
MuCheck: An Extensible Tool for Mutation Testing of
Haskell Programs

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce
Oregon State University

Corvallis, OR USA
{ledu,alipour,gopinath,alex}@eecs.oregonstate.edu

ABSTRACT
This paper presents MuCheck, a mutation testing tool for
Haskell programs. MuCheck is a counterpart to the widely
used QuickCheck random testing tool for functional pro-
grams, and can be used to evaluate the efficacy of QuickCheck
property definitions. The tool implements mutation opera-
tors that are specifically designed for functional programs,
and makes use of the type system of Haskell to achieve a
more relevant set of mutants than otherwise possible. Mu-
tation coverage is particularly valuable for functional pro-
grams due to highly compact code, referential transparency,
and clean semantics; these make augmenting a test suite or
specification based on surviving mutants a practical method
for improved testing.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Applicative (functional)
languages; D.2.5 [Testing and Debugging]: Testing tools

General Terms
Reliability, Languages

Keywords
Mutatation Testing, Functional Programming Languages,
Mutation Operators, Haskell

1. INTRODUCTION
In mutation testing [1, 5, 12, 13], the source code of soft-

ware under test is modified in small ways (mutated) multi-
ple times, producing a set of programs that (usually) behave
differently than the original program. A test suite is then
applied to the mutants, and the suite is said to kill a mu-
tant when some test (that passes for the original program)
fails for the mutant. That counting killed mutants may pro-
vide an effective measure of test suite effectiveness in detect-
ing real faults is widely known [2], and widely assumed in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

software testing research, especially when evaluating novel
testing techniques [11] and even other coverage criteria [7].

Recent mutation testing research has focused mostly on
imperative programming constructs. At the same time, some
functional or semi-functional programming languages have
attracted many developers. E.g., Twitter is largely written
in Scala. Python, though less cleanly functional than Scala,
is of course both very widely used and often used in a semi-
functional manner. Moreover, some functional programming
idioms, such as lambdas, have appeared in more tradition-
ally imperative programming languages, such as Java and
C++. Thus, there is a need for research in application of
mutation testing to functional programming languages, or
application of mutation testing in the presence of functional
programming idioms.

As a starting point, we have developed the MuCheck1

framework for mutation of Haskell program to allow re-
searchers to run empirical or experimental studies on mu-
tation testing of functional programming languages (in this
case Haskell). We targeted Haskell because it has a rel-
atively mature set of test frameworks that are popular in
its community, allowing smooth integration of our mutation
tool with the existing test frameworks. Haskell also serves as
a kind of “laboratory” for functional programming research
and development.

MuCheck works in conjunction with QuickCheck [4] and
the HUnit test framework. QuickCheck is a declarative test-
ing framework for Haskell. QuickCheck provides a domain
specific language for programmers to declare the properties
a function (or a program) should satisfy and to set param-
eters for random test generation. QuickCheck generates
random tests to check the properties. MuCheck analyzes
QuickCheck properties and uses mutation testing to deter-
mine the effectiveness of properties (and the tests QuickCheck
generates based on those properties). It also supports the
HUnit framework for unit testing Haskell programs.

Mutation testing for functional programming languages
differs from mutation testing in imperative languages. Some
features, such as higher order functions, introduce new po-
tential sources of bugs which can translate into new muta-
tion operators. Such features are either not common or they
are irrelevant in imperative programs. Conversely, some
mutation operators, such as the statement deletion oper-
ator, are irrelevant for strongly-typed functional programs.
A new set of mutation operators is required for functional
programs. MuCheck introduces a new set of mutation op-

1MuCheck is open source and can be accessed at https:
//bitbucket.org/osu-testing/mucheck.git.

https://bitbucket.org/osu-testing/mucheck.git
https://bitbucket.org/osu-testing/mucheck.git

1type Rational = (Integer , Integer)
2equal:: Rational -> Rational -> Bool
3equal (_,0) (_,0) = True
4equal (_,0) _ = False
5equal _ (_,0) = False
6equal (n1,d1) (n2,d2) = n1*d2 == n2*d1

Figure 1: An example for pattern matching in
Haskell. Function equal checks the equality of two
rational numbers.

erators that target functional programs. It also provides a
simple domain specific language (DSL) that can be used to
define new mutation operators.

