
Taming a Fuzzer Using Delta Debugging Trails

Yuanli Pei, Arpit Christi, Xiaoli Fern, Alex Groce and Weng-Keen Wong

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97330, USA

Email: {peiy, christia, xfern, alex, wong}@eecs.oregonstate.edu

Abstract—Fuzzers, or random testing tools, are powerful
tools for finding bugs. A major problem with using fuzzers
is that they often trigger many bugs that are already known.
The fuzzer taming problem addresses this issue by ordering
bug-triggering random test cases generated by a fuzzer such
that test cases exposing diverse bugs are found early in the
ranking. Previous work on fuzzer taming first reduces each
test case into a minimal failure-inducing test case using delta
debugging, then finds the ordering by applying the Furthest
Point First algorithm over the reduced test cases. During
the delta debugging process, a sequence of failing test cases
is generated (the “delta debugging trail”). We hypothesize
that these additional failing test cases also contain relevant
information about the bug and could be useful for fuzzer
taming. In this paper, we propose to use these additional
failing test cases generated during delta debugging to help tame
fuzzers. Our experiments show that this allows for more diverse
bugs to be found early in the furthest point first ranking.

Keywords-software testing; automated testing; fuzzing;
fuzzer taming; test-case reduction;

I. INTRODUCTION

Random testing, or fuzzing, is an important tool for finding

bugs in software systems, including compilers. Fuzzing is a

process that automatically generates random input data, with

the hope of exposing software vulnerabilities. It has been

shown to be impressively effective at finding software bugs.

For example, Csmith [1], a fuzzing tool for C compilers,

has identified more than 450 previously unknown bugs. The

fuzzing tool jsfunfuzz [2] identified more than 1700

previous unknown bugs in SpiderMonkey, the JavaScript

engine used in Firefox [3]. Fuzzing was also used to test

flight software for the Curiosity Mars Rover mission [4].

Although fuzzers are powerful bug-finding tools, their use

suffers from several drawbacks. The first problem is that

random test cases are more effective at finding bugs when

they are large [5], but such large test cases are generally

difficult to debug. Therefore, how to transform such test

cases into simple and meaningful test cases becomes an

important problem. This problem is usually solved using

test case reduction techniques, such as delta debugging [6],

an automated greedy approach for finding small failure-

inducing test cases. Delta debuggers iteratively reduce large

test cases to smaller ones that trigger the same failure (e.g.,

simplifying test cases in a way as binary search). They stop

reducing test cases when a 1-minimal test case is found: 1

minimality means that removing any part of the remaining

test case causes the failure to disappear. Essentially, each

delta debugging iteration generates a smaller test case that

retains the relevant parts of the original test required to

induce the failure.

Another problem with using fuzzers is that they often

generate many test cases triggering the same bug. This not

only makes it hard to find rarely occurring bugs in a large

set of failing tests, with many exposing the same fault, but

it can also lead to re-discovering known and uninteresting

bugs. Although it would be desirable to fix all bugs, some

lower-priority bugs often remain unfixed for months or years

in reality due to limited resources. Thus, if a fuzzer keeps

on triggering such known bugs instead of potentially critical

unknown bugs, its practical usefulness will be in doubt.

To make fuzzers more useful to developers, Chen et al. [7]

proposed an approach to taming fuzzer that ranks test cases

such that tests triggering more distinct bugs are ranked with

higher priority. As such, when developers process the ranked

list of test cases one by one, they will encounter fewer test

cases corresponding to already known bugs.

To our knowledge, [7] is the only work that tries to solve

the fuzzer taming problem. In [7], each test case is first

reduced to a minimal failing test case using delta debugging.

The ranking is then obtained by applying the Furthest

Point First (FPF) algorithm [8] on the minimal test cases.

While this method has shown success in finding diverse

bugs, we hypothesize a more effective fuzzer taming process

of using delta debugging. During the reducing process,

delta debugging generates a set of failing test cases (the

delta debugging trail), all of which trigger the same bug

and contain relevant information for the bug. However, in

previous work [7], only the minimal test cases are used and

all the other non-minimal test cases are simply ignored.

In this paper, we aim to make use of the additional

failure-inducing test cases generated by delta debugging to

help fuzzer taming, rather than just using the minimal test

cases. Specifically, each of the original (large) test cases is

represented as a set of failing test cases reduced during delta

debugging. Distance between any pair of the test cases is

redefined over such sets of reduced test cases. We then apply

FPF on these distances to find a ranking. We experimented

on a data set of testing JavaScript engine containing 28

known bugs, and showed that it is beneficial to consider such

additional failing test cases in the delta debugging trail.

