
Alex Groce (agroce@gmail.com), Northern Arizona University

Herbert A. Simon’s The Sciences of the Artificial (Third Edition) is a possibly somewhat
neglected classic text of computer science. It is not unread, but it is not as widely read as other
“foundational” texts. This is a shame, for while the book (and Simon) are perhaps most
associated with artificial intelligence research, The Sciences of the Artificial provides a new way
to think about software engineering, and includes not only fundamental claims about human
beings (and computers) that could shape our approach to software, but concrete proposals
about how to teach software engineering as partly based on a science of design.

The eight chapters of The Sciences of the Artificial have common themes, and should ideally be
read in order, but also work fairly well as isolated readings. This is not surprising: the chapters
are re-workings (substantial ones, by the present, third edition) of lectures Simon gave, from
coast to coast and over a period of more than a decade, and papers he wrote over the same
long period. Simon, in the preface, calls the resulting essays “fugues,” and the metaphor works
well as a way to see the whole book: there are interlocking themes in these essays, repeated
and re-shaped, and while listening in order is ideal, walking into the concert hall at any point it
should still be possible to re-create key elements of the initial exposition.

Simon’s initial exposition is an attempt to define and propose the “sciences of the artificial”: that
is, sciences in which, in addition to natural law, purpose or goal is central. Simon first rejects
the pejorative connotations of the word “artificial.” For Simon, the artificial is not superficial,
false, or dishonest; the hallmark of the artificial is simply that artificial things are synthesized by
human beings, “characterized in terms of functions, goals, adaptation,” and discussed “in terms
of imperatives as well as descriptives.” That is to say, the artificial is engineered for to serve
some purpose. The natural sciences are, essentially, descriptive: there is no value in saying
that the law of gravity fails to optimally make things fall: it is what it is. But the sciences of the
artificial concern how an entity, in conjunction with its environment, achieves its purposes.
Where teleology is usually a mistake in natural sciences, it is unavoidable in the sciences of the
artificial. One key upshot of this idea is that the artificial can often largely be considered in
terms of its outside environment. This idea that “The behavior takes on the shape of the task
environment,” is, of course, central to the modern concept of software development as well.
While a library API has an internal existence, we can consider it primarily in terms of its interface
to an environment in which it provides certain functionality. In fact, without the ability to consider
software elements without regard to their internal construction, but only in terms of their
interface to an environment, and goal-directed behavior in that environment, it would be
impossible for humans to produce software systems with significant scale.

Having defined the sciences of the artificial, Simon turns, perhaps surprisingly for a modern
computer scientist or software engineer, to his first example: economic rationality, and the
modeling of human behavior. But, of course, an economy is an artificial entity ordered by the
goals of its participants, and the question of how to understand human behavior is central to any
study of the artificial: we are the producers of artificial things, at present. One of Simon’s big

ideas (the one that he is most famous for in economics, and received the “Nobel” in economics
for) is that humans do not, because they cannot, rationally optimize their economic behavior.
Instead they seek to satisfy minimal constraints, in most cases: the computational burden of
optimality is far too large. Finite, limited minds act in ways that significantly differ from abstract
optimality. Simon takes us on a quick tour of economic and administrative theory, from
operations research to the concept of how organizations operate without using an internal
market to make decisions.

The third essay explores how we can understand and perhaps even quantify the limits on
human rationality via experiment. Simon proposes that, since it is possible to grasp the
limitations of a system without knowing its internal construction, we can also hypothesize about
how a system (in this case, a human being) generally goes about solving problems. Simon’s
most famous contribution to AI is the General Problem Solver system. The fourth chapter
continues this theme, with the focus changed to memory, rather than problem-solving. These
chapters are interesting, but may seem to be rather remote from the interests of most software
engineers. On the contrary, in practice, the limits of human abilities are among the most
important, but hard to perceive, inputs to the process of engineering (whether software or some
other kind of engineering). For example, Simon points out that plans that require effective
prediction of the future often fail, because such prediction is beyond our bounded rationality
(and, sometimes, not even possible in principle, as the later section on chaos points out).
Feedback is a better mechanism than prediction, in many cases, for adapting to changes. To
think that such discussions have nothing to contribute to the debates about software
engineering methodologies (and the underlying motivations for, e.g., agile approaches) is to
dismiss substance in favor of ephemera (including some current precise “best practices”).

That said, it is with the fifth chapter, “The Science of Design: Creating the Artificial,” that the
most relevant part of The Sciences of the Artificial for software engineering starts. Simon
begins by discussing the shift in engineering education from a practical, trade-school approach
that lacked rigor towards a natural-sciences based approach that lacked consideration of the
sciences of the artificial. Simon does not oversimplify: it is a mistake to have a chemical
engineer who does not know chemistry, or a software engineering who does not know computer
science; but it is also a mistake to not consider the actual design of distillation columns or
working programs, as artifacts: things with goals, and constraints, and where solutions are
heuristic and satisficing, rather than calculated from natural law. Simon therefore proposes an
engineering design curriculum covering at least:

“THE EVALUATION OF DESIGNS 1. Theory of evaluation: utility theory, statistical decision
theory 2. Computational methods: a. Algorithms for choosing optimal alternatives such as linear
programming computations, control theory, dynamic programming b. Algorithms and heuristics
for choosing satisfactory alternatives 3. THE FORMAL LOGIC OF DESIGN: imperative and
declarative logics THE SEARCH FOR ALTERNATIVES 4. Heuristic search: factorization and
means-ends analysis 5. Allocation of resources for search 6. THEORY OF STRUCTURE AND
DESIGN ORGANIZATION: hierarchic systems 7. REPRESENTATION OF DESIGN

PROBLEMS”

After this, the entire final half of the book revolves around design and complexity (which design
is often essentially about managing) as central to a science of the artificial. Chapter 6 examines
the social considerations of design, including a broad overview of the ethical dimension of
software engineering (or any other engineering or planning endeavor). Chapter 7 presents a
few alternative views of complexity (holism vs. reductionism, cybernetics, catastrophe theory,
and chaos and complexity analyses), and Chapter 8 presents Simon’s own proposal for an
architecture of complexity, the understanding of hierarchic systems.

This summary leaves out much of what The Sciences of the Artificial discusses that is of interest
to a software engineer: the usefulness of thinking about biological systems and evolution in
considering software systems; the great importance of how complexity is described (state vs.
process descriptions: in other words, blueprint vs. recipe), the nature of administrative
decision-making; the shifts in time-perspectives introduced by 20th century technologies; the
idea of symbol systems as a central organizing concept in consider information-processors such
as computers and humans; the value of learning from example; and so on and so on… and so
on. Simon’s Renaissance-man breadth leads to the production of long lists.

In fact, the variety of topics makes The Sciences of the Artificial irritatingly difficult to sell to the
would-be reader. Most great books are less diffuse than this; this is partly due to the nature of a
collection of talks and essays, and partly because, while the concept of “the artificial” does
provide an underlying rationale for all that is within, Simon’s was not a mind, I think, that simply
moved from one unifying vision to a series of applications. That metaphor that comes to mind is
Berlin’s famous fox vs. hedgehog distinction: the fox knows many things, and the hedgehog
only knows one (big) thing. Is Simon a fox? The claim is tempting. This book does not
summarize well, and Simon’s ideas in computer science, political science, economics, and
psychology really are varied and complex, like the topics themselves. Simon is the only Turing
laureate to arguably be more famous for other things he did. In an essay celebrating Simon
centenntial, (https://manwithoutqualities.com/2016/07/08/herbert-simon-a-hedgehog-and-a-fox/)
Frantz and Marsh argue that Simon is both a fox and a hedgehog: quoting Simon, he was a
“monomaniac about decision-making.” The central problem of the software engineer, or any
engineer, is the problem of decision-making in the face of uncertainty. If Simon’s thoughts are
complex and difficult to summarize, it is perhaps because decision-making reflects the
complexity of the world in which decisions must be made, another of Simon’s central insights.

https://manwithoutqualities.com/2016/07/08/herbert-simon-a-hedgehog-and-a-fox/

