
Automated Testing of Planning Models

Klaus Havelund, Alex Groce, Gerard Holzmann,
Rajeev Joshi, Margaret Smith

Jet Propulsion Laboratory?, California Institute of Technology
4800 Oak Grove Drive, Pasadena/Los Angeles, CA 91109

{klaus.havelund,alex.d.groce,gh,rajeev.joshi,margaret}@jpl.nasa.gov

Abstract – Automated planning systems (APS) are maturing to the
point that they have been used in experimental mode on both the NASA
Earth Orbiter 1 satellite and the Deep Space 1 spacecraft. One challenge
is to improve the test coverage of APS to ensure that no unsafe plans
can be generated. Unsafe plans can cause wasted resources or damage to
hardware. Model checkers can be used to increase test coverage for large
complex distributed systems and to prove the absence of certain types
of errors. In this work we have built a generalized tool to convert the
input models of an APS to Promela, the modeling language of the Spin
model checker. We demonstrate on a mission sized APS input model, that
we can explore the space of possible plans in Promela and use Spin to
verify with high probability the absence of unsafe plans.

1 Introduction

Automated Planning Systems (APS) have performed onboard planning
and commanding in experimental mode for two NASA technology valida-
tion missions: DS1 and EO1. APS are also used to support ground plan-
ning of sequences for both the Mars Exploration Rover and the Phoenix
missions. Unlike traditional software, which executes a fixed sequence, an
APS takes a few high level goals, and an input model and automatically
generates a sequence of actions, called a plan, that achieves the goals. An
APS can respond to unexpected situations and opportunities that a fixed
sequence can not. The same flexibility that makes it possible to respond
to unanticipated situations also makes a planner far more difficult to ver-
ify. If a mission manager is to trust an APS to autonomously command,
it must be shown to generate the correct plan for a vast number of sit-
uations. Empirical test cases can cover only a handful of the most likely

? The research described in this paper was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration.

or critical situations. Formal methods can in principle prove that every
plan meets certain properties and can prove the absence of a dangerous
or undesirable plan.

In this work, we expand upon the results of our previous work [1] that
demonstrated that it was possible to apply formal methods, and in par-
ticular, the Spin model checker [2–4] to improve test completeness when
verifying APS input models. In particular, we have constructed a tool
called Map to automate the conversion APS models to Promela, the
language of the Spin model checker. We have demonstrated that a large
portion of the semantics of an APS model is expressible in the language
of the model checker. As the subject of this work, we selected the Aspen
APS and its modeling language Aml [10, 12–14] developed by Jet Propul-
sion Laboratory (JPL) because it is currently successfully commanding
the Earth Observer 1 (EO1) Autonomous Sciencecraft Experiment on-
board the EO1 satellite.

~100 plans

undesirable
plan

all desirable
plans

Empirical Testing
(current approach)

input
model

Manually inspect
plans to identify

undesirable plans

end
testing

Adjust model
to exclude

undesirable
plan

Testing

limited by time

required to

inspect sample

plans

requirements

plans

Testing

undesirable plan
(error trace) no errors

Testing with the SPIN Model Checker
(our work)

correctness
properties

Adjust model
to exclude

undesirable
plan end

testing

limited only by

memory and

processor

speed

Promela
Model

analyzes
billions
of plans

Fig. 1. Map in context.

The traditional approach to testing a plan model is to use Aspen to
exercise the model with various goals, and manually examine the gener-
ated plans, see Figure 1. The Map conversion tool offers an alternative
approach where an Aml model is translated to a Promela model, such
that the Spin model checker can be used to test the plan model. The
tool handles goals, activity decomposition, temporal constraints, and au-
tomated calculation of a cone of influence to reduce the search space.
We demonstrate that the substantial increase in test coverage achieved
through the use of model checking can work in practice and scale to a
mission sized Aml input model.

In work that predated publication of our previous paper [1], the real-
time model checker UPPAAL was used to check for violations of mutual
exclusion properties and to check for the existence of a plan meeting
a set of goals [5]. In contrast, the work reported in this paper shows
that for verification of a set of properties of interest, it is not necessarily
required to reason about time. Spin has also been used to verify plan
execution engines [6, 7]. Automatically generated test oracles have been
used to assist in the interpretation of test plan outputs from APS [8].
A comparison of three popular model checkers, Spin, SMV and Murphi
showed that these model checkers can be used to check for the existence
of a plan meeting a set of goals [9].