II. PROBLEM STATEMENT

When a developer has a collection of test cases, each

triggering some bug, he/she needs to examine these test

cases to identify a set of distinct bugs to fix. If top-ranked

test cases trigger more diverse bugs, the developer will find

more bugs after examining the same number of test cases.

With this in mind, our goal is to maximize the number of

different bugs represented by test cases early in a ranking.

Formally, let X = {X1, . . . , XN} be the pool of failing

random test cases generated by a fuzzer. These tests can

trigger up to C different types of bugs, where C is usually

much smaller than N . Let yi ∈ {1, . . . , C} be the bug

triggered by test case Xi. All N test cases are thus classified

into C classes based on the bug each triggers.

In our problem, we represent each Xi as multiple test

cases produced during delta debugging. Namely, each Xi =
(xi1, . . . , xini

) consists of a set of small test cases, where

xi1 is the minimal reduced test case, xi2 is the next smallest

test case, etc., and ni is the total number of reduced test cases

kept for each test case. All of the xij’s trigger bug yi. Each

xij is represented using a feature vector such as a histogram

of tokens (meaningful character strings) from the test case

or functions that are called while executing the test case.

Given such a pool of test cases, our goal is to find a

ranking π of the test cases in X with the largest diversity of

classes among the top ranked instances. Ideally, the top C

test cases would trigger all C types of bugs, with each test

case triggering one category. Then, by only examining the

top C test cases, the developer would be able to examine

all discovered bugs. In practice, usually the budget for

examining test cases and fixing bugs is limited and diversity

of only the top-k test cases is of the interest, where k is

often small.

III. METHODOLOGY

Our approach involves two steps. The first step is to

reduce each large failing test case into a set of small test

cases using delta debugging. Then we apply FPF [8] on the

sets of reduced test cases to find an ordering.

A. Reducing Large Test Cases

Given a large test case, a delta debugger reduces it to a

minimal test case xi1, and generates a trial of test cases

(xi1, xi2, . . .) during the simplification. The minimal test

case xi1 is often viewed as the most informative one about

the failure [6]. Thus, we always keep xi1 in Xi.

For the other failing test cases, we choose whether to

keep them in Xi based on two heuristics: 1) if xij is

very close to the minimal test case xi1, it should also be

informative and should be kept; 2) if xij is too much larger

than xi1, then it possibly contains more noise than failure-

relevant information, and should be discarded. Based on the

heuristics, we propose the following policies in collecting

the additional test cases:

(a) Number of additional test cases: For each test case, we

collect at most M more test cases in addition to xi1.

(b) Closeness to minimal test case: The test cases should

be collected based on their closeness (in length/size) to

the minimal test case xi1.

(c) Giving up early: If the length of a test case xij is more

than δ times of the length of xi1, it should be discarded

even if we haven’t collected M test cases.

Policy (a) is to restrict the number of reduced test cases

for the purpose of computational complexity. Policy (b)

and (c) are based on the aforementioned heuristic 1 and

2 respectively.

B. Justification for Furthest Point First Approach

In our problem, generally we do not have any prior

information about bug classes, such as class distribution.

Usually, until a developer has examined failing tests, the

set of bug classes {1, . . . , C} itself is unknown. Thus, our

problem is purely unsupervised. To proceed, we make the

following assumption:

Assumption: The larger the distance between two test

cases Xi and Xj is, the larger the probability that they

belong to two different classes is, i.e., if d(Xi, Xj) >

d(Xi, Xℓ), where d is some distance metric, then p(yi 6=
yj) > p(yi 6= yℓ).

The FPF algorithm works as follows. Let Qk =
{Xπ(1), . . . , Xπ(k)} be the set of top-k ranked test cases,

where Xπ(i) is the i-th ranked one. Then FPF first selects

the pair of test cases that is separated by the largest distance

and puts them into Q in random order. Then the k + 1-th

ranked test case is chosen by

Xπ(k+1) = argmax
Xi∈X\Qk

{

min
Xj∈Qk

d(Xi, Xj)

}

. (1)

The objective (1) says that FPF greedily chooses the next test

case as the Xi that maximizes the distance between it and all

other members of Q. Thus, after the next test case is added

to Q, the objective guarantees that the minimum distance

between all pairs of test cases in Q is maximized. Under

our assumption, the smaller the distance between a pair of

test cases, the more likely the test cases are to belong to the

same class. By maximizing the pairwise distance between

all pairs in Q, we hope to increase the probability that the

members of Q all belong to different classes.