In this paper, we first introduce a set of mutation opera-
tors specific to functional programming languages (Section
2). We use examples in Haskell to explain each of the op-
erators; however these operators can be adopted for other
functional languages, including the ML family and Scala.
Section 3, describes the architecture of MuCheck. Section 4
follows with an illustration of application of MuCheck on a
small program. Section 5 discusses some of the key research
questions for mutation testing of functional programs.

2. MUTATION OPERATORS
In this section we discuss the selection of mutation opera-

tors for functional programming languages. Proper selection
of operators is key to successful mutation testing, given its
underlying rationale of detecting the ability of a test suite
to find “nearby” bugs.

As discussed earlier, functional programming languages
introduce the possibility of new types of mutation operators.
In this rest of this section, we propose mutation for basic
constructs of functional programs — we consider these op-
erators suitable for functional programs, but not sufficient.
We use Haskell notation to illustrate operators. We also dis-
cuss the possible semantic effects of each mutation operator.

2.1 Re-ordering for Pattern Matching
Pattern matching is a common idiom in functional pro-

grams. It is a form of conditional statement that matches a
variable with respect to its structure to different patterns.
Each pattern is associated with rules, such that if the pat-
tern matches, the rules are executed. The ordering of rules
in patterns is often critical to the behavior of the program.
That is, the program can behave differently given different
ordering of the patterns.

Figure 1 shows an example of pattern matching in Haskell.
This program defines rational numbers, Rational, as tu-
ples of (numerator,denominator) (Line 1). Function equal

defines a function to check equality between two rational
numbers (Line 2). It first checks if the denominators are
zero (Line 3). If both denominators are zero, both ratio-
nal numbers are equal (note that a fraction with zero in the
denominator evaluates to ∞). Then, in Lines 4 and 5, if
the denominator of one of the numbers is zero, the num-
bers are not equal. Otherwise, Line 6 multiplies numerators
and denominators to check equality. Note that symbol _ is
a wildcard that matches all patterns. Suppose we reorder
the pattern matching by moving the pattern on line 6 to an
earlier position, say Line 2. This reordering would change
the semantics of equal and introduces a bug, because now
equal returns true on 0

0
equal to 1

2
.

take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

(a)

take ’ _ [] = []
take ’ 0 _ = []
take ’ n (x:xs) = x : take ’(n-1) xs

(b)

Figure 2: An example of divergence induced by mu-
tation of pattern matching

Re-ordering of pattern matching statements can also ex-
hibit subtle behaviors of interest such as divergence. Con-
sider the functions take and take’ in Figure 2; both return
the first n elements of a list. take and take’ are similar
except in the order of their patterns. Given a computation
⊥ that does not terminate (e.g., a generator of an infinite
list), take 0 ⊥ evaluates to [] while take’ 0 ⊥ evaluates
to ⊥, i.e. it does not terminate.

In general, in pattern matching, if patterns of two or more
rules are not mutually exclusive, any change in ordering of
those rules potentially makes a semantic difference, and is
likely to be an error in the program.

2.2 Mutation of Lists and List Expressions
Lists are the most commonly used data structures in func-

tional programs. Many core functional idioms such as map,
filter, and reduce/fold operate on lists. Thus, mutants
based on lists are good candidates for mutations testing. We
speculate that the following mutants represent a majority of
list-related bugs.

• Replacing a list with the identity element (empty list).

• replacing head:tail with tail or [head]

• replacing l1 ++ l2, where l1 and l2 are lists and ++

denotes concatenation of two lists, with: l2 ++ l1, l1,
or l2.

2.3 Type-aware Function Replacement
In functional programs, functions are first class citizens.

That is, they can be passed to other functions as parame-
ters and they can be returned by a function. In strongly
typed functional languages, the type of a function is avail-
able at compile time. In traditional mutation of imperative
programs, the mutation operators are fairly restricted, and
well known, with “function” replacement usually limited to
simple operators, as in the rules stated above.

Given that strongly typed functional languages offer a
much richer type system, it is tempting to consider replacing
any functions with all type-equivalent functions. However,
this seems in practice to have two problems: (1) it may intro-
duce a mutation explosion and (2) many of these mutants do
not appear to be likely to correspond to likely actual faults.
Therefore, it is more practical to allow users to add rules
for any cases where function replacement is a useful muta-
tion. There may be some cases that should be included as
standard mutations: for instance, the effect of replacing a
function of type a -> a with the identity function2 corre-

2The identity function does not do any computation and
returns the input as the output.

sponds to the “statement deletion” mutation that eliminates
computation in imperative mutation.

3. MUCHECK ARCHITECTURE
In this section, we describe the major building blocks of

MuCheck. These modules are: Mutation DSL, Mutation
Generation and Mutation Execution.

3.1 Mutation DSL
MuCheck provides a DSL to implement definition of the

mutation operators in Section 2. Users also can use this DSL
to define new mutation operators or alter the existing ones.

In this DSL, a mutation operator is a function that re-
places a given value with its mutant replacement. MuCheck
provides three polymorphic operators ==>, ==>*, and *==>*

as a domain specific language for defining mutation opera-
tors. a ==> b states that a should be replaced by b. a ==>*

[b1, b2] states that a should be replaced by either b1 or
b2. [a1, a2] *==>* [b1, b2] indicates that either a1 or
a2 should be replaced by either b1 or b2.

3.2 Mutation Generation
The mutation generation module can be further divided

into two smaller modules: mutation configuration, and ab-
stract syntax manipulation.

3.2.1 Mutation Configuration
Users can configure different parameters of mutation test-

ing: (1) choosing between first-order mutation and higher
order mutation, (2) maximum number of mutants to gen-
erate, (3) mutation operators to apply, and (4) HUnit test
cases and/or QuickCheck specifications.

3.2.2 Abstract Syntax Manipulation
MuCheck uses the Scrap Your Boilerplate library [14] to

manipulate abstract syntax trees, which are produced by
the haskell-src-exts library parser [3]. The mutation al-
gorithm traverses the nodes in the syntax tree and non-
deterministically applies each mutation operator. The al-
gorithm outputs syntactically unique mutants.

3.3 Mutation Execution
MuCheck supports HUnit and QuickCheck properties. HU-

nit is a unit testing framework. QuickCheck takes an al-
gebraic specification and checks it over a set of randomly
generated test cases [4].

MuCheck uses the Haskell interpreter Hint package [10]
to dynamically load mutants and run tests. After execution
of mutants, MuCheck outputs a short test summary on the
terminal and a detailed log file containing test results and
giving a pointer to the location of all surviving mutants for
examination by the user.

4. EXAMPLE: QUICK SORT
In this section, we show how to use MuCheck to generate

mutants for a simple program. We use qsort (Figure 3)
as the running example. qsort implements the quick sort
algorithm. The following QuickCheck properties are defined
to test the qsort function.

idempProp xs = qsort xs == qsort (qsort xs)
sortedProp xs = isSorted (qsort xs)

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort l ++ [x] ++ qsort r

where l = filter (< x) xs
r = filter (>= x) xs

Figure 3: An Implementation of Quick Sort in Haskell

Total number of mutants: 13

quickCheckResult idempProp
Successes (not killed): 2 (15%)
Failures (killed): 11 (84%)
...
quickCheckResult sortedProp
Successes (not killed): 5 (38%)
Failures (killed): 8 (61%)

Figure 4: Snippet of results generated by
QuickCheck

idempProp property states the idempotency of sorting op-
erations. sortedProp property states that qsort must out-
put a sorted list (we omit the implementation of isSorted
for brevity).
Configuration: The following shows the configuration of
mutation testing for this experiment.

