired Minard’s
justly praised depiction of the terrible losses suffered during Napoleon’s Russian campaign of
1812, up to infographics from the 1980s (we are, thankfully, spared anything from USA Today).

In fact, the way Tufte uses actual data graphics to discuss the construction of good graphics
and avoidance of bad graphics suggests that software engineering could benefit from a book
like this. It is pleasant to imagine The Textual Display of Algorithmic Information, a new
textbook adopted by every university (or even every elementary school), which takes classic
examples of what to do (and what not to do) in code, across a variety of purposes and
languages, and wraps these examples up with the ribbon of a compelling examination like
Tufte’s. The readability and maintainability of code is analogous to visual appeal in data
graphics; correct, efficient execution maps to the faithfulness of a graphic to the facts of the
underlying data. A graphic can be beautiful but misleading, and code can be easy-to-read but
buggy. Code can also be “correct” but nearly impossible to read, or ugly in concept (when a
more elegant and concise approach would be equally effective). Even when our computer
science textbooks do include code examples, they are usually contrived for the book, not
historical examples with real context and a variety of developers. The examples are seldom
faulty in an interesting way, and very seldom beautiful, striking, or even aesthetically acceptable
(in the majority of texts). Tufte’s book serves not only as an education in how to make data
graphics, it serves as an education in how to read data graphics. It is not unreasonable to claim
that learning to read diverse code would certainly benefit most students of software engineering.



Most of us spend more time looking at data graphics (or at lines of code) than we spend
producing them.

Confession time: my own papers contained almost no graphics, for the first seven to eight
years of my research career. In model checking, the normal state of affairs at the time was to
use a table of detailed runtimes, memory usage, and so forth. Including a column with averages
or percentage improvements was a wild and crazy innovation, and rather indicative of a
second-rate mind. In fact, given the tiny number of data points available in the typical paper
(and lack of statistical substance), it is not clear graphs would have been of much use to
readers, even if present. Since then, I've used larger data sets, and produced more data
graphics, as my research moved from model checking only to software testing and analysis
using a wider variety of techniques (even my model checking papers tend to contain at least
one data graphic, these days). My more recent papers, however, have hardly made use of the
rich set of techniques Tufte presents. Most research papers outside of the visualization field
itself (and perhaps human-computer interaction), in my experience, consist of scatterplots (with
regression lines), box-and-whiskers plots, or simple bar charts that present the same kind of
information as model checking research circa 2000-2010’s ubiquitous tables. When data
graphics are present in non-academic documents in software engineering, they tend to be of
these same limited forms (but are probably rarer than in contemporary scientific papers in the
field).

Does this mean Tufte isn’t very useful to software engineers, after all? Does it at least mean
that Tufte’s many fans in the field aren’t actually getting much out of his work other than a
pleasant feeling that they may aspire to elegant displays of information, even if they never
actually get around to producing them? No! It rather means that while the charming and unique
nature of many of Tufte’s examples is missing from most real-world usage in the field, the
essential points in Tufte can be applied just as well to bread-and-butter information that is not
inherently hard to display. Avoiding “chart junk” and using proper scaling, using effective
labeling, and other issues are perhaps even more critical for simple graphics than more
elaborate displays of many complex variables at once. When there is only simple data to
display, obscuring it is a worse crime than when even an expert might fail to tell the story with a
picture. Moreover, the growing importance of Geographic Information System (GIS) analysis in
some subfields of computer science does require new sophistication in effective presentation of
information, and there is no better place to start than Tufte.

The lesson, that error in complex systems is forgivable, but error in simple systems is a crime,
can also apply to software. Most of us may not solve the most difficult problems of software
design; we often produce systems of limited complexity, with high similarity to something we
have built in the past. Nonetheless, lessons learned in the context of much more ambitious and
clever systems, with harder-to-achieve goals, can help us avoid common mistakes in even the
“simplest” work. A good carpenter may build a beautiful ornate mantlepiece; a great carpenter
knows how to make a simple, sturdy table a work of art. Tufte is essential for being both good
and great.