Recall that in our fuzzer taming problem, we would like

to maximize the number of found bugs for every top-k

(1 ≤ k ≤ N) ranked list. Since we do not have information

on bug labels beforehand, we could instead maximize the

minimum pairwise distance for every top-k (2 ≤ k ≤ N)

ranked list (k = 1 is a trivial case). This is reasonable

by the same argument as before. Namely, maximizing the

minimum pairwise distance would correspondingly increase

the probability of bug diversity. In that sense, the greedy FPF

approach is an optimal solution for our ranking problem.

C. Furthest Point First with Delta Debugging Trails

In previous work [7], the distance between Xi and Xj

is computed using the Euclidean distance between xi1 and

xj1, the corresponding minimal reduced test cases, i.e.,

d(Xi, Xj) = d(xi1, xj1)
1. All other test cases generated

during delta debugging are not used.

In this work, we make use of more test cases generated

during the reduction process. Let Xi = (xi1, . . . , xini
) be a

set of failing (small) test cases simplified from the same test

case. We can view each Xi as a small cluster with the same

class label. We propose to calculate distances from such sets

of test cases (instead of a single minimal test) to obtain a

more stable distance.

While there are many ways to compute distance between

two sets Xi and Xj , we use the following two:

• Single-linkage, where the distances d(Xi, Xj) is the

distance of the nearest pair in Xi and Xj :

d(Xi, Xj) = min
1≤u≤ni,1≤v≤nj

d(xiu, xjv).

• Average-linkage, where the distances d(Xi, Xj) is the

average pairwise distances between Xi and Xj :

d(Xi, Xj) =
1

ni · nj

∑

1≤u≤ni,1≤v≤nj

d(xiu, xjv).

We do not recommend using the complete-linkage distance,

where d(Xi, Xj) is the maximum pairwise distance between

Xi and Xj . Such a distance tends to enlarge all the distances

between Xi and Xj compared with single-linkage and

average-linkage, and is sensitive to outliers. Maximizing the

minimum pairwise distance using complete-linkage does not

necessarily enlarge the overall distance between the two sets

Xi and Xj . Thus, it is not potentially as useful as single-

linkage or average-linkage for finding diverse bugs. With the

definition of such distance calculations, we then apply FPF

on the sets of reduced test cases.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Set: Our experiments are based on one of the

data sets in previous published work [7]: using a fuzzing tool

jsfunfuzz [2] and swarm testing [9] to generate test cases

for SpiderMonkey 1.6, a version of Mozilla’s JavaScript

engine that contains an interpreter and several JIT compilers.

We reduced the test cases using delta debugging and kept

1In some cases, previous work also used Levenshtein edit distance, but
this does not scale to large tests and is unlikely to work in some settings;
our approach is more general.

the test cases using the policies presented in Section III-A.

The parameters are set as M = 10 and δ = 4.

We extracted two type of features regarding lexical anal-

ysis and function coverage. Each lexical feature vector con-

sists of an 885-dimensional histogram of tokens (meaningful

character strings) for each test case. The function coverage

sets consists of 1,469 dimensions, with the i-th feature

representing the number of times the JavaScript engine

called the i-th function while executing the test case. All

of the features are normalized using tf-idf [10].

2) Baselines: We compare with two baselines strategies:

Random, where the test cases are examined in random or-

dering, and Reduced [7], where FPF is applied on distances

computed only using the minimal test cases. Past work

[7] has shown that FPF is more effective than clustering

techniques such as [11]. Thus, we do not compare against

baseline strategies based on clustering techniques.

B. Results and Discussions

Figure 1 shows the results of all methods measured with

bug discovery curves. A bug discovery curve [12] shows

how quickly a ranking allows a developer examining the

tests one by one to see at least one instance from each bug

class. A curve that climbs rapidly is better than a curve that

climbs more slowly.

From the results, we can see that FPF is generally better

than the random strategy. The advantage is more significant

using lexical features extracted from test cases. This demon-

strates the advantage of using FPF in general.

For the lexical features (Figure 1(a) and 1(b)), the single-

linkage approach performs similarly to just using the mini-

mal test cases. One possible reason is that the nearest pairs

are mostly the minimal test cases among the two sets. Thus,

using single-linkage does not really differ much from using

only the minimal test cases.

However, for function coverage features (Figure 1(c) and

1(d)), single-linkage with delta debugging trail data works

much better than just using the minimal test cases at the

beginning of the curve, demonstrating the benefits obtained

from additional failing test cases.

For both features, using average-linkage distance allows

more diverse bugs to be found among the top-ranked test

cases (Figure1(a) and 1(c)). This again shows the advantage

of using additional delta debugging data to aid for finding a

better ranking.

One drawback of our method is that, it does not perform

as good as the base line Reduced in the later stage of the

discovery curve. However, in practice the top-k ranked test

cases are usually the most important ones. For the common

case of small k, our method is preferable.

V. CONCLUSIONS

In this paper, we considered the problem of taming a

fuzzer, where the goal is to rank a pool of bug-triggering

0 50 100 150
0

5

10

15

20

test cases

#
 D

is
co

v
er

ed
 C

la
ss

single

average

reduced

random

(a) Test case features, first 150 tests

0 500 1000 1500
0

5

10

15

20

25

30

test cases

#
 D

is
co

v
er

ed
 C

la
ss

single

average

reduced

random

(b) Test case features, all tests

0 50 100 150
0

5

10

15

20

test cases

#
 D

is
co

v
er

ed
 C

la
ss

es

single

average

reduced

random

(c) Function coverage features, first 150 tests

0 500 1000 1500
0

5

10

15

20

25

30

test cases
#
 D

is
co

v
er

ed
 C

la
ss

es

single

average

reduced

random

(d) Function coverage features, all tests

Figure 1. Number of discovered classes as a function of the number of examined test cases. Single and Average use sets of reduced test cases to compute
distances; reduced use the reduced minimal test case. For Single, Average, and reduced furthest point first is applied to find the ranking.

test cases such that diverse bugs are found early in the

ranking. We propose a method to better use delta debugging,

a test case reduction technique, to improve fuzzer taming.

In our method, each test case is first transformed into a

set of test cases that trigger the same bug, gathered from

delta debugging’s trail of progressively reduced test cases.

The distance between the original test cases is redefined

based on these sets of test cases, using single-linkage or

average-linkage distances. We then apply the FPF approach

to rank test cases. Our experiment on Mozilla’s JavaScript

engine shows that using distances between sets of test cases

generally allow us to find more bugs in the beginning of the

ranking, implying a potential usefulness of the non-minimal

failing test cases during the delta debugging.

REFERENCES

[1] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in c compilers,” in PLDI, 2011, pp. 283–
294.

[2] J. Ruderman, “Introducing jsfunfuzz,” Website, http://www.
squarefree.com/2007/08/02/introducing-jsfunfuzz/.

[3] ——, “Mozilla bug 349611,” Website, http://www.squarefree.
com/2007/08/02/introducing-jsfunfuzz/.

[4] A. Groce, K. Havelund, G. Holzmann, R. Joshi, and R.-G.
Xu, “Establishing flight software reliability: Testing, model

checking, constraint-solving, monitoring and learning,” An-
nals of Mathematics and Artificial Intelligence, vol. 70, no. 3,
pp. 315–348, 2014.

[5] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu, “Random
test run length and effectiveness,” in Automated Software
Engineering, IEEE/ACM International Conference on, 2008,
pp. 19–28.

[6] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” Software Engineering, IEEE Trans-
actions on, vol. 28, no. 2, pp. 183–200, 2002.

[7] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr, “Taming compiler fuzzers,” in PLDI, 2013, pp.
197–208.

[8] T. F. Gonzalez, “Clustering to minimize the maximum inter-
cluster distance,” Theoretical Computer Science, vol. 38, pp.
293–306, 1985.

[9] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm
testing,” in ISSTA, 2012, pp. 78–88.

[10] G. Salton, A. Wong, and C.-S. Yang, “A vector space
model for automatic indexing,” Communications of the ACM,
vol. 18, no. 11, pp. 613–620, 1975.

[11] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in ICSE, 2003, pp. 465–475.

[12] D. Pelleg and A. W. Moore, “Active learning for anomaly and
rare-category detection,” in NIPS, 2004, pp. 1073–1080.