stdArgs = StdArgs {muOps = allOps
, doMutatePatternMatches = True
, doMutateValues = True
, doNegateIfElse = True
, doNegateGuards = True
, maxNumMutants = 30
, genMode = FirstOrderOnly }

muOps is set to use a set of pre-defined mutation operators,
but these can be replaced by user-defined operators. doMu-

tatePatternMatches specifies whether MuCheck will per-
mute pattern-matching cases. doMutateValues enables mu-
tating integer values to four constants: (+1), (-1), 0, and 1.
doNegateIfElse negates the Boolean formula of if-then-

else statements, while doNegateGuards provides the same
functionality for guards. maxNumMutants limits the maxi-
mum number of mutants to be generated. genMode is either
FirstOrderOnly or FirstAndHigherOrder. FirstOrderOnly
limits the application of mutation operators to one opera-
tor per mutant. FirstAndHigherOrder will apply opera-
tors once, and then re-apply operators on generated mutants
when possible.
Result of mutation: Given above configuration, MuCheck
produces the results in in Figure 4, showing that 13 mutants
have been generated and tested. idempProp kills 11 out of 13
mutants while sortedProp only detects 8 out of 13 mutants.

5. DISCUSSION
Functional languages such as Haskell and OCaml have

been traditionally limited to specific (if important) sectors
such as the financial and security industries. Recently, func-
tional programming languages have gained broader popu-
larity. Use of Scala in the backbone of Twitter and Erlang
in WhatsApp signifies the growing importance of functional
approaches. Properties such as code compactness and refer-
ential transparency have convinced designers of imperative
languages such as C++ and Java to add functional idioms
into their languages.

The increasing use of functional programming languages
and idioms requires adapting and devising testing techniques
for them. In this section, we summarize questions that need
to be addressed in mutation of functional languages, and
discuss how MuCheck can be utilized to answer them.

5.1 Competent Programmer Hypothesis
According to Demillo et al. [6], programmers write soft-

ware that is close to being correct. The competent pro-
grammer hypothesis, along with coupling (the idea that if
a test kills a complex change, it tends to kill the changes
that compose it), forms the foundation of mutation analy-
sis. The competent programmer hypothesis is also the basis
for various mutation operators proposed — operators are
often designed to model the common mistakes a competent
programmer makes, so that the mutations introduced are
similar to real faults.

While this seems intuitively true, there exists very lit-
tle evidence to support this assertion. Secondly, our recent
study [9] found that the kind of mistakes made in programs
are very much dependent on the language of the program is
produced. Different languages tend to have different distri-
butions of syntactical fault patterns. Critically, Haskell was
found to be very different from the other languages studied
(C, Java, and Python) in the distribution of bug patterns.

This suggests that mutation operators from other lan-
guages may not be a good fit for languages such as Haskell.
We have, in this paper adopted a strategy of rethinking the
mutation operators needed for Haskell, so that our muta-
tions are better able to emulate fault patterns in Haskell.

5.2 Mutation Operators
In this paper, we have defined and implemented a number

of mutation operators. There may be other useful mutation
operators for functional programs. The mutation DSL of
MuCheck allows researchers to easily define such operators
and evaluate their effectiveness.

5.3 Reducing the Cost of Mutation Testing
As in traditional mutation testing, mutation of functional

programs can result in a large number of mutants. Se-
lective mutation [15, 16] and mutation sampling [8, 17, 18]
have shown how to reduce the number of mutants while
preserving the power of mutation testing. Selective muta-
tion and sampling techniques have not been evaluated for
functional programs. The presence of type-aware mutation
operators can potentially introduce a large number of mu-
tants. MuCheck can be used to investigate these issues.

6. CONCLUSION
This paper presented MuCheck, a mutation testing tool

for Haskell programs. We presented some mutation opera-
tors for functional programming languages in general, and
have implemented them for the Haskell language. We ex-
plained the architecture and basic use of MuCheck and dis-
cussed potential applications of MuCheck in further studies
in (functional) mutation testing.

7. REFERENCES
[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton,

and F. G. Sayward. Mutation analysis. Technