Alex Groce (agroce@gmail.com), Oregon State University

Tracy Kidder’'s The Soul of a New Machine is by far the best book “about” software
engineering that was not written by a computer scientist of any kind, and does not really
describe any serious soffware engineering at all. Never mind these qualifiers; no other book
captures the excitement, the madness, and the heart of a big software engineering project as
well as Kidder’s story of the development of a 1970s minicomputer, Data General’s Eagle. In
fact, to consider The Soul of a New Machine only as a masterpiece of computer or software
engineering is to sell it short: the book is likely the best general-audience account of the
high-wire act of time-pressured modern engineering ever written.

The Soul of a New Machine has the great advantage of being written by one of the finest
journalists of the last 50 years. Tracy Kidder lacks the voluminous output of a John McPhee,
but shares McPhee’s talent for using words with skill and charm to make any subject
fascinating. Software engineers in particular should appreciate Kidder’s talent (which is
reminiscent of McPhee at his best) for bringing the human beings in his stories to life as
powerfully as the best characters in fiction while never succumbing to the journalist’s
temptation to reduce every subject to a simple case of personalities. Too much “quality”
journalism reduces the essence of a craft, a science, or a technology to a simple clash or
harmony of characters, as if there were no objective and stubborn reality we face, but only the
ambitions and emotions of men and women. Software engineering, as opposed to
programming language theory, lives precisely at this intersection of human abilities, talents,
and foibles and the actual “nature of the beast,” the inhuman reality of the systems those
human beings endeavor to transform from abstract concepts to usable artifacts. Kidder never
dodges the hard task of trying to describe the actual things his engineers are building, and the
result is readable for the average English-major reader of The New Yorker without boring any
MIT-educated embedded software engineer in his audience.

Kidder manages to make quotations ranging from the Lord of the Rings to Macbeth smoothly
integrate into a world where engineers are beginning to use the technological and process
metaphors of computing and engineering to describe the real world -- a man giving his
girlfriend an “Engineering Change Order” to alter their relationship or another saying “Give me
a stack dump” as a way to ask for someone’s thoughts. One confused engineer’s limitations
are aptly described: “See. He can push, but when it comes time to pop, he goes off in all
directions.” The connection between language, the metaphorical space of engineers,
hardware, software, and engineering itself is always at play here; it is central to both the
real-world story before Kidder ever touched it, and to the way Kidder tells that story. Much of
the action of the book revolves around a testbed machine named Gollum. That’s a detail
Kidder might have invented were it not already true. The Soul of a New Machine deservedly
won both the National Book Award and a Pulitzer Prize in 1982 for these literary qualities.

The story told in the book is driven in part by the rapidly growing centrality of software over
hardware in computing: “... while the expense of building a computer’s hardware was steadily



declining, the cost of creating both user and system software was rising.” Software
compatibility motivated the project that the book describes, at a business level, though the
real motivation that animates the book is the glory of an (impossible?) challenge, something
software engineers and hardware engineers have in common. One aspect of the story
particularly relevant to current controversies in the software industry is the decision to run the
Eagle project primarily using young engineers, who may be more likely to work “impossible”
hours and can be paid less. These are engineers so happy they are given a chance to really
build something exciting that they don’t worry too much about jokes that divorce lawyers
should be a company benefit, or see “You're gonna die, but you're gonna die in glory” as a
threat rather than a promise. The Soul of a New Machine is never just a story of exploited
labor, however, because both the technical beauties of a clean design and the strange
pleasures of living with constraints that destroy that beauty are made real.

The best comparisons for The Soul of a New Machine are probably Steven Levy’s Hackers:
Heroes of the Computer Revolution and the more recent Dreaming in Code: Two Dozen
Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software by Scott
Rosenberg. Both are enjoyable reads, but suffer when compared to Kidder’s book. Levy
covers much more ground (at much greater length) but his book suffers some for these
diffuse interests, never telling any single story as well as Kidder’s tightly focused book. Levy’s
book is also written (only partly, fortunately) in a New Journalism would-be-Tom-Wolfe style
that doesn’t work as well for this history as it does when Wolfe turns the same methods to
stock car racing or the early space program. Kidder’s writing style fits this kind of technical
history better. Rosenberg’s book is, like The Soul of a New Machine, focused on a single, in
principle emblematic, project, but the particular idiosyncrasies of that project, at least for me,
make it less effective as a stand-in for software engineering projects in general than the Eagle
hardware project. Kidder is also a better writer than either Levy or Rosenberg (no faint praise,
especially in Levy’s case), and this makes The Soul of a New Machine much more
memorable than their also worthwhile books.

My particular interests in software engineering make it easy to suggest a single highlight of
The Soul of a New Machine. Chapter 10, “The Case of the Missing NAND Gate” is the best
account of debugging ever written, and that the bug is in hardware, not software, does not
matter in the least. Certainly, the technical aspects of this particular bug-hunt are not as
exciting as a story like Reeves and Neilson’s description of “The Mars Rover Spirit FLASH
Anomaly.” The way the story is told, however, raises it from a single example of a process
that many find to be both the most enjoyable and most frustrating part of software
development to a chance for non-engineers to step partly into the trenches and feel that
satisfaction and dismay.

Kidder, like many of the greatest journalists, knows when to give his subjects the last word.
Chapter 10 ends with two paragraphs that ring deeply true to anyone who has been part of a
large testing and debugging effort. Replace Gollum with one of the Mars Science Laboratory
testbeds, and these words perfectly catch a feeling that came, again and again, to all of us



who tested the Curiosity rover, and likely to many readers of this column, with their own
Gollums:

“They’ve reached a milestone, but one that they thought they had reached before. There’s no
celebration, no sitting around Gollum with their feet up on analyzers, savoring the victory,
rehearsing the battle. Plenty of diagnostics stand before them. Much trickier ones, in fact.

‘A feeling of accomplishment’ is what Veres says he has. ‘But then again, there’s lots more
feeling of accomplishment to go.”



