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Abstract
Everyone wants to know one thing about a test suite: will
it detect enough bugs? Unfortunately, in most settings that
matter, answering this question directly is impractical or
impossible. Software engineers and researchers therefore
tend to rely on various measures of code coverage (where
mutation testing is considered a form of syntactic coverage).
A long line of academic research efforts have attempted to
determine whether relying on coverage as a substitute for
fault detection is a reasonable solution to the problems of
test suite evaluation. This essay argues that the profusion of
coverage-related literature is in part a sign of an underlying
uncertainty as to what exactly it is that measuring coverage
should achieve, as well as how we would know if it can, in
fact, achieve it. We propose some solutions and mitigations,
but the primary focus of this essay is to clarify the state of
current confusions regarding this key problem for effective
software testing.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

General Terms Experimentation, Measurement, Verifica-
tion

Keywords testing, coverage, evaluation

1. Introduction
A specter is haunting software testing — the specter of not
knowing whether our test suites are effective, or how to make
them more effective. A few of the questions researchers and
even many practitioners would like to be able to answer are:

1. Can I stop testing? Is this suite good enough that I can
assume any undetected defects are either very few in
number or are so low-probability that they are unlikely
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to cause trouble? Similarly, will this suite likely detect
future defects introduced into this program?

2. Which of these two test suites will find more faults?

3. Which of these two test suite generation methods pro-
duces better suites, in terms of detecting faults?

4. In what order should I run the tests in this suite (or which
tests should I run), if I want to maximize the speed with
which faults are detected?

5. What tests should I add to this test suite, to improve its
ability to detect faults?

Unfortunately, the only obvious way to answer all of
these questions is to have a list of all faults in our software
programs1! In the presence of such a list, of course, the
entire problem of testing is avoided, which means that these
pressing questions must somehow be “answered” without
the needed information. Producing such a list of faults, in
practice, is difficult even if we have a complete (with respect
to faults) set of test cases for a program! Detecting faults
not only requires executing the program such that the fault
causes a problem, but some method for detecting that the
test case has “done the wrong thing” and exposed a fault.
This is known as the oracle problem: an oracle is a function
that, given a test case execution, determines if it passes or
fails [36]. Building an oracle with respect to a given kind
of failure can be trivial (e.g. for crashes and infinite loops)
or profoundly difficult (e.g. for full, functional correctness
properties — the easiest way to determine if a file system
functions properly is to test against another, correct, file
system); in some cases, the oracle cannot be automated, and
requires human intervention [30]. Even with a perfect oracle,
determining the list of faults from a set of failed tests is a
very hard problem [11].

The most frequently proposed (and adopted) solution is
to use some measure of (code) coverage, which Beizer [7]
defines as “any metric of completeness with respect to a
test selection criterion” and notes usually means “branch
or statement coverage.” Statement coverage measures how
many of the statements in a program have been executed
by a test suite, and branch coverage measures how many of

1 Actually, even given this unlikely boon, answering the third and fifth
questions is still difficult.



the branches in a program have been taken by a test suite.
Statement and branch coverage are easily measured in most
widely used languages, and tools for these two coverages are
included in the basic tool set for many development environ-
ments, whether commercial, open source, or more research-
oriented (e.g. Visual Studio, GCC, LLVM, and even the
Glasgow Haskell Compiler). One great advantage of cover-
age measures over other possible methods for estimating the
fault detection capabilities of a test suite is that coverage can
be used even when all tests in the suite pass. This is criti-
cal, because it is most difficult to assess a suite’s value when
it no longer detects any bugs [25]: is the suite too weak, or
is the software actually mostly correct? In testing research,
coverage is also highly useful for this case — using cover-
age allows researchers to evaluate the quality of test suites
for subject programs that lack faults (or where the effort to
build an oracle to detect present faults is too onerous).

The academic literature has proposed a very large set of
plausible coverage measures, but only statement and branch
coverage are in widespread use by practitioners, and avail-
able for most programming languages. In fact, from the
perspective of “real-world” development, it is almost true
that statement and branch coverage are the only relevant
coverage measures. The only other coverage with signifi-
cant real-world adoption is MC/DC coverage, which must
be satisfied for software to obtain Federal Aviation Admin-
istration approval for airborne computer software [52], but
no widely used development environments support its mea-
surement2. Fortunately, there is at least some evidence that
statement and branch coverage are not only the most readily
available measures, they also are possibly the most effective
[18, 19, 22].

That a coverage requirement is specified by the United
States government for certain types of critical software, and
that tools to measure common coverages are standard in
common development environments demonstrates that the
idea of coverage as a way to measure test suite effectiveness
is not limited to researchers. Many companies make some
form of code coverage a requirement in development, and
practical, developer-oriented books covering testing almost
always discuss statement and branch coverage [41, 43]. Such
discussions often include a warning to not use coverage as a
mindless criterion for when to stop testing [56]. It nonethe-
less seems likely that in the future, as testing becomes more
automated, more frequently outsourced, and more often of-
fered as a service, coverage will be used as a measure of
testing effectiveness even more frequently.

Code coverage is also very widely used in software test-
ing research. Here, in principle, using real faults to compare
suites is possible. However, in practice researchers discover
a series of obstacles to this ideal approach. First, many pro-
grams have few enough (discoverable) faults that obtaining

2 One Java coverage tool, CodeCover [1], does offer a measure that sub-
sumes MC/DC coverage.

statistical significance in results is difficult [6, 13]. Second,
many experiments are performed, for purposes of compar-
ing with related literature, on a set of standard benchmarks
[50], and the benchmarks typically have only seeded faults,
not real faults. Finally3, for larger real programs, determin-
ing how many different faults a test suite detects can be ex-
tremely difficult, and relies on generating a valid oracle for
the program. It has become common practice, as a result,
for papers in the field to report comparisons of testing tech-
niques that largely or partially [21, 28, 55, 58] focus on com-
paring the coverage produced by the suites [18, 19]. Some
papers that rely largely on comparisons of coverage (e.g. the
work of Visser et al. [58]) have become very widely cited
standards in the field. Branch coverage itself (or path cov-
erage focused on maximizing branch coverage) is also often
used as the actual goal of automated testing systems, either
as a fitness measure in evolutionary/search-based/machine-
learning based testing [3, 17, 27, 44] or in symbolic execu-
tion efforts [20, 54, 62].

