Alex Groce (agroce@gmail.com), Northern Arizona University

Charles Petzold’'s Code: The Hidden Language of Computer Hardware and Software may not
be for you. Are you an embedded systems hacker of the first rank, or an electronics and
homebrew retro-computing hobbyist with an Apple | in the basement (or, better yet, in the living
room)? If so, Code will be old hat, and you can skip this column, unless you want a good book
to recommend to the next person who is baffled by your cabinet full of antiquated motherboards.
You know what Petzold is going to say. The rest of us, however, even if we technically have
some training in computer architecture or have done systems programming, can enjoy the tour
of computing’s hardware basis.

| say hardware basis because, while the book’s title suggests it covers the hidden language of
hardware and software, this is mostly a hardware book. That, for Passages, is unusual. We are
a software people. Code is also unusual in that while Passages aims at books that the
interested “lay” reader can enjoy, the point is often stretched. Is anyone not somehow paid for
making (or at least thinking about) software ever going to read The Pragmatic Programmer, or
any of Knuth’s selected papers volumes? Probably not. Code is a hardware book, and it is
written for a general audience, not for the software engineering, or even computing, specialist.

What makes Code ideal for software engineers is that it is a useful counter to the ease with
which we can forget that, under all our layers of abstraction and the software that masks the
beast, there is a machine. Code, in a friendly, appealing, way, reminds the software engineer of
the beast. Moreover, unlike a less popularly conceived book, focusing on modern hardware
systems, Code invites us to get to know the beast, perhaps pet it, and maybe even adopt it as
our own dog. The method of Code, you see, is 1950s Boys Life’ adventure, Popular Science
and Danny Dunn. It starts like this:

“You're 10 years old. Your best friend lives across the street. In fact, the windows of
your bedrooms face each other.”

You and your best friend want to talk after dark, and so you turn to that object at the heart of
Steven Spielberg nostalgic childhood, the flashlight. The flashlight leads us, naturally, to Morse
code, and to Braille. Code lightly covers the history, but not too much for the 12 year old inside,
and it soon turns to something even more essentially designed to invoke the golden age of
science fiction: building a computer.

The heart of the book, chapters 12 to 17, is focused on building working, if simple, computers
using relays. You can play along at home. In chapter 12, you build a simple binary adding
machine. By chapter 17, you have a machine with a simple assembly language, and enough
coding power to have moderately interesting bugs in its software. Chapter 18 runs through
“computer pre-history” from (as the book puts it) “abaci to chips” in a mad rush, then chapter 19
discusses two classic microprocessors (you can probably guess which ones, if you're one of the
people who might enjoy Code but don’t really need to read it). No book on “code” would be



complete without a chapter on ASCII, and there are requisite and interesting chapters covering
the bus, the operating system, and (deliver us from) floating point, fixed-point, and other
numeric formats. The final chapter, which touches on GUIs and the web, is the one “cutting
edge” (at the time it was written) aspect of the book, and so, naturally, the only part that feels
significantly dated, somewhat to its detriment.

| started to write that the simple but clear walkthrough of computer basics here is useful to every
software engineer who lacks familiarity with the hardware basis of computing. On reflection,
however, | decided this is not true. Yes, if you were unaware of even the basics of assembly
language, or the idea of a bus, this book is going to give you new tools for thought. But in
practice, knowing how (primitive) memory works or what the carry bit means really isn’t going to
make you write better code. No one toiling in a PHP mine will be liberated by the discovery that
DEADBEEF is a number.

No, the practical value of this book is quite limited; what goes on inside a modern computer is
not infinitely removed from a relay machine with no operating system, JNZ, LOD, ADD, SUB,
STO, and 64KB of RAM. Butitisn’t very close, either. ASCII is still around, but feels somewhat
quaint (the book does mention Unicode). There are no helpful tips on coding, other than the
useful note that as soon as you can write programs of any interest on the simplest machine, you
have to start worrying about subtle bugs. If you're like me, you will likely read the book and
remember the parts you already somewhat knew of the underlying electronics, and forget any
details of flip-flops or edge-triggered vs. level triggered latches that you didn’t already possess.
What you will likely carry away is a refreshed appreciation, even if it is not the level on which
you usually work, for the joy, charm, and physicality of computer hardware. Yes, you should
give this book to every intelligent 12 year old you run into, and it might be a good book to hand
your interested relatives who ask “how does a computer work?” (if they really want to know), but
you can read it yourself, to be reminded that computers are both AM (actual machines, the most
interesting kind of machines) and magic, in the way every project in a 1948 issue of Popular
Mechanics (in September, we built our own arc welder!) was magic. The magic is magic
precisely because you can make the magic yourself, and see how it is done, take it apart and
put it back together, and yet it remains magic all the same.