The rest of the paper is organized as follows. Section 2 briefly describes
the Aspen planner and the Spin model checker. Section 3 presents an
example of an Aml model, and how Spin is used to explore the Promela
model generated by the Map tool. Section 4 explains the principles of
the translation from Aml to Promela. Section 5 presents the results
of analyzing the EO1 model. Finally, Section 6 concludes the paper and
suggests future work.

2 The Aspen Planner and the Spin Model Checker

2.1 The Aspen Planner

The Aspen planner takes as input: an initial state, a goal, and a plan
model describing allowable activities and constraints on their relation-
ships; and produces a plan of activities that achieves the goal while sat-
isfying the constraints in the model. In order to be efficient for on-board
planning, the Aspen planner performs a heuristics-based search, not ex-
ploring all possible paths, but instead only exploring a minimal search
space. The objective of the planner is to find a single good plan, and

the assumption is that such a plan exists. While this minimal search ap-
proach makes Aspen efficient for finding plans quickly when they exist,
it makes Aspen’s search incomplete, which is a drawback during testing.
For instance, if Aspen does not return a plan, one cannot conclude that
there is no plan.

An Aml model consists of a set of goals, activity specifications, re-
sources, and states. Arbitrary C or C++ functions may be called from the
model to calculate values used to determine resource requirements and
states. The start of an activity is normally guarded so that the activity
can only be scheduled if necessary resources are available and if the space-
craft is in a desired state. Activities typically modify states and resources
at the beginning and/or end of the activity. Activities can be decomposed
recursively into lower level, sub-activities. A number of temporal relations
can be defined to order the start and completion of sub-activities with
respect to one another. States and resources are used in Aml models
to constrain the types of plans that are generated to a set that will be
safe and feasible. For instance, an atomic resource such as a solid state
recorder (SSR), that can only be safely accessed by one reader or writer
at a given time, will be tracked by a mutex state. An activity that needs
to write to the SSR will have a guard that prevents the activity from
starting until the SSR lock is available. The activity needing to read or
write to the SSR takes the lock upon entry and restores it upon exit.

A tightly constrained Aml input model will have a smaller number
of potential plans, and can be more completely tested, but will be less
agile in responding to unexpected events during spacecraft operation. A
less tightly constrained model exploits the strengths of the APS system
to respond to the unexpected, but in order to be trusted, must be more
thoroughly tested than is possible with standard test techniques.

2.2 The Spin Model Checker

Spin is a model checker and can analyze the correctness of finite state con-
current systems with respect to formally stated properties [3]. A particular
concurrent system is formalized in PROcess MEta LAnguage (Promela),
and correctness properties to be verified can be formalized in Linear Tem-
poral Logic (Ltl), a visual tool such as the TimeEdit tool [11] that gener-
ates Buchi automata, or using assertions placed in the Promela model.
The Spin tool also provides a simulator, with which Promela models
may be executed. This can in particular be used to re-run error traces gen-
erated by the model checker for properties that are not satisfied. Spin’s

search attempts to be exhaustive, continuing until it finds an error, mem-
ory is exhausted, or the search completes. The correctness property can
express a desired behavior, like a goal in Aspen’s Aml language, or an
undesired behavior, such as a unsafe plan that should be excluded from
an Aml input model.

Promela is Spin’s modeling language, supporting the declaration of
process types, and instantiation (running/spawning/starting) of instances
of these types. The language can be thought of as a multi-threaded pro-
gramming language. Processes communicate via shared variables and/or
by message passing through communication channels. A process can block
by waiting for a Boolean predicate over the global variables to become
true, or it can block on waiting for a value to appear on an input channel.
The execution of a Promela model consists of executing these parallel
running processes in a non-deterministic interleaved manner until no pro-
cess can continue, either because all processes have terminated normally,
or they have deadlocked. A Promela model denotes the set of all such
finite and infinite execution traces. The Spin model checker conceptually
explores all traces for conformance to or violation of a formal property.