The widespread use of code coverage in both practice and
research, therefore, raises a question: is code coverage actu-
ally useful as a replacement for measuring real fault detec-
tion? Does using coverage in place of faults provide benefits,
or is it simply a case of “we have to use something, and this
is the only something we have”? Most experienced testers
can immediately answer that measuring code coverage is not
a completely adequate replacement for measuring fault de-
tection; we all know faults that cannot be detected by suites
with excellent code coverage. In fact, almost no researchers
or experienced testers would affirm the claim “Code cover-
age is a highly accurate guide to test suite quality; bad suites
invariably have poor code coverage.” The usual mantra is
“coverage is necessary but not sufficient to expose bugs.”
Nonetheless, both practitioners and researchers frequently
use coverage for purposes that far exceed a simple heuristic
to detect glaring inadequacies in a suite — as the (perhaps
troubling — see the work of Staats et. al [56]) example of
MC/DC coverage shows. Is this a good way for scientists
and engineers to proceed?

2. Justifying the Use of Coverage
Fortunately, in order for coverage to be valuable in most
of the ways we currently assume it to be, it is not essen-
tial that coverage have a perfect correspondence to fault
detection. Even a moderate statistical correlation between
some useable coverage measure and actual fault detection,
if widespread enough across programs, suites, and fault sets,
would justify the use of coverage for at least the first two
questions. The notion is fundamentally statistical in that the

3 Actually, there is one additional reason: testing bleeding edge software to
find unknown faults is perhaps the most convincing way to reach a devel-
opment audience, contributes to improving software quality, and is more
interesting for researchers than statistically sound “dead horse flogging”
[49].



particular faults of any program are largely an accident of de-
sign and implementation, so no generalized measurement of
how a test suite explores program behavior can be expected
to have a very precise correspondence to the accidental faults
of that program. However, given the pressing need to have
some way of at least roughly evaluating the utility of test
suites, and some testing goals more amenable to both human
effort and automation than “find all faults,” a “moderate”
correlation would be sufficient. Ignoring the complexities of
different statistical measures, a moderate correlation (e.g., a
0.30 score for Kendall’s τ correlation) often can be under-
stood as implying a fairly strong statement, such as that if
test suite A has a higher coverage measure than test suite B,
it is twice as likely to be better at fault detection than B than it
is to be worse than B at detecting faults. As a result, increas-
ing coverage would generally increase fault detection if this
were true. This leads to the development of what this paper
will refer to as the Strong4 Coverage Hypothesis (which can
be specialized to a desired form of coverage):

Definition 1. The Strong Coverage Hypothesis (SCH):
For the population of realistic software systems, test suites
produced by human efforts or automated testing methods,
and realistic faults, there is at least a moderate statistical
correlation between the level of coverage a suite achieves
and its level of fault detection. Moreover, this correlation is
not the result of some trivial confounding factor that could
be used in place of coverage, such as suite size.

The SCH explicitly claims that coverage is meaningful in
and of itself, not simply as a byproduct of some other easily
measured aspect of a test suite. For example, we expect that
very small test suites obtain poor coverage and poor fault
detection, and large test suites do well at both coverage and
fault detection. Harder et. al warned researchers more than
10 years ago that comparisons of testing methods should be
careful to make sure a “better” testing method is not sim-
ply forcing the user to spend more computational effort and
produce bigger test suites [35]. Both practitioners and re-
searchers care not only about suite effectiveness but suite ef-
ficiency [32]: if the only way to achieve good fault detection
is to use unreasonably large test suites, testing is doomed to
failure in most cases. Furthermore, if size is the primary rea-
son for coverage’s correlation, it is better (and easier) to just
measure suite size in the first place. The SCH proposes that
coverage provides useful information not otherwise easily
available — given two suites of the same size, the practi-
tioner and the researcher would like to prefer the one with
higher coverage, with confidence.

Coverage might also be useful in some specialized set-
tings, or for some of the more specialized questions (prior-

4 To be honest, our “Strong” Coverage Hypothesis is not especially strong,
in that it only concerns a limited set of suites, making no claims about
the population of all programs or all possible test suites; it’s not clear that
anyone would believe the Very Strong Coverage Hypothesis, however, or
that it could be effectively empirically investigated.

itizing or augmenting test suites) even if the SCH does not
hold. Fundamentally, however, if there is a general positive
statistical relationship between a coverage and fault detec-
tion, it is reasonable to expect that coverage to be at least
somewhat useful for all the questions above. How would we
go about determining if the SCH is true? Experiments to sup-
port it would need to satisfy three requirements:

1. Large numbers of software systems of different types:
Basing results on only a handful of systems, or systems
by a small set of developers, or only a single kind of
program (e.g. Unix utilities, GUIs, numerical programs)
does not support the SCH. The best basis for the SCH
is examination of a large number of randomly (not op-
portunistically — programs we happened to already be
studying) selected software systems with different de-
signs, implementation languages, and specifications. This
reduces the danger that there are general classes of soft-
ware where coverage is not useful, vs. the statistical pos-
sibility left open by the SCH that for the occasional pro-
gram, coverage may be less useful.

