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Abstract. The difficulty of writing test harnesses is a major obstacle
to the adoption of automated testing and model checking. Languages
designed for harness definition are usually tied to a particular tool and
unfamiliar to programmers; moreover, such languages can limit expres-
siveness. Writing a harness directly in the language of the software under
test (SUT) makes it hard to change testing algorithms, offers no support
for the common testing idioms, and tends to produce repetitive, hard-
to-read code. This makes harness generation a natural fit for the use of
an unusual kind of domain-specific language (DSL). This paper defines a
template scripting testing language, TSTL, and shows how it can be used
to produce succinct, readable definitions of state spaces. The concepts
underlying TSTL are demonstrated in Python but are not tied to it.

1 Introduction

Building a test harness is an often irksome task many users of formal methods or
automated testing face from time to time [18,12]. The difficulty of harness gen-
eration is one reason for the limited adoption of sophisticated testing and model
checking by the typical developer who writes unit tests. This is unfortunate, as
even simple random testing can often uncover subtle faults.

The “natural” way to write a test harness is as code in the language of the
Software Under Test (SUT). This is obviously how most unit tests are written,
as witnessed by the proliferation of tools like JUnit [3] and its imitators (e.g.,
PyUnit, HUnit, etc.). It is also how many industrial-strength random testing
systems are written [17,15]. A KLEE “test harness” [6] for symbolic execution is
written in C, with a few additional constructs to indicate which values are sym-
bolic. This approach is common in model checking as well: e.g., Java Pathfinder
[2,28] can easily be seen as offering a way to define a state space using Java
itself as the modeling language, and CBMC [1,24] performs a similar function
in C, using SAT/SMT-based bounded model checking instead of explicit-state
execution. JPF in particular has shown how writing a harness in the SUT’s own
language can make it easy to perform “apples to apples” comparisons of various
testing/model checking strategies [29].

Unfortunately, writing test harnesses this way is a highly repetitive and error-
prone programming task, with many conceptual “code clones” (e.g. Figure 1). A
user faces difficult choices in constructing such a harness. For example, the way
guards and choices are interleaved means that the state-space will be pointlessly
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op = choice(operations);
val1 = choice(values);
val2 = choice(values);
switch (op) {
case op1: if (guard1)

call1(val1);
break;

case op2: if (guard2)
call2(val1,val2);

break;
case op3: if (guard3)

call3(val1,val3);
break;

Fig. 1. A test harness in the SUT language

heap() : returns a new heap
heap.insert(key,val) : inserts a key with value, returning ref
heap.union(heap) : merges two heaps
heap.extractMin() : extracts the minimum
ref.delete() : given a reference to a node, deletes it
ref.decreaseKey(key) : decreases the key of ref’s node

Fig. 2. A binomial heap to test

expanded to include many action and value choices that don’t produce any use-
ful behavior. This harness also always assigns val2 even though call1 only uses
val1, to avoid having to repeat the choice code for calls 2 and 3. Moreover, this
harness is possibly sub-optimal for a method such as random testing, where the
lack of any memory for previously chosen values can make it hard to exercise
code behaviors that rely on providing the same arguments to multiple method
calls (e.g., insert and delete for container classes). The construction of a har-
ness becomes even more complex in realistic cases, where the tested behaviors
involve building up complex types as inputs to method calls, rather than simple
integer choices. For example, consider the problem of testing or model checking
a binomial heap that supports several operations, defined in Figure 2. Such a
harness must manage the creation and storage of values of multiple types, includ-
ing heaps and references. Moreover, because building up heaps and references
is complicated, they cannot simply be produced on each iteration, but must be
remembered. As the interactions of multiple heaps (via union) and references
into a heap are the source of all interesting behavior, the harness needs to de-
cide how many heaps and references to store. The code quickly becomes hard
to read, hard to maintain, and hard to debug. In some cases [15] the code for
a sophisticated test harness approaches the SUT in complexity and even size!
The code’s structure also tends to lock in many choices (such as how to handle
storing heaps and references) that would ideally be configurable.

The definition of a harness also tends to be intimately tied to a single tool,
with the only testing strategies available being those provided by that tool.
Writing novel testing strategies in even such an extensible platform as Java
Pathfinder is hardly a task for the non-expert. The harness in Figure 1 may
support random testing and some form of model checking, if it is written in Java
and can use JPF or a library for adaptation-based testing [14]. Such a harness
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cannot support model checking or any sophisticated strategy without being re-
written if it is in a language like Python without verification tool support.

What the user really wants is to simply provide the information in Figure
2, some configuration details (e.g., how many refs to keep around), and some
information on which testing method to use (e.g., model checking, random test-
ing, machine-learning based approaches). Some automated testing tools for Java
[8,27] take a variation on this approach, automatically extracting the signatures
of methods from source code and testing them. Unfortunately, completely auto-
matic extraction often fails to handle the subtle details of harness construction,
such as defining guards for some operations, or temporal constraints between
API calls that are not detectable by simple exception behavior. The user wants
declarative harnesses, but often needs to program the details of a harness.

1.1 Domain Specific Languages for Testing

The properties of the problem at hand suggest the use of a domain-specific
language (DSL) [13]. DSLs [7] provide abstractions and notations to support a
particular programming domain. The use of DSLs is a formalization of the long-
standing approach of using “little languages” in computer science, as memorably
advocated by Jon Bentley in one of his famous Programming Pearls columns [5]
and exemplified in such system designs as UNIX. DSLs typically come in two
forms: external and internal. An external DSL is a stand-alone language, with
its own syntax. An internal DSL, also known as a domain-specific embedded
language (DSEL), is hosted in a full-featured programming language, restricting
it to the syntax (and semantics) of that language. Many attempts to define
harnesses can be seen as internal DSLs [10,14,28,24,6]. Neither of these choices is
quite right for harness definition. Simply adding operations for nondeterministic
choice, as is done in most cases, still leaves most of the tedious work of harness
definition to the user, and makes changing testing approaches difficult at best.
With an external DSL, the user must learn a new language, and the easier it is
to learn, the less likely it is to support the full range of features needed.

A novel approach is taken in recent versions of the SPIN model checker [23].
Version 4.0 of SPIN [21] made use of SPIN’s nature as a tool that outputs a C
program to allow users to include calls to the C language in their PROMELA
models. The ability to directly call C code makes it much easier to model check
large, complex C programs [15,22]. C serves as a “DSEL” for SPIN, except that,
rather than having a domain-specific language inside a general-purpose one,
here the domain-specific language hosts a general-purpose language. A similar
embedding is used in where clauses of the LogScope language for testing Mars
Science Laboratory software [16]. We adopt this approach: embed a general-
purpose language (for expressiveness) in a DSL (for concision and ease-of-use).

1.2 Template Scripting

In previous discussions, a harness has been thought of as imperative code that
tests a system, even when the underlying use is more declarative, as in CBMC,
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@import bh
pool: %INT% 4
pool: %HEAP% 3
pool: %REF% 4
%INT%:=%[1..20]%
%HEAP%:=bh.heap()
%REF%:=%HEAP%.insert(%INT%,%INT%)
%HEAP%.insert(%INT%,%INT%)
%HEAP%.union(%HEAP%)
%HEAP%.extractMin()
%REF%.delete()
%REF%.decreaseKey(%INT%)

Fig. 3. A simple harness definition for a binomial heap

or as a purely declarative model stating the available test operations, in which
case the harness is often hidden from the user and generated by a tool. In this
paper, we propose thinking of a harness as a declaration of the possible actions
the SUT can take, but where these actions are defined in the language of the SUT
itself, with the full power of the programming language to define guards, perform
pre-processing, and implement oracles in an imperative fashion. Our particular
approach is based on what we call template scripting.

The template aspect is based on the fact that our method proceeds by pro-
cessing a harness definition file to output code in the SUT’s language for a test
harness, much like SPIN. The harness description file consists of fragments of
code in the SUT language that are expanded, via code-generation, into exe-
cutable source code. The tool that outputs code basically defines a template for
test harnesses in a programming language, and the harness definition tells the
tool how to instantiate that template. Rather than generating a testing tool,
our method outputs a class defining a search space. The scripting aspect simply
means that our language is meant to be very lightweight, and assumes a host
language without a rigorous type system (e.g. Python) or with effective type-
inference (e.g. Scala), making minimal demands on the user. The design of the
language also relies on the very-high-level nature of code in scripting languages,
making the harness concise but expressive, and making “one-liners” of action
definition possible.

Figure 3 shows a complete harness definition for the binomial heap class
defined in Figure 2. The example is easily understood by splitting it into three
sections. First, the single line proceeded by an “@” is raw Python, inserted into
the output harness with no modification in most cases. This section can be used
not only to import the SUT’s code, but to define functions to be used in the
body of the harness, as we will see below. Second, the lines beginning with pool:

define the “pool” [27,10,4] of values that will be used during testing. In model
checking terms, these store the state of the SUT. There is no type information
here, because the template approach simply assumes the type system of the host
language, but in an informal sense each pool value typically represents its own
type in the template language, as shown by its usage below (a pool value will
correspond to inputs of a particular type to method calls, in the most trivial
instance, but can also be used to encode more fine-grained type distinctions not
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import bh as b
class t(object):

def act0(self):
self.p INT[0]=1
self.p INT used[0]=False

def guard0(self):
return (self.p INT used[0])

...
def act87(self):

self.p REF[0]=self.p HEAP[0].insert(self.p INT[1],self.p INT[0])
self.p INT used[1]=True
self.p INT used[0]=True
self.p REF used[0]=False
self.p HEAP used[0]=True

def guard87(self):
return (self.p INT[1] != None) and (self.p INT[0] != None) and

(self.p REF used[0]) and (self.p HEAP[0] != None)
...

self.actions.append((r"self.p INT[0]=1",self.guard0,self.act0))

Fig. 4. Fragments of Python code for binomial heap harness

present in the host language). The numbers indicate how many values of a given
pool “type” are needed. Here, at least two INTs are needed, unless both values
provided to insert should always be the same. Similarly, there need to be at
least two HEAPs if union is to be tested effectively. Because the performance of
random testing and some learning algorithms depends heavily on pool sizes, we
want to make it easy to experiment with them.

Finally, the remainder of the harness definition simply gives possible actions,
one on each line. Each line is expanded into Python code for 1) the actual test
action represented and 2) a guard that determines if that action is enabled, as
shown in Figure 4. The functions for actions and guards are then added to a list
that stores all possible SUT actions, with no remaining nondeterminism unless
the SUT provides it. Nondeterminism is controlled by choosing which actions
(whose guards are currently satisfied) to execute. Even in the absence of user-
defined guards, some guards are automatically generated. First, no uses of a
pool value are allowed until that value has been assigned (the generated harness
initializes pool values as None, a special Python value). Second, no pool value
can be assigned to unless it is either uninitialized or has been used at least once.
This is critical to avoid the potential for some test strategies (such as random
testing) to repeatedly perform useless assignments to values used in the actual
testing (e.g., INT[1] = 1 followed immediately by INT[1] = 2. Figure 5 shows
an example of a test that can be generated by this harness. Note that assigning
anything to INT[3], REF[0] or REF[1] is not valid after the final action of the
test, as these pool values have been assigned but not used.

2 The Template Scripting Testing Language (TSTL)

Figure 6 shows a BNF-style specification of the Template Scripting Testing Lan-
guage (TSTL). Processing a harness definition involves iterating through the
lines in the file and performing a set of transformations that result in an output
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self.p INT[1]=9
self.p INT[2]=1
self.p INT[0]=18
self.p HEAP[0]=b.heap()
self.p REF[2]=self.p HEAP[0].insert(self.p INT[0],self.p INT[2])
self.p INT[3]=17
self.p INT[0]=18
self.p REF[0]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p REF[0].decreaseKey(self.p INT[1])
self.p INT[1]=19
self.p REF[1]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p REF[0]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p HEAP[1]=b.heap()
self.p HEAP[1].union(self.p HEAP[0])

Fig. 5. A valid action sequence (test) for the binomial heap harness

<template> ::= <template-line> EOL <template> | EOF
<template-line> ::= <raw> | <pool> | <property> | <init> |

<feature> | <reference> | <compare> | <action>
<raw> ::= @ <raw-code>
<pool> ::= pool: %<ID>% <INT> [REF]
<property> ::= property: <simple-code>
<init> ::= init: <simple-code>
<feature> ::= feature: <regexp>
<reference> ::= reference: <regexp> ==> <text>
<compare> ::= compare: <regexp>
<action> ::= <text> | <lhs> := <rhs> | guardedFN(<simple-code>)
<raw-code> ::= <text> | def guardedFN(<text>) | %COMMIT%
<lhs> ::= <simple-code>
<rhs> ::= <simple-code>
<simple-code> ::= <text> | <simple-code> <ID-use> <simple-code> |

<simple-code> <range> <simple-code>
<ID-use> ::= %<ID>% | ~%<ID>%
<range> ::= %[INT..INT]%

Fig. 6. The Template Scripting Testing Language in Pseudo-BNF

file that defines a class in the target language (Python in our current implemen-
tation). This class itself performs no testing; it instead defines an interface to a
definition of the available actions of the SUT that any testing algorithm can use,
shown in Table 1.1 The methods in this interface are not defined by the user, but
automatically generated by the TSTL “compilation.” The basic transformation
algorithm is relatively simple (our implementation for Python is less than 1,000
lines of code):

1. Output the <raw> Python code, transforming guarded functions into ex-
panded Python code as described in Section 2.2.

2. Collect the set of pool values, properties, initialization code, features, refer-
ences, and comparisons.

3. Replace each pool ID in actions and properties with the pool ID plus a
<range> from 0 to the pool size - 1.

1 This is not the entire set of methods TSTL compilation automatically generates:
there are also methods for swarm testing [20], generalized delta-debugging [30,11],
code coverage, and other common testing needs.
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Method Type Purpose

restart ()→() resets pools, executes <init> code
actions ()→[(str,()→bool,()→())] returns a list of all possible actions
enabled ()→[(str,()→bool,()→())] returns actions with True guard
check ()→bool executes <property> assertions
state ()→STATE returns deep copy of pool values
replay [(str,()→bool,()→())] → bool replays a test, returns whether it failed
backtrack STATE→() sets pools to STATE

Table 1. SUT Class Methods

4. Recursively expand each action and property range, creating copies with
each value in the range instantiated. At this point all actions should be
deterministic2

5. Collect assignments and uses from actions; assignments are IDs on the lhs of
a :=; uses are IDs appearing in an action, such that ID is not an assignment
or marked with a ˜.

6. Generate guards for each action: first, ensure no values are used that have
no value; second, ensure no assignments to values that have a value that
has not been used are made; third, add any guarded function calls as extra
guards (see Section 2.2).

7. For any actions involving pools marked as ref, copy with reference.

8. Apply all transformations indicated by <reference> (text matching regexp

is replaced by the given text), then add an assertion of equal return values
for any transformed code that matches a <compare> regexp.

9. Perform any language-specific transformations.

Due to lack of space here, we cannot elaborate on every aspect of TSTL.
Instead, we present some example uses to highlight salient features.

@def guardedAppend(l,item,limit):
@ if len(l) >= limit:
@ return False
@ %COMMIT%
@ l.append(item)
property: (len(%LIST%) < 10) or (6 not in %LIST%)
property: %VAL% != -1
pool: %LIST% 1
pool: %VAL% 1
%LIST% := []
guardedAppend(~%LIST%,%VAL%,10)
%VAL% := %[1..10]%
print %LIST%

Fig. 7. A toy bounded list generation example (%COMMIT% is expanded into a check
for when the function is used as a guard)

2 assuming the SUT itself is determinstic
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@import avl
@import bintree
pool: %INT% 4
pool: %AVL% 1 REF
%INT%:=%[1..20]%
%AVL%:=AvlTree()
%AVL%.insert(%INT%)
%AVL%.delete(%INT%)
%AVL%.find(%INT%)
reference: AvlTree() ==> BinTree()
compare: find

Fig. 8. Using a reference as oracle

2.1 Oracles

TSTL handles test oracles in two ways. First, users can specify properties that
the check method will automatically verify using assertion statements, expanded
for each pool item involved. Figure 7 shows how properties are defined, in this
case with quite trivial properties. Note that because raw Python can be used,
and properties can call arbitrary Python code, it is easy to encode even complex
specifications by defining a Python function that takes the pool values of interest
as input and returns a Boolean, then adding it as a property. A second popular
approach to the oracle problem is differential testing [25], also known as testing
with a reference. TSTL supports this by making it easy to define how to trans-
form actions on the SUT into actions on the reference, and when to compare
values from calls to the SUT and reference. Figure 8 shows a simple example,
where an AVL tree in Python is tested by comparing its behavior to a simple
(unbalanced) binary tree implementation. All that is required to do this is 1) to
mark the AVL pool as a ref pool, meaning it will have a copy that contains a
reference implementation 2) to explain how to transform the call that initialized
the AVL tree to initialize the binary tree and 3) to indicate that results from
calling find on the AVL and reference should be compared. TSTL automatically
generates the required code based on this information.

2.2 Guards and Function Calls

As Figure 7 shows, TSTL makes it simple to define functions and call them
in actions. Obviously, some actions cannot be expressed as one line of code. In
these cases, we expect that the user will define a function whose inputs can be
any pool values, constants, etc. and perform more complex tasks. We exploit
this feature to implement user-defined guards for actions easily. If a function is
named guardedFN, where FN is a function name, TSTL will automatically add an
additional parameter to the function definition when it generates a harness. This
parameter indicates whether the call is to actually perform the action, or simply
check if the action is enabled. The function definition should check the guard
and return False if it is not satisfied. At the point where the user indicates that
a “real” action is to follow (which typically modifies SUT state) the function
definition should include a %COMMIT%, which will be replaced with code that
checks for a speculative call and simply returns True without proceeding if the
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call is in a guard context. The translation of the relevant code from Figure 7 is
shown in Figure 9, with a comment to indicate where the %COMMIT% was.

def guardedAppend(l,item,limit, SPECULATIVE CALL = False):
if len(l) >= limit:

return False
if SPECULATIVE CALL: return True # /%COMMIT/%
l.append(item)

...
def act1(self):

guardedAppend(self.p LIST[0],self.p VAL[0],10)
self.p VAL used[0]=True

def guard1(self):
return (self.p LIST[0] != None) and (self.p VAL[0] != None)

and (guardedAppend(self.p LIST[0],self.p VAL[0],10,True))

Fig. 9. User-defined guard example, Python code generated

2.3 Miscellaneous Notes on TSTL

In order to effectively test the SUT, it is often important to build up complex
values before calling the code under test. Making every appearance of a pool
element in an action a use, therefore allowing the value to be reset to its initial
state can “suppress” [19] behaviors, even if it does not strictly prevent them.
TSTL therefore allows the use of a ˜ before a use of a pool ID, as shown in
Figure 7 to indicate that a reference to a pool ID should not count as a use,
it is simply building up a complex input. Another mitigation for suppression
effects is provided by the <feature> definitions, which allow TSTL to support
swarm testing [20]. Swarm testing is a random testing approach in which each
test disables some randomly chosen API calls or grammar features, in order to
better explore the state space of the system. A feature definition indicates that
any action matching the regexp is considered an instance of a certain feature, and
is disabled if that feature is disabled. TSTL has strong out-of-the-box support
for a variety of testing algorithms, some state-of-the-art like swarm testing.

Finally, we note that TSTL is not restricted to API testing. Figure 10 demon-
strates TSTL’s support for encoding grammars for generating strings. It also
provides an example of mixing range values and explicit values in assignment.

2.4 Output Language

The language and tool presented here are not inherently tied to any language.
With trivial modifications, the harness maker could output Scala code instead
of Python. In principle, C or Java could also serve as the base for the DSEL. In
fact, it should be simple to output PROMELA models with embedded C, given
a harness with C as the base language, though maintaining the “declarative”
approach would make the PROMELA somewhat difficult to read (each SPIN
nondeterministic choice would need to pick the nth action, with the guards
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@import sys
@import calculator as c
pool: %EXPR% 7
pool: %NUM% 5
%NUM% := ’%[-100..100]%’
%NUM% := str(sys.maxint)
%NUM% := str(-sys.maxint - 1)
%EXPR% := %NUM%
~%EXPR% = ’(’ + ~%EXPR% + ’)’
~%EXPR% = ~%EXPR% + ’+’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’*’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’-’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’/’ + ~%EXPR%
c.calculate(%EXPR%)
reference: c.calculate ==> eval
compare: calculate

Fig. 10. Harness for a simple calculator class

t = SUT.t()
for ntests in xrange(1,config.maxtests+1):

t.restart()
test = []
for s in xrange(0,config.depth):

(name,guard,act) = random.choice(t.enabled())
test.append(name)
act()
if not t.check():

print "FAILED TEST:", test
sys.exit(1)

print ntests, ‘‘SUCCESSFUL’’

Fig. 11. A simple random tester

being the enabled check). Python was chosen for several reasons: first, it is a
widely adopted language in the real world, particularly in the testing community.
Second, Python programs can particularly benefit from more effective automated
testing because the lack of a good type system means Python code may fail in
surprising and frustrating ways.

3 Using the Harness to Test and Experiment

It is simpler to show how the interface described in Table 1 is used than to
explain each method. Figure 11 shows the core of the implementation of a pure
random tester for an arbitrary SUT, omitting boilerplate such as import state-
ments, command-line option parsing, and checking for timeout. A few points
are important: first, the test algorithm is entirely SUT-agnostic. All interaction
with the SUT is performed through the API in Table 1. The use of pools and
the (name, guard, action) tuple list reduces the complex problem of choosing
values and operations as shown in Figure 1 to the uniform simplicity of picking
one enabled action and calling it as a function, storing the name as a human-
readable identifier for the test behavior. Note that when reference oracles are
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used, the call to act is also typically enclosed in a try block to record the failing
test, as is done with check.

t = SUT.t()
t.restart()
visited = []
S = []
S.append(t.state(), [])
test = []
while S != []:

(v, test) = S.pop()
t.backtrack(v)
if (v not in visited) and (len(test) < config.maxdepth):

visited.append(v)
trans = t.enabled()
for (name, guard, act) in trans:

test.append(name)
act()
if not t.check():

print "FAILED TEST:", test
sys.exit(1)

S.append((t.state(), test))

Fig. 12. A really simple DFS-only model checker for safety properties

Perhaps more impressively, a natural consequence of encoding a state space is
that we can easily implement a (very simple) model checker, as shown in Figure
12. Of course, as a model checker it is highly inefficient, since the visited check
is implemented as a linear search through a list of visited states. The inefficient
linear search can be easily improved through the use of a hash table for pool
states. TSTL makes use of Python’s deepcopy functionality to automatically
provide backtracking for many SUTs. To our knowledge, no other frameworks
makes it as easy to use either backtracking or replay for state restoration as
TSTL. State copies are often more efficient than replay. However, for simple
SUTs and shallow depths replay may be better, and it works for some hard-to-
copy SUTs.

Exploring Novel Testing Algorithms: In order to demonstrate how
TSTL facilitates the design and evaluation of testing approaches, we provide
the following simple algorithm motivated by classical beam search. Note that we
do not claim this algorithm is highly effective in general, the point is to show
that it is extremely easy to implement and compare new algorithms using TSTL.

Figure 13 shows a modified random testing algorithm. It performs almost
like traditional random testing (as shown in Figure 11) except for the following
change: at each step of the test, the state is saved. Instead of randomly selecting
a single enabled action at random, this strategy picks k actions at random, and
tries each one (backtracking to the old state after each action but the final one).
However, if any action covers a never-before-explored branch of the SUT, it is
chosen and testing proceeds to the next step immediately.3 In less than thirty

3 The coverage analysis is provided in this example by a simple Python coverage in-
strumentation tool, but TSTL offers integration with the very popular coverage.py
as well.
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t = SUT.t()
coverTool.clearCoverage()
for ntests in xrange(1, config.maxtests+1):

t.restart()
test = []
print ntests+1, len(coverTool.getCoverage())
for s in xrange(0,config.depth):

possible = t.enabled()
random.shuffle(possible)
old = t.state()
cov = coverTool.getCoverage()
last = min(config.k, len(possible))
pos = 0
for (name, guard, act) in possible[:config.k]:

pos += 1
test.append(name)
act()
if not t.check():

print "FAILING TEST:", test
sys.exit(1)

covNew = coverTool.getCoverage()
if (pos == last) or (len(covNew) > len(cov)):

break
coverTool.setCoverage(cov)
t.backtrack(old)

Fig. 13. A novel random testing algorithm, which is essentially random beam search,
demonstrating the use of backtracking for state restoration
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minutes, we modified the random tester to perform this algorithm and both it
and the default random tester to output the time at which each new branch is
first covered during testing. Figure 14 shows the branch discovery rate of random
testing compared to the novel test harness based on beam-search. The SUT (an
implementation of strategy simulation for the card game Dominion) was taken
from our work on applying machine learning to test generation, where it had
proven difficult to improve on random testing. The experiment shows that, for
this subject, the curve of covered code increases much more rapidly using the
modified beam search than with traditional random testing. This simple experi-
ment shows the ease with which researchers can explore novel testing strategies
in TSTL. The benefits of providing backtracking are also evident here — other
experiments show the same algorithm using replay performs considerably worse
on average, at the test lengths required for good code coverage.

4 Related Work

To our knowledge, there has been no previous proposal of a concise language
like TSTL to assist users in building test harnesses. One line of related work is
our own previous work on building common frameworks for random testing and
model checking [18] and proposing common terminology for imperative harnesses
[12]. Work on domain-specific languages also informed our approach [7].

There exist various testing tools and languages of a somewhat different fla-
vor: e.g. Korat [26], which has a much more fixed input domain specification,
or the tools built to support the Next Generation Air Transportation System
(NextGen) software [9]. The closest of these is the UDITA language [10], an
extension of Java with non-deterministic choice operators and assume, which
yields a very different language that shares our goal. TSTL aims more at the
generation of tests than the filtering of tests (as defined in the UDITA paper),
while UDITA supports both approaches. This goal of UDITA (and resulting need
for first-class assume) means that it is hosted inside a complex (and sometimes
non-trivial to install/use) tool, JPF [28], rather than generating a stand-alone
simple interface to a test space, as with TSTL. Building “UDITA” for a new
language is far more challenging than porting TSTL. UDITA also supports far
fewer constructs to assist test harness development.

The design of the SPIN model checker [23] and its model-driven extension to
include native C code [21] inspired our flavor of domain-specific language, though
our approach is more declarative than the “imperative” model checker produced
by SPIN. Similarly, work at JPL on languages for analyzing spacecraft telemetry
logs in testing [16] provided a working example of a Python-based declarative
language for testing purposes. The pool approach to test case construction is
derived from work on canonical forms and enumeration of unit tests [4].

5 Conclusions and Future Work

We believe that the little language defined in this paper could be of considerable
use to software developers who would like to use more automated testing, but do
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not want to learn complex new languages and tools. We expect that it also will
prove useful to researchers who would like to rapidly prototype new testing and
model checking methods and easily try their ideas out on new SUTs. The use of a
template language makes it easy to exploit the usability of a scripting language,
and the declarative approach makes implementing new testing algorithms easy.

Our future work is to further develop the TSTL language and tool, based on
other users’ experiences. One goal is to make use of TSTL easy out-of-the-box,
which means including many example harnesses, SUTs, and testing algorithms.
A second task is to improve the core language to include more functionality. For
example, one obvious language omission is the inability to express desired proba-
bilities for random testing. More automatic ranges, or a shorthand for including
multiple concrete values as choices on one line for grammar encoding would also
be useful. We also plan to extend TSTL to handle more host languages, including
Scala, Java, C (possibly including use of KLEE [6]), and PROMELA. Addition-
ally, we plan to use TSTL as a basis for further research in using machine learning
techniques to improve software testing [13]. A development version of TSTL is
available at https://github.com/agroce/tstl.
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