3 Example

The following example is intentionally made as small as possible (and con-
sequently rather artificial), but sufficiently complex to still illustrate the
fundamental principles. The scenario is the operation of a planetary rover
performing drilling activities on another planet. First an Aml model is
represented. Second, it is shown how Spin is used to analyze the Promela
model generated by Map. In this section the generated Promela will be
regarded as a black-box, not unlike how a user would perceive it. In Sec-
tion 4 the translation will be explained.

01 resource power {
02 type = depletable;

03 default_value = 75;

04 capacity = 100;

05 min_value = 10;

06 }
07

08 resource buffer { type = atomic; }
09

10 state_variable buffer_sv {
11 states = ("empty","full");

12 transitions = ("empty"->"full", "full" -> "empty");

13 default_state = "empty";

14 };
15

16 activity drill {
17 string hole;

18 int depth;

19 int power_use;

20 dependencies = power_use <- powerof(depth);

21 reservations =

22 buffer,

23 buffer_sv must_be "empty",

24 buffer_sv change_to "full" at_end,

25 power use power_use;

26 }
27

28 activity uplink {
29 reservations =

30 buffer,

31 power use 30;

32 }
33

34 activity charge {
35 reservations = power use -25;

36 }
37

38 activity experiment {
39 decompositions =

40 (drill with ("hole1" -> hole, 7 -> depth),uplink,charge

41 where charge ends_before end of drill)

42 or

43 charge;

44 }

Fig. 2. Aml model of drilling scenario.

3.1 Aml Model of Drilling Rover

The rover can perform three activities: (i) Drill: the rover drills a hole of
a certain depth, extracts some soil, and performs some analysis on the
selected material, for example using an oven. All these activities are here
abstracted into the single drill action. (ii) Uplink : when the drilling (and
included analysis) has been performed the results must be uplinked to a
spacecraft (which subsequently transmits it to earth, not modeled). (iii)
Charge : the drilling as well as the uplink both require power, represented
by a power resource. This resource can be charged with new energy when
becoming low. The Aml model presented in Figure 2 formalizes this sce-
nario. Our goal will be to generate plans that request drilling and uplink
of the results, with charging occurring as needed. We shall illustrate how
Map can be used to detect various errors in the model to be presented.

The rover and the equipment on board the rover uses various re-
sources. There are two types of resources: atomic, and variable. Atomic
resources are physical devices that can only be used (reserved) by one
activity at a time (for example a science instrument). A variable resource
has at any point in time a value and can be used by more than one activity
at a time, each reducing the quantity of the resource, as long as the min-
imum/maximum bounds are not exceeded. A variable resource is either
depletable or non-depletable. A depletable resource’s capacity is dimin-
ished after use (for example a battery), in contrast to a non-depletable
resource, where the used quantity is automatically returned (for example
solar power). The model contains one variable depletable power resource
(lines 01–06). The power resource has a current starting value of 75, a
minimum value of 10 (it cannot go below) and an maximum capacity of
100. Digital results collected during drilling are stored in a data buffer
before being uplinked. The data buffer is modeled as an atomic resource
(line 08) and will be reserved by the drilling and the uplink activities to
ensure mutual access. In addition, a state variable (lines 10–14) is intro-
duced to model the status of the buffer: whether it is empty or full. The
state machine has two states (empty and full) and two transitions: one
from empty (the initial state) to full, and one from full back to empty.

The drilling activity (lines 16–26) declares three local variables hole,
depth and power use (lines 17–19). Any local variable in Aml can func-
tion as a parameter. The first two will function as parameters (what hole
to drill and what depth), while the third is a real local variable holding
how much power to consume, being assigned a value in a dependency
clause (line 20) as a function of the depth. The drilling activity reserves
a collection of resources (lines 21–25): the data buffer (line 22, ensuring

mutual exclusion during use), which must be “empty” (line 23), and will
transition to “full” after (line 24); and power as a function of the depth
of the hole (line 25). The uplink activity (lines 28–32) reserves the buffer
from where data are uplinked and uses 30 power units. The charge activ-
ity (lines 24–36) adds 25 units back to the power resource, (using Amls
semantics of providing negative numbers when adding, and positive num-
bers when subtracting).

The main activity is called experiment (lines 38–44) and is decom-
posed into the three activities: charge, drill and uplink. The decomposi-
tion consists of either (lines 40–41) performing a drill, an uplink and a
charge, where the charge is required to end before the end of the drill (to
save time), or, if there is not power enough, to just charge the rover with
new energy (line 43). Note the constraint: ‘charge ends before end of
drill’. Aml allows for several kinds of constraints , ‘A constraint B’, be-
tween two activities A and B (that can occur in any order if no constraints
are given): contains, contained by, starts before, ends before,
starts after, ends after, all further followed by one of start of, end
of, or all of. Examples are: A starts before start of B,
A starts after end of B, and A contains all of B (the B activity
occurs during the A activity, not before and not after).

An initialization file outlines what activities should be instantiated.
In this case one instance of the experiment activity is initiated:

experiment exp {}

Note that the experiment activity itself launches the charge, drill and
uplink activities through decomposition.

3.2 Analyzing the Model with Spin

Verification 1 In order to verify Ltl properties with Spin, atomic condi-
tions (Promela macros using #define) have to be defined. For example,
the event e uplink will become true when the uplink activity terminates.
For each activity A, there will be a b A (begin A) and a e A (end A) event,
which can be referred to in Spin. The first property we will verify is that
eventually an end of uplink is observed. This is achieved by asking Spin to
prove that there is no execution satisfying the Ltl property <>e uplink
(see Figure 3).

The property states that eventually the end of an uplink occurs. A
trace satisfying this property should constitute in a good plan. By making
Spin attempt to verify that an execution satisfying this property does not

Fig. 3. Xspin – generate a plan ending in an uplink.

exist, we use Spin to generate an error trace (a plan) that achieves such
a state in case it exists. Note that we have chosen the No Executions
option in Xspin in order to get an error trace (plan). The verification
causes Xspin to generate the message sequence diagram shown in Figure
4.

The message sequence diagram shows for each activity (modeled as
a Promela process, see Section 4) a vertical time line, showing when
it begins and when it ends. In this case it is observed that there is an
uplink before any drilling has taken place. This is an error according
to our informal requirements. By studying the model it is detected that
the uplink activity does not check the status of the data buffer to see
whether it contains data before the uplink takes place. The buffer must
be full before uplink (a check on the buffer state variable), and after the
uplink it must be set to empty. To fix this we modify the Uplink activity
as follows:

activity uplink {
reservations =

buffer,
buffer_sv must_be "full", // added
buffer_sv change_to "empty", // added
power use 30;

Fig. 4. Xspin – an error trace equals a plan.

}

3.3 Verification 2

Retrying the verification after this modification yields no errors. How-
ever, no errors means no plan. Recall that Spin is asked to prove that
there is no execution leading to an uplink. After further examination it
is discovered that even though the charge activity adds 25 units, which
should be enough to cover the combined usage of 70 (drill) plus 30 (up-
link) with an initial resource value of 75, another 10 needs to be added
since the minimal value of the resource is set to 10 (cannot go below).
The maximum capacity must consequently also be increased. The power
resource therefore needs to be modified as follows:

resource power {
type = depletable;
default_value = 85; // changed from 75 to 85
capacity = 110; // changed from 100 to 110
min_value = 10;

}

This time an acceptable sequence of events is generated: first drilling,
then a charge, and then uplink.

3.4 Verification 3

We have now demonstrated that there is a plan that ends in an uplink
preceded with a drill. The question is whether there are any plans that
end in an uplink without being preceded with an drill. We can verify this
by searching for a plan satisfying the following Ltl property: !e drill U
e uplink. That is: no drill until an uplink. The until operator of LTL is
strong, hence this means that an uplink must occur (and no drill before
that). Since we want to show that there is no such plan, we enter this
property with No Executions set. The verification shows that there are
no such executions (errors : 0), which is a satisfactory result.

All our properties so far have been stated as the Ltl property <>goal,
using the No Executions option to make Spin attempt finding just one
execution that makes the goal true. It turns out that for verification
of plan models this seems to be the most natural verification style: to
postulate the non-existence of an execution (plan) that satisfies a par-
ticular property. It is, however, possible also to use the All Executions
option in Xspin. That is, to prove that for all execution traces some
property is true. Note though that a plan model denotes executions that
lead nowhere. Such blind alleys are simply part of the search problem.
Hence, one has to be careful when stating properties to be true on all
executions. One has to limit the verification to only those executions that
achieve some meaningful goal. In our last case we can state the prop-
erty that: every uplink is preceded by a drill as the following property
to be true on all traces, knowing that there is only one uplink possible:
<>e uplink -> <>(e drill & <>e uplink). That is, “for all traces, if
the trace is a good plan (eventually from the beginning of the trace there
is an uplink), then (also from the beginning of the trace) there is a drill,
followed by a (the) uplink”. This is, however, a slightly complicated way
of stating our desired property.

4 Translation from Aml to Promela

Planning in principle can be regarded as the following problem: given is a
model M = (Σ,A) consisting of a state Σ (resources and state machines),
and a finite set of activities A = A1, A2, A3, . . . , An that access variables
in the state Σ. Each activity Ai has a precondition pre−Ai on the state
Σ that has to be true before that activity can execute (or be put down on
a time-line, using planning terminology), and a post-condition post−Ai,
defining a side-effect on the state Σ. The activities can be thought of as
guarded commands. A planning problem is a triple (I,G,M) consisting

of an initial state I and a goal state G to be achieved from the initial
state while obeying the model M (obeying the pre-conditions essentially).
The planning problem is obviously more complicated, in particular in the
case of Aml, which allows for dynamically created activities and time
constraints.

However, this view of the planning problem directly leads to a process
view of planning: given a set of processes (activities), find an execution
of these that leads from the initial state to the goal state, without dead-
locking or otherwise failing in between. This is the view underlying the
Map translator. It translates an Aml model into a Promela model of
concurrent processes, one for each activity, with a pre-condition and a
post-condition. Concurrency is normally regarded as a hard problem for
users to get right, and the above argumentation suggests that the plan-
ning problem is equally difficult to get right.

More specifically, an Aml model is translated into a Promela model,
which contains a process type (proctype) for each activity. The body of
each such process type consists of two sequentially composed statements
S1;S2: a beginning S1 and an ending S2, each of which is an atomic state-
ment (encapsulated with Promelas atomic-construct). The basic idea is
that the scheduling of an Aml activity A over a time period starting at
time t1 and ending at time t2 in Spin will result in the corresponding
process executing its first atomic statement S1 at a point corresponding
to time t1 and its second atomic statement S2 at a point corresponding to
time t2. However, since Spin does not model real-time, time periods are
not measured, only the relative ordering of events is modeled. Planning
in Spin consists of finding an execution trace that executes the processes
(respecting the guards of course) in such a manner that a specific end
state is reached, with the expected processes executing in a desired order,
and such that the state satisfies some invariants during the execution.
Resources are declared as state variables that get written to and read
from during the “execution” of the Promela model:

int power;
bool buffer;
byte buffer_sv;
int buffer_sv_reserve_count;

The power variable holds current power level. The buffer variable repre-
sents a semaphore, which is either taken (value 1) or free (value 0). The
buffer state variable (buffer sv) holds the current state of the buffer state
machine. The buffer sv reserve count is increased each time a process per-

forms a must be request, as for example the drill action in line 23. The
drill action here requires the state variable to have this value throughout
its execution. Several activities can require this to be true, and all be able
to execute at the same time. Each process will count this variable up at
entry and down on exit, and the state variable (buffer sv) itself cannot
change unless this counter is 0.

As already mentioned, an activity is modeled as a process. SPIN at-
tempts to ”execute” processes, thereby producing an execution trace,
which becomes the sought plan. In the example, the experiment activity
starts the three sub-activities drill, uplink, and charge, with the constraint
that the charge should end before the end of the drill action. In addition,
the three sub-activities should all terminate before the end of the exper-
iment activity since they are created as sub-activities (AML semantics).
These constraints are illustrated in Figure 5.

Fig. 5. Activity constraints. Stipled lines are constraints imposed by AML semantics.
Fully drawn constraint comes from the model constraint: “charge ends before end

of drill”.

These constraints are imposed in the Promela model by passing
two sets (collections) of events to each process: those that it should wait
for before it starts, and those it should wait for before it terminates. In
the above case, for example, the drill process should be passed the sets:
∅ (don’t wait to start) and {end charge} (wait for charge to terminate
before terminating). In order to know what events actually happened in
the context (parent) in which a process exists, it takes a third parameter,
a reference to a set that is continuously updated with events as they
happen. The generated process declaration in Figure 6 contains these
parameter definitions.

proctype drill(set begin_events; set end_events;

set external_events; short sigstart; short sigend;

int depth)

{

byte _e_;

int power_use;

atomic {

subset(begin_events,external_events);

power_use = powerof(depth);

(buffer==1 && buffer_sv==ENUM_empty &&

(power-power_use)<=110 && (power-power_use)>=10) ->

buffer = buffer-1;

buffer_sv_reserve_count = buffer_sv_reserve_count+1;

power = power-power_use;

addorlog(external_events,sigstart)

};

atomic {

subset(end_events,external_events);

(buffer_sv==ENUM_empty &&

(buffer_sv_reserve_count==1 || buffer_sv==ENUM_full)) ->

buffer = buffer+1;

buffer_sv_reserve_count = buffer_sv_reserve_count-1;

buffer_sv = ENUM_full;

addorlog(external_events,sigend)

}

}

Fig. 6. Promela model of drill activity.

The first two parameters are the sets of events to wait for before starting
(begin events) respectively ending (end events). Sets are not available in
Promela as a built in data type, so they are modeled as channels (the
Promela model contains a macro definition of the form: ‘#define set
chan’). The external events parameter is a reference (pointer) to the set
of actual events that happen, to be updated by the context. The process
itself can add events to this set when starting and when ending such that
other processes can be made aware thereof. The events to add are the last
two parameters of the process sig start and sig end. Whether these events
should be added or not really depends on the context, whether some
other process needs to know. If no process needs to know the parameter
is negative, and it will not be added.

The last parameter (depth) to the process is a model-parameter, in-
troduced by the user in the drilling activity (line 18). Recall that any

local “variable” of an activity in Aml can be a parameter in case an in-
stantiating activity passes a value to this variable. The drilling activity
has 3 local variables: hole, depth, and power use, but only the first two
of these are real parameters instantiated at call time in the experiment
activity:

drill with ("hole1" -> hole, 7 -> depth)

However, only the depth parameter influences planning since it impacts
how much power is used (lines 20 and 25). Note that Map performs a
data flow analysis of the Aml model in order to determine which variables
are used in planning. The string variable “hole” does not influence the
planning, and hence is abstracted away.

The body of the drilling process is divided into two atomic statements,
representing respectively the beginning and the end of the activity. The
explanations of the two blocks are similar. The beginning block starts
by waiting for the events in the begin events set to become subset of
the external events set (subset(begin events,external events)). The vari-
ous operations on sets are really operations on channels, modeling set
addition, set membership test, and subset test. It then performs checks
on and assignments to various resource, state and semaphore variables.
A conditional statement condition -> statement causes the process to
block until the condition becomes true (Promela semantics). Finally, it
is signaled to the external events set that the process has started (if the
sigstart value is not negative). The addorlog(set,signal) function adds the
signal to the set, if the signal is not negative, and furthermore stores the
signal in a global variable event (such that LTL formulas can refer to
it) of an enumerated type of all the possible events, one for the beginning
and end for each activity.

mtype {
BEGIN_drill, END_drill,
BEGIN_uplink, END_uplink,
BEGIN_charge, END_charge,
BEGIN_experiment, END_experiment

}
local mtype _event_;

The experiment activity is in a similar fashion translated into the Promela
process shown in Figure 7. This process declares two variables. The set-
variable events will be updated continuously during execution and will

contain the events that occur during an experiment (third external events
parameter to the sub-activities). The set-variable end drill is initialized
once to contain the set of events that the drill activity has to wait for be-
fore it can end. These required sizes of these sets (3 and 1) are calculated
at translation time. For example, 3 events will need to be recorded: end
of charge (needed by the drill), and end of drill and uplink (needed by
the experiment that cannot terminate before these have terminated, see
Figure 5.

The body of the first atomic block is a conditional if :: ... :: ...
fi statement, having two entries that are chosen non-deterministically,
corresponding to the or operator occurring in line 42 of the Aml model
in Figure 2. The form of the two choices are similar. In the first case, cor-
responding to lines 40-41 of Figure 2, the set end drill is created to contain
the event END charge by the statement: mustwaitfor(end drill,END charge),
which adds its second argument to the first argument set. This set is then
passed as the second argument to the drill activity in the subsequent line
to indicate that the drill activity has to wait for the charge to end before
it can end itself. The other event sets passed around are empty (nullset).
The events passed as arguments, for example the negative -BEGIN charge
and the positive END charge to the charge activity, indicate that no-one
cares about when a charge begins (negative so it will not be added to the
events set), whereas for example the drill activity needs to know when
the charge ends. Finally, the experiment will not continue before the sub-
activities spawned in each branch have terminated (isin(...)).
The Aml model contains in line 20, Figure 2, a call of the function
powerof, which must have been defined as a C++ function in a sepa-
rate file. Map does not translate these C++ functions. Instead, their
occurrence in the Aml model is marked by the translator, and a user
has to program these as Promela macros, as in this case: #define
powerof(depth) (depth*10).

5 The Earth Orbiter 1 Application

Aspen has successfully commanded (and is still at the time of writing
commanding) the Earth Observer 1 (EO1) Autonomous Sciencecraft Ex-
periment onboard the EO1 earth orbiting satellite. The EO1 satellite
orbits earth, taking photos of the surface and comparing recent images
with previous images to detect changes due to, for instance, flooding, fire
and other natural events. Upon detecting a change, the spacecraft soft-

proctype experiment(set begin_events; set end_events;

set external_events; short sigstart; short sigend)

{

byte _e_;

set events = [3] of {mtype};

set end_drill = [1] of {mtype};

atomic {

subset(begin_events,external_events);

addorlog(external_events,sigstart);

if

::

mustwaitfor(end_drill,END_charge);

run drill(nullset,end_drill,events,-BEGIN_drill,END_drill,7);

run uplink(nullset,nullset,events,-BEGIN_uplink,END_uplink);

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_drill,events) && isin(END_uplink,events) &&

isin(END_charge,events)

::

run charge(nullset,nullset,events,-BEGIN_charge,END_charge);

isin(END_charge,events)

fi

};

atomic {

subset(end_events,external_events);

addorlog(external_events,sigend)

}

}

Fig. 7. Promela model of experiment activity.

ware generates a new goal to take a more detailed follow-up image and
Aspen generates a plan to achieve that goal.

Our original goal was to enable Map to convert the EO1 Aml model
into Promela. The EO1 model features the most commonly used Aml
constructs, and therefore, a tool that can convert this model will be capa-
ble of converting a very broad set of realistic Aml models, a non-trivial
achievement. With well over 100 activities in the EO1 Aml model, and
an ever changing set of goals, EO1 also illustrates that an automated con-
version tool is necessary to make the logic model checking of APS input
models practical.

EO1 has two imaging instruments that can read from and write to
a solid state recorder. The designers of the Aml model were concerned
about a possible data race on the state recorder, violating that reads and

writes must mutually exclude each other. This property was formulated
in Promela using a counter and was shown not to be violated on a
very large state space, although not the complete state space. The model
analyzed is approximately 7300 lines of code, causing approximately 4000
lines of Promela code to be generated. Two experiments were performed,
each applying Spins bit-state hashing where not all of the state space is
explored. Each experiment was performed comparing single core (1 CPU)
and multi-core (8 CPUs) runs. In the first experiment 10 million states
were explored using 11.6 minutes on 1 CPU and 89 seconds on 8 CPUs. In
the second experiment, with more aggressive bit-state hashing, 2.5 billion
states were explored, using 2.6 days on 1 CPU and 8 hours on 8 CPUs.

6 Conclusion and Future Work

The translator translates a large subset of Aml relatively faithfully by
attempting to map Aml source constructs to Promela target constructs,
which are supposed to yield a behavior in Spin similar to the behavior of
the source in Aspen. However, some parts of Aml are not translated, in
some cases as an optimization mechanism. The main constructs of Aml
that are not translated include time values and durations, reals and floats,
priorities, and a special form of call-by-reference parameter passing that
Spin does not support. Hence, an activity cannot influence the value of the
actual parameter. Of these omitted concepts, some are generally hard to
translate, such as time, real numbers, and call-by-reference of activities.
The remaining omissions could be handled more easily. The Map tool
shall be seen as an aid in examining the utility of model checking in
testing plan models. Future work includes examining exactly what forms
of verification can be performed with the presented tool that cannot easily
be performed with Aspen.

References

1. M. Smith, G. Holzmann, G. Cucullu, B. Smith, ”Model Checking Autonomous
Planners: Even the Best Laid Plans Must be Verified”’, IEEE Aerospace Confer-
ence, Big Sky, Montana, March, 2005

2. Gerard Holzmann, The Model Checker Spin, IEEE Transactions on Software En-
gineering, Vol. 23, No. 5, May 1997, pp. 279-295.

3. Gerard Holzmann, The Spin Model Checker: Primer and Reference Manual, 2003,
Addison-Wesley, ISBN 0- 321-22862-6, 608 pgs.

4. http://www.spinroot.com
5. L. Khatib, N. Muscettola, K. Havelund Verification of Plan Models using UPPAAL,

First Goddard Workshop on Formal Approaches to Agent-Based Systems. NASAs
Goddard Space Center, Maryland. March 2000.

6. K. Havelund, M. Lowry, J. Penix, Formal Analysis of a Space Craft Controller
using Spin, IEEE Transactions on Software Engineering, Vol. 27, No. 8, August,
2001. Originally appeared in proceedings of the 4th SPIN workshop, Paris, France.
November 1999.

7. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, J. L. White,
Formal Analysis of the Remote Agent - Before and After Flight, The Fifth NASA
Langley Formal Methods Workshop, Virginia. June 2000.

8. M. Feather, B. Smith, ”Automatic Generation of Test Oracles: From Pilot Studies
to Applications,” Proceedings of the Fourteenth IEEE International Conference
on Automated Software Engineering (ASE-99), Cocoa Beach, FL. October, 1999.
IEEE Computer Society, pp 63-72.

9. J. Penix, C. Pecheur, K. Havelund, Using Model Checking to Validate AI Plan-
ner Domain Models, 23 Annual NASA Goddard Software Engineering Workshop,
Goddard, Maryland, Dec 1998.

10. B. Cichy, S. Chien, S. Schaffer, D. Tran, G. Rabideau, R. Sherwood, Validating
the Autonomous EO-1 Science Agent, International Workshop on Planning and
Scheduling for Space (IWPSS 2004). Darmstadt, Germany. June 2004.

11. M. Smith, G. Holzmann and K. Ettessami, Events and Constraints: a Graphical
Editor for Capturing Logic Properties of Programs, 5th International Symposium
on Requirements Engineering, pp 14-22, Toronto, Canada. August 2001.

12. S. Chien, R. Knight, A. Stechert, R. Sherwood, G. Rabideau, Using Iterative Repair
to Improve Responsiveness of Planning and Scheduling, International Conference
on Artificial Intelligence Planning Systems (AIPS 2000). Breckenridge, CO. April
2000.

13. Alex Fukunaga, Gregg Rabideau, Steve Chien, ASPEN: An Application Frame-
work for Automated Planning and Scheduling of Spacecraft Control and Opera-
tions, Proceedings of International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS97), Tokyo, Japan, 1997, pp. 181-187.

14. B. Smith, R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, A. Fuku-
naga, Representing Spacecraft Mission Planning Knowledge in Aspen, AIPS-98
Workshop on Knowledge Engineering and Acquisition for Planning, June 1998.
Workshop notes published as AAI Technical Report WS-98-03.