2. Large numbers of test suites of different sizes pro-
duced by different methods: Similarly, the SCH claims
that the correlation between coverage and fault detection
should not depend on a certain kind of testing method.
Therefore experimental evidence should use good test
suites and bad test suites, test suites produced by hu-
man effort, test suites produced by capturing user inputs,
test suites produced by a variety of automated meth-
ods (e.g., random testing [33], evolutionary/search-based
techniques [17], symbolic execution [20], and model
checking [57]), and as many other variations as possi-
ble. The SCH intentionally limits correlation to suites
someone might actually want to produce and evaluate,
so random subsets of tests from many methods are not
ideal for evaluation5, though if there is a good correla-
tion across random subsets of real suites, that is a good
sign the SCH holds. Measuring correlation either across
suite pools all of the same size or using statistical meth-
ods to take size into account is also important. For the
first method, using different sizes is important: perhaps
coverage is correlated with fault detection in small suites,
but is not useful for more realistically sized suites.

3. Large sets of real faults: To establish statistical corre-
lation with fault detection, experiments need to actually
count faults detected by suites. When no one version of
a software system has enough faults to provide statisti-
cal support, using many versions (from source reposito-
ries) can provide enough faults to measure correlation
effectively. Real faults may not resemble seeded faults,
so experiments should be based on real faults introduced

5 Random subsets are not ideal, for practical purposes; they are widely used,
however, because they are easy to obtain [19, 38].



during development, not abstract ideas of what faults
“should” look like.

A very large body of literature exists on the topic of the
effectiveness of coverage in testing [9, 12, 15, 16, 31, 37,
59, 60] taking a complex (and sometimes confusing) vari-
ety of approaches to the question. The hope that something
like the SCH is true (or the fear that it is not true) has in-
spired a growing body of somewhat more focused recent ex-
perimental literature [18, 19, 22, 38, 46]. Some of this work
[18, 19] is largely motivated by the use of coverage in testing
research; other papers are more focused on the use of cover-
age by practitioners [22]. All of these papers can be under-
stood as attempting to generate evidence for or against some
version of the SCH, by choosing some set of programs and
suites and measuring statistical correlation. One thing recent
papers agree on is that previous work exploring variations of
the SCH is inadequate, either focusing on a very small set of
programs, using too few test suites, or some combination of
these problems (along with a few other methodological ob-
jections or at least proposed improvements). That this work,
using modern (automated) testing methods, larger bodies of
programs (in multiple languages), open source repositories,
and better statistical methods, is appearing is a good thing;
we need to know if the SCH (or something like it) is true,
and we really need to know if the SCH is false6!

Unfortunately, most of this work doesn’t really shed
much light on the SCH at all, though at first glance it would
appear to do so. Papers by Gligoric et al. and Gopinath et
al. [18, 19, 22], appearing in the last year suggest the SCH
is probably true; another paper [38] suggests the SCH is
not true, once the size of test suites is taken into account7.
The contradictory results are not the most important prob-
lem, however. The problem is that the most recent papers,
in order to scale to more programs and more suites, all rely
on correlating code coverage to something other than fault
detection.

3. Mutation is the Elephant in the Room
The recent papers most directly addressing the SCH [18, 19,
22, 38], and numerous other papers in the literature of code
coverage, replace fault detection in the SCH with the use of
mutation analysis. Mutation analysis [10, 34], also known as
mutation testing or syntactic coverage [4], involves simulat-
ing faults in a program by making a large number of small
syntactic changes to the program. Given a program and a test
suite, mutation analysis essentially reports how many of the
program’s mutants a test suite can distinguish from the orig-
inal program. The theoretical logic behind mutation testing
is that programmers write programs that are close to cor-

6 Full disclosure: the authors of this essay wrote some of these papers, so
we’re unlikely to be against this work.
7 The reader who proceeds from this paper to the coverage literature will
find that the story of the relationship between coverage and suite size is
long and complex, with no clear, consistent findings.

rect (this is known as the Competent Programmer Hypothe-
sis), and that detecting simple mutants often implies detect-
ing more complex compositions of mutants (known as the
Coupling Effect). The empirical evidence for both hypothe-
ses is interesting but not completely compelling. Most of the
justification for using mutation testing to explore the effec-
tiveness of code coverage, in practice, comes from assuming
a variation of the Strong Coverage Hypothesis where “cov-
erage” is replaced by mutation analysis: detecting more mu-
tants implies detecting more faults, usually. Unfortunately,
for the most part, the objections raised against older ex-
periments supporting the SCH apply (or apply even more
strongly) to experiments that explore the SCH for mutation
analysis, as noted in recent work [23, 40].

We are beginning to assemble interesting evidence about
coverage measures, but unfortunately the evidence thus far
assembled mostly relies on an also unproven replacement for
fault detection. Even if an SCH holds for mutation analysis,
there is reason to suspect that the correlation between code
coverage and mutation analysis might be stronger than the
correlation between coverage and fault detection. Mutants
are spread evenly throughout a program, with most meth-
ods producing at least one mutant per statement. This close
connection of statement coverage to mutation analysis may
be the cause of its better correlation with mutation kills than
some other measures [22]. To detect any mutant of a line of
code, you have to cover it; statement coverage is more able
to “count” missed lines than branch coverage. The variance
in lines under branches is extreme: in some cases 80% of
statements are under 20% of branches [48]. No such argu-
ment obviously holds for faults; how faults are distributed
throughout a program is a subtle and much discussed ques-
tion, without any clear, generalizable, answers yet appearing
to our knowledge. Even if we had a rigorous and sufficiently
large study showing the SCH holds between a code cover-
age measure and mutation analysis, and another study show-
ing that the SCH holds between mutation analysis and fault
detection, the relationship between code coverage and fault
detection might be much weaker, to the point that it is un-
safe to rely upon. Work is beginning to appear examining
the empirical effectiveness of mutation testing [40] and the
Competent Programmer Hypothesis [23], but it must be con-
sidered preliminary at best.

4. How Can Users of Code Coverage Sleep
Well at Night Again?

There is, first, a pressing need for serious large scale evalu-
ation of the connection between mutation analysis and fault
detection. For example, a recent FSE paper examining the
topic [40] is a good beginning to this topic, but is not suf-
ficient. The paper [40] only considers 5 programs and their
suites, and primarily shows that test suites detecting more
faults also detect more mutants. It unfortunately is much
harder to show that suites detecting more mutants also detect



more faults, which is required for the SCH. Performing large
scale experiments connecting mutation analysis with fault
detection is daunting, both in terms of computational needs
(running mutation analysis is expensive) and, perhaps more
importantly, in terms of the difficulty of determining which
tests detect which faults for many large programs. The stud-
ies of code coverage use mutation analysis in place of faults
because it allows them to avoid this problem (and gives re-
sults for programs with no or few known faults)! Scaling to
a study of the SCH for mutation over many real programs,
selected without bias, which is the ideal minimum for good
support, is going to require heroic efforts. Even examining
a much simpler question, the syntactic similarity of detected
and corrected faults to mutants, is quite difficult [23]. If the
correlation between mutation analysis and fault detection
turns out to be extremely strong, the experiments of recent
papers can arguably be used to support the SCH, and prac-
tice and research can continue happily to rely on coverage as
a suite evaluation method.

The correlation may prove weak or moderate, however
(or non-existent, though in practice this would probably sug-
gest the SCH does not hold for branch or statement cov-
erage, either). In that case, the difficult work of producing
serious experiments satisfying all three requirements (many
programs, many suites, and many real faults) for coverage
measures, not just mutants, needs to be done. It may be a
long time before truly satisfactory evidence appears. In the
meantime, it would be nice to have a better understanding of
the prospects of the SCH. Is there an alternative to waiting
for some heroic researchers (or hopefully, multiple indepen-
dent teams of heroic researchers) to satisfy our need for solid
examination of the SCH?

We propose that researchers (and interested practition-
ers) can begin to build a case for or against the SCH
without heroic effort simply by reporting more data from
their current testing efforts (see testcoverage.eecs.
oregonstate.edu). Whenever a research effort involves
a program with many real faults, researchers should report
code coverage for suites used in their work, even if these
results are not essential to the other goals of the research.
Industrial or open source testing efforts comfortable with
sharing some data may also wish to contribute, in hopes of
benefiting from the results. The effort required in most lan-
guages is minimal, and many papers in the testing literature
already produce multiple test suites and evaluate these suites
to support novel testing methods (any experiment examin-
ing a non-deterministic testing technique, such as random
testing or search-based techniques, will need to generate
many suites to achieve statistical confidence). Accumulat-
ing many such (coverage, fault detection) pairs can at least
give some idea as to whether the SCH is likely to be true.
Moreover, more specialized versions of the SCH in domains
where large-scale automated testing is frequently applied

(e.g. compilers [11] or systems utilities [45]) may be useful
to practitioners and researchers in these areas.

Even very indirect evidence can shed light on the SCH:
e.g., we know that for some programs, reducing the size of
test cases (not suites) but maintaining code coverage does
not seem to reduce fault detection [29]. This could be true
even if the SCH is false, but it supports a basic connection
between coverage and fault detection. Similarly, there is
experimental evidence for the use of coverage in test suite
prioritization and selection, with varying implications for the
SCH [8, 14, 51, 61].

5. A Sketch of a Data Set
In order to encourage other researchers to report these “side”
statistics about coverage and fault detection, even if the
researchers are not interested in producing research on the
SCH themselves, we show how easy it can be, given the
infrastructure required for performing testing experiments in
general.

Figure 1 shows the relationship between branch cover-
age and fault detection for randomly generated test suites for
Mozilla’s SpiderMonkey JavaScript engine, for release ver-
sions 1.6 and version 1.7. These 192 suites for each version
were produced using the jsfunfuzz random tester, which
has resulted in the discovery of more than 1,700 previously
unknown faults in JavaScript engines [53]. Each suite is pro-
duced by running jsfunfuzz for 30 minutes, removing the
possibility of suite size (if measured using computational ef-
fort, which seems the most reasonable way to measure it) as
a confounding factor. The number of faults detected is es-
timated (with relatively good accuracy, we believe) using a
binary search through the source code repository to find the
change that “fixes” each failing test [11, 29].

The graphs show that coverage and fault detection vary
widely and independently, but there does appear to be some
relationship between the two factors. Applying Pearson’s
statistical measure for correlation, we see there is a moder-
ate positive correlation (r = 0.31) between branch coverage
and fault detection for the 1.6 suites, and a slightly stronger
positive correlation (r = 0.36) for the 1.7 suites. Pearson’s
correlation measures not only that the two values are re-
lated, but that they have a linear relationship. For the 1.6
suites, statement coverage has better correlation (r = 0.34),
but for 1.7 statement coverage is not quite weakly corre-
lated (r = 0.18). Switching from Pearson’s correlation to
Kendall τb we see the correlations shown in Table 5, as com-
puted by the R statistical package. While Pearson’s corre-
lation measures linear relationships, τb simply measures the
degree to which suites with higher coverage are also likely
to have higher fault detection, which is probably most im-
portant. The table helps us understand the results a bit bet-
ter; while there is moderate correlation between coverage(s)
and fault detection, there is a much better correlation be-
tween fault detection and either the number of tests executed
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Figure 1. SpiderMonkey 1.6 and 1.7 Test Suites

Table 1. τ -b Correlation for Spidermonkey Test Suites
bcov = branch coverage; scov = statement coverage; fcov = function coverage; #t = number of tests; #fail = number of
failing tests; #faults = number of detected faults

SpiderMonkey Version 1.6
bcov scov fcov #t #fail #faults

bcov 1.0000000 0.7271282 0.4921943 0.2415809 0.1791301 0.2341907
scov 0.7271282 1.0000000 0.6390468 0.2809492 0.1773752 0.2668531
fcov 0.4921943 0.6390468 1.0000000 0.3439814 0.2421777 0.2801842
#t 0.2415809 0.2809492 0.3439814 1.0000000 0.5161900 0.4648379
#fail 0.1791301 0.1773752 0.2421777 0.5161900 1.0000000 0.4505282
#faults 0.2341907 0.2668531 0.2801842 0.4648379 0.4505282 1.0000000

SpiderMonkey Version 1.7
bcov scov fcov #t #fail #faults

bcov 1.0000000 0.6250377 0.32061158 0.34191047 0.2384296 0.27300589
scov 0.6250377 1.0000000 0.46445435 0.17936413 0.1542907 0.15160428
fcov 0.3206116 0.4644543 1.00000000 0.06873412 0.0888408 0.06043132
#t 0.3419105 0.1793641 0.06873412 1.00000000 0.5317346 0.54171101
#fail 0.2384296 0.1542907 0.08884080 0.53173458 1.0000000 0.58647031
#faults 0.2730059 0.1516043 0.06043132 0.54171101 0.5864703 1.00000000



in 30 minutes or the number of tests that fail. Perhaps our
conclusion that “size” cannot be a confounding factor here
is mistaken? In fact, it turns out the correlation is valid but
somewhat irrelevant; because jsfunfuzz terminates a test ex-
ecution as soon as a failure occurs, suites with more failures
will execute more tests (the strongest single correlation in
either data set, other than that between statement and branch
coverage). That the number of failed tests is a better pre-
dictor than coverage should surprise no one. Counting failed
tests is not a good replacement for measuring code coverage,
however: recall that coverage is most useful when a suite is
producing no failures, but it is not known whether this is due
to the quality of the code or the lack of quality in the suite. It
seems reasonable to say that the SpiderMonkey data forms a
small piece of evidence in favor of the SCH.

At this point a procedure for moving towards solid experi-
mental support for coverage as valid seems to appear: assem-
ble enough significant programs with long revision histories,
plenty of real faults, and effective automated testing proce-
dures that can produce large numbers of equal-compute-time
suites. If the results consistently show respectable correla-
tion between coverage and fault detection, across a variety
of types of program, testing methods, and testing budgets,
it is safe to assume that coverage is an effective predictor
of fault detection, and put the specter to rest. Certain prob-
lems will remain, of course. The evidence will support cov-
erage as effective for evaluating generated test suites, but
human-produced suites may systematically differ from auto-
mated testing. The correlations will probably not be as high
as shown in experiments with mutants, since real faults are
less systematically distributed. Real fault data can give us
insights into detected and fixed faults, but leaves open the
possibility that some important faults are undetected by most
current testing practices. Nonetheless, a series of similar ex-
periments would considerably ease the consciences of test-
ing researchers.

5.1 No Simple Answers
Unfortunately, the JavaScript story above is missing a crit-
ical detail. Half of the 1.6 test suites and half of the 1.7
test suites were generated with an unmodified version of
jsfunfuzz. The other half were generated using the swarm
testing method [28], which has the same overall random
test domain, but modifies the probability distribution in each
test in a way that typically improves both coverage and
fault detection. Experimental validation and improvement of
swarm testing was the reason we produced this data in the
first place! When we split the 1.6 and 1.7 suites into sub-
populations of swarm suites and default (the original ver-
sion of jsfunfuzz) suites, the relationship between cover-
age and fault detection becomes much less apparent (Fig-
ures 2 and 3). Pearson’s measure now shows essentially no
correlation between branch or statement coverage for either
swarm or default suites, for SpiderMonkey 1.6 (-0.03 < r <
0.05). The same is true of swarm tests for SpiderMonkey 1.7

(where both branch and statement have small negative r).
However, default suites for SpiderMonkey 1.7 still show a
modest positive correlation between coverage (either branch
or statement, with r = 0.29) and fault detection! Table 5.1
shows Kendall τ − b correlations for the test suites when the
population is split by test generation method (values are now
rounded in order to fit in the table). If we add a binary value
for whether the suite is a swarm or default suite to the orig-
inal all-suites data, that turns out to be the variable with the
highest correlation to the suite’s coverage measures and fault
detection power.

This shows a potential problem in any experiments in-
tended to show that coverage (of any kind) has a useful re-
lationship with coverage. Namely, the relationship may be
one where some common factor (here, whether the test was
produced using swarm techniques) produces both better cov-
erages and better fault detection. The correlation may dis-
appear in populations of tests that lack such an underlying
cause! Is this a problem?

A confounding factor such as suite size makes coverage
fairly useless. It is easier to measure suite size than coverage.
What about a confounding factor like “these tests were pro-
duced by a better testing process?” This is definitely a neg-
ative data point for the SCH, but our interest is in practical
use of coverage, not in the SCH itself. Testing is inherently a
field interested in practice, even in its research aspects. Even
if coverage is only a sign of some underlying factor, if it
is a consistent sign of such factors when they exist, cov-
erage is useful for testing and testing research. The reason
coverage is not very helpful for three of the four data sets
produced when suites are split by generation method is that
the differences in these suites are entirely attributable to the
accidents of a pseudo-random number generator. That fault
detection and coverage are essentially randomly distributed
in that case isn’t really surprising, and it is not clear why
we would want to select the “best” of these basically inter-
changeable test suites. Choosing between swarm and default
testing, on the other hand, is a highly desirable goal, and here
measuring coverage seems to provide reasonable prediction,
with little computational effort, of the average fault detec-
tion capability of swarm suites vs. default suites. Similarly,
if two manual efforts to produce effective test suites do not
differ in some interesting way, other than the accidents of
which tests are selected — if the testers are equally skilled,
resource-enabled, and share the same testing goals, we prob-
ably don’t really care if we can cheaply distinguish between
the suites. The only source of difference is “luck.” Expect-
ing coverage to correlate in such homogeneous populations
seems like too strict a requirement. We therefore propose the
Weak Coverage Hypothesis:

Definition 2. The Weak Coverage Hypothesis (WCH):
For the population of realistic software systems, test suites
produced by different human efforts or different automated
testing methods, and realistic faults, there is at least a mod-



 0
 2
 4
 6
 8

 10
 12
 14
 16

 13750  13800  13850  13900  13950  14000  14050

F
a
u
lt
s
 d

e
te

c
te

d

Branches covered

SpiderMonkey 1.6 Swarm Test Suites

 0
 2
 4
 6
 8

 10
 12
 14
 16

 13750  13800  13850  13900  13950  14000  14050

F
a
u
lt
s
 d

e
te

c
te

d

Branches covered

SpiderMonkey 1.7 Swarm Test Suites

Figure 2. SpiderMonkey 1.6 and 1.7 Swarm Test Suites
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Table 2. τ -b Correlation for Spidermonkey Test Suites, Split by Generation Method
bcov = branch coverage; scov = statement coverage; fcov = function coverage; #t = number of tests; #fail = number of
failing tests; #faults = number of detected faults

SpiderMonkey Version 1.6
Swarm Default

bcov scov fcov #t #fail #faults bcov scov fcov #t #fail #faults
bcov 1.00 0.72 0.40 -0.08 -0.11 0.07 1.00 0.69 0.43 0.18 0.08 0.05
scov 0.72 1.00 0.55 -0.086 -0.21 0.03 0.69 1.00 0.59 0.12 0.05 0.02
fcov 0.40 0.55 1.00 -0.02 -0.09 -0.06 0.43 0.59 1.00 0.10 0.01 -0.03
#t -0.08 - 0.09 -0.01 1.00 0.16 -0.09 0.18 0.12 0.10 1.00 0.27 0.04
#fail -0.11 -0.21 -0.09 0.16 1.00 0.09 0.08 0.05 0.01 0.27 1.00 0.11
#faults 0.07 0.03 -0.06 -0.09 0.09 1.00 0.05 0.02 -0.03 0.04 0.11 1.00

SpiderMonkey Version 1.7
Swarm Default

bcov scov fcov #t #fail #faults bcov scov fcov #t #fail #faults
bcov 1.00 0.60 0.28 0.16 -0.16 -0.07 1.00 0.68 0.34 0.19 0.15 0.22
scov 0.60 1.00 0.47 0.11 -0.01 -0.07 0.68 1.00 0.44 0.08 0.16 0.22
fcov 0.28 0.47 1.00 0.02 0.05 -0.00 0.34 0.44 1.00 -0.03 0.06 0.04
#t 0.16 0.11 0.02 1.00 0.11 0.07 0.19 0.08 -0.03 1.00 0.06 0.21
#fail -0.16 -0.01 0.05 0.11 1.00 0.22 0.15 0.16 0.06 0.06 1.00 0.22
#faults -0.07 -0.07 -0.00 0.07 0.22 1.00 0.22 0.22 0.04 0.21 0.22 1.00

erate statistical correlation between the level of coverage a
suite achieves and its level of fault detection. This corre-
lation is quite possibly the result of a non-trivial, complex
cause that produces both coverage and fault detection, but
the existence of such causes is assumed by the use of differ-
ent methods to produce test suites. Coverage still serves as
a useful distinguishing measure for suites, though we should
not expect it to always be a significant predictor of fault de-
tection for suites produced by the same underlying method.

The WCH does not propose that in any population of
suites coverage will correlate well with fault detection. It
says that if suites included have some difference in their
method that is not simple randomness, differences in cov-
erage will predict differences in fault detection. Many pa-
pers in the literature essentially don’t investigate the WCH,
because they produce suites by a method where differences
are almost exclusively due to randomness (or another simple
factor such as size). For example, subsetting a large test suite
randomly to produce many smaller test suites [38] is some-
what helpful for investigating the SCH, but is outside the
scope of the WCH. It is unlikely that in practice either practi-
tioners or researchers will want to distinguish between suites
as homogeneous as random subsets of a single suite. There
is no reason to expect much difference in such suites (if they
are the same size), and they are not a natural byproduct of
debates about testing methods. Studying the WCH makes
the experimental data from testing research even more use-
ful, because the utility of coverage in comparing different
testing methods is exactly what we want to understand. Be-
cause in the real world, two testers seldom have exactly the

same level of skill or available resources, it is probably also
relevant for comparing human-produced test suites.

6. The Plural of Anecdote is Not Confidence
In the absence of sufficient evidence for the WCH, one
presumably safe use for coverage is to examine missing
coverage to identify “holes” in a testing effort, as suggested
in many books covering testing practice [41, 43] and in some
of the experience report literature [26]. However, this use
of coverage also relies on an assumption: that real missed
bugs could often have been identified “if only” test suites
had covered certain code, or detected more mutants. How
often is this actually true? We don’t really know that, either.
Even answering the question for a given critical bug can
be difficult, without knowledge of the entire history of the
system’s test effort.

Sometimes it is clear that coverage gaps can serve as signs
of potentially missed bugs. For example, the widely publi-
cized SSL vulnerability [42] for Apple’s iOS (code shown
in Figure 4) is easily identified as soon as test coverage
is examined. The bug is the duplication of the goto fail
statement, where the repetition is outside the scope of the
if that should guard it. The result is that the value err
can be returned from the function as 0, despite no actual
sslRawVerify having taken place to check that the private
key included matches the public key for the certificate. No-
tice that the assignment to err calling sslRawVerify can-
not possibly be executed in any test. This fact should be suf-
ficient to raise alarms in anyone capable of testing this code
effectively. On the other hand, the bug also only escapes de-



if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx,
ctx->peerPubKey,
dataToSign, /* plaintext */
dataToSignLen, /* plaintext length */
signature,
signatureLen);

if(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "

"returned %d\n", (int)err);
goto fail;
}

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Figure 4. Source code for Apple “goto fail” bug

tection from a test suite that never actually sends an invalid
handshake of the right kind — if a test suite potentially trig-
gers the bug, it probably also checks against the bug. This is
something that would be desirable to test in the first place,
but is also difficult to test, which may mean that the missed
coverage would simply trigger a reaction of “Oh, yes, we
don’t check that case, but that’s because it’s a pain to test.
We have tests for sslRawVerify itself, of course, which is
what matters.” It’s not clear that coverage will actually avoid
the bug here, unless there is a “always obtain 100% state-
ment coverage” requirement, which is almost never used in
actual practice. Consistent indentation and code review cer-
tainly seems like an equally plausible procedure for avoiding
“goto fail.” Turning on (and paying attention to) compiler
warnings about dead code might also do the trick.

Figure 5 shows an even more infamous bug. As we write,
the full consequences of the “Heartbleed” bug [2, 24] are
still not known, but it is likely one of the worst security
vulnerabilities of all time. As the long and glorious history
of buffer access problems in C code might suggest, it turns
out that this horrible bug, which may have leaked private key
information and leaves no trace of an attack, does not involve
subtle flaws in cryptographic algorithms or clever timing
attacks. Rather, the problem is a basic C coding issue, where
the size of a read in a C memcpy is taken, with complete
trust, from a value supplied over the network. The memcpy
then happily copies whatever bytes happen to be lying next
to the data that is meant to be returned to a buffer and returns

this buffer to the adversary on the other side of the network.
Data in this area may include passwords, session keys, or
even long-term server private keys. For the “goto fail” bug, it
was clear that coverage at least theoretically (if not, perhaps,
in practice) could help with detection. Could coverage help
with Heartbleed?

First, there is certainly no smoking gun as with the Apple
bug. The disastrous memcpy and all code surrounding it
(including that guarded by conditionals) can be executed
as much as desired without exposing the fault. There is
likely to be no difference in branch or statement coverage
between test suites that can expose Heartbleed and test suites
that cannot. This isn’t shocking; nobody expects coverage
to help detect every fault. We can think of two distinct
problems with test suites that (in theory) coverage could
expose. The first possibility is that enough code behavior
has not been explored — statement and branch coverage
are clearly potentially useful for this purpose. Second, a
test suite may cause bad behavior in a program, but fail to
detect that anything has gone wrong. Weak oracles are a
long-standing problem for both conventional and automated
testing. One of the strengths of mutation analysis is that,
unlike branch or statement coverage, mutation analysis can
detect oracle weakness.

Unfortunately, mutation analysis doesn’t appear to help
with Heartbleed. In order to detect Heartbleed, a test suite
must be able to detect that more bytes have been read from
pl than are actually available in it. In theory, tools like Val-



2404 int
2405 tls1 process heartbeat(SSL *s)
2406 {
2407 unsigned char *p = &s->s3->rrec.data[0], *pl;
2408 unsigned short hbtype;
2409 unsigned int payload;
2410 unsigned int padding = 16; /* Use minimum padding */
2411
2412 /* Read type and payload length first */
2413 hbtype = *p++;
2414 n2s(p, payload);
2415 pl = p;
2416
2417 if (s->msg callback)
2418 s->msg callback(0, s->version, TLS1 RT HEARTBEAT,
2419 &s->s3->rrec.data[0], s->s3->rrec.length,
2420 s, s->msg callback arg);
2421
2422 if (hbtype == TLS1 HB REQUEST)
2423 {
2424 unsigned char *buffer, *bp;
2425 int r;
2426
2427 /* Allocate memory for the response, size is 1 bytes
2428 * message type, plus 2 bytes payload length, plus
2429 * payload, plus padding
2430 */
2431 buffer = OPENSSL malloc(1 + 2 + payload + padding);
2432 bp = buffer;
2433
2434 /* Enter response type, length and copy payload */
2435 *bp++ = TLS1 HB RESPONSE;
2436 s2n(payload, bp);
2437 memcpy(bp, pl, payload);
2438
2439 r = ssl3 write bytes(s, TLS1 RT HEARTBEAT, buffer, 3 + payload + padding);

Figure 5. Source code for CVE-2014-0160 (Heartbleed)

grind [47] can detect such an invalid read; unfortunately
OpenSSL uses a custom allocator that makes the bad read
appear innocent. Mutation analysis could (in the unlikely
event someone actually manually examines all the mutants
that escape detection, which as far as we know is never actu-
ally done) expose such weakness, by producing a version of
the code that (1) is not equivalent to the original code but (2)
can only be seen to differ if the oracle is strong enough to de-
tect a flaw that is detected in the same way as the actual bug.
Unfortunately, examining the output of the mutation tool for
C code most frequently used in recent work [5], it seems that
no mutant of the code actually corresponds to detecting the
invalid read. It is possible that some mutation operator could
force Heartbleed detection, but we do not believe any of the

most used conventional operators can do so, and it seems
likely that even if a set of mutants large enough to contain
one Heartbleed-detecting mutant was generated, no realis-
tic test suite would be likely to kill enough of these mutants
to make hand inspection of the un-killed mutants (and thus
Heartbleed discovery) practical8.

7. Advice and Discomfort
To summarize: because it is very difficult for researchers or
practitioners to count how many faults a test suite exposes
(and for practical applications, the ability to do so would
tend to imply there is no need for testing in the first place),

8 Use of higher-order mutants [39] selected precisely because they are
difficult to kill, could be useful here, but bring their own challenges.



we want some easily computed measurement of the quality
of a test suite. This measurement should work even for test
suites where all tests pass, and should be useful for predict-
ing the suite’s ability to actually detect faults. Code coverage
is the most commonly used such metric, in part because the
idea that at least all statements/branches should be covered
if testing is to be effective has intuitive appeal. The use of
code coverage as a requirement/goalpost for practical testing
efforts or for evaluation of suites in testing research exper-
iments is dangerous unless code coverage really does cor-
relate (positively) with fault detection. This is currently an
open question, and even recent, more sophisticated, studies
of the question do not really show that such a correlation
is true. Producing better evidence that coverage really does
what we want it to is a difficult problem, in part for the same
reasons that we want to use coverage in place of counting
faults. Even mutation analysis, which is often assumed to be
a good “gold standard” for suite quality measurements, is
not really known to be suitable for the purpose. This leads to
a state of general discontent on the part of researchers want-
ing to easily carry out testing experiments and knowledge-
able practitioners wanting a practical guide for identifying
good test suites. Even the traditional “cautious” uses of cov-
erage (never as a sign of a good suite, but only as a pointer to
weaknesses in a suite) lacks truly solid supporting evidence.
What is to be done, until more data is available?

7.1 Advice for Researchers
Researchers should probably not evaluate testing techniques
only on the basis of coverage, or even only on the basis
of mutation analysis. It is hard to quantify the risk that
such evaluations are misleading, based on current evidence.
The major exception is that using coverage alone should
be fine in cases where other work has shown a correla-
tion between coverage and fault detection for the subject
program in question. For some benchmarks, this may well
hold, though in such cases it isn’t clear why the faults from
the previous evaluation could not be used. On the other
hand, since the evidence that coverage is not usefully cor-
related with fault detection, when size is held constant, is
also weak, adding information on coverage comparisons be-
tween suites/techniques as an additional support for a claim
of effectiveness could be useful. If the hypotheses about cov-
erage stated above turn out to be true, the papers will benefit
from the additional evidence. Certainly if a proposed tech-
nique is worse than its alternatives in terms of coverage, this
is important to state clearly.

Second, when running testing experiments that will pro-
duce test suites with known or estimated fault detection
counts, please make use of any available tools to also pro-
duce code coverage measures for these suites. While such
data may not be useful for the purposes of the research
in question (since we all agree that fault detection is the
gold standard for evaluation), it can be useful in evaluat-
ing hypotheses about coverage. The interested reader should

go to testcoverage.eecs.oregonstate.edu. This site,
which we maintain, will provide information on how to sub-
mit information on coverage and fault detection, with suffi-
cient metadata to perform some basic analysis on the cover-
age hypotheses and analysis of different kinds of coverage.
In general, all that is required is information on

1. the software under test (SUT), including source version,

2. the test-generation method used to produce the suite (in-
cluding all important parameters for tools),

3. at least one measure of coverage (and an identification of
the kind of coverage measured),

4. the fault detection capacity of the suite (# bugs),

5. the “size” of the suite as measured by the computation
time required to generate and execute that suite.

In practice, there are some further subtle issues, includ-
ing the particular tool used to measure coverage (a source-
code instrumentation based coverage tool’s “statement cov-
erage” will not match a byte-code or binary based tool’s
“statement coverage”), a distinction between generation and
execution time for suites (since the suite itself may exe-
cute quickly even if massive effort is required to produce
the suite), alternative measures of suite size, and, ideally,
pointers to source code for SUTs and test generation tools
or suites, for reproducibility. Obviously, data with multiple
coverage/effectiveness points for the same SUT across mul-
tiple generation methods is most useful for WCH purposes,
but some insight can be derived even from single suites [22].

7.2 Advice for Practitioners
In some cases where coverage is currently used, there is lit-
tle real substitute for it; test suite size alone is not a very
helpful measure of testing effort, since it is even more eas-
ily abused or misunderstood than coverage. Other testing ef-
forts already have ways of determining when to stop that
don’t rely on coverage (ranging from “we’re out of time or
money” to “we see clearly diminishing returns in terms of
bugs found per dollar spent testing, and predict few resid-
ual defects based on past projects”). When coverage levels
are required by company or government policy, conscien-
tious testers should strive to produce good suites that, addi-
tionally, achieve the required level of coverage rather than
aiming very directly at coverage itself [56]. “Testing to the
test” by writing a suite that gets “enough” coverage and ex-
pecting this to guarantee good fault detection is very likely
a bad idea — even in the best-case scenario where cover-
age is well correlated with fault detection. Stay tuned to the
research community for news on whether coverage can be
used more aggressively, with confidence, in the future.
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[58] W. Visser, C. Păsăreanu, and R. Pelanek. Test input generation
for Java containers using state matching. In International
Symposium on Software Testing and Analysis, pages 37–48,
2006.

[59] Y. Wei, B. Meyer, and M. Oriol. Is branch coverage a good
measure of testing effectiveness? In B. Meyer and M. Nordio,
editors, Empirical Software Engineering and Verification,
volume 7007, pages 194–212. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-25230-3.

[60] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect
of test set size and block coverage on the fault detection
effectiveness. In International Symposium on Software
Reliability, pages 230–238, 1994.

[61] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test. Verif.
Reliab., 22(2):67–120, Mar. 2012.

[62] C. Zhang, A. Groce, and A. Alipour. Using test case
reduction and prioritization to improve symbolic execution.
In International Symposium on Software Testing and Analysis,
pages 60–70, 2014.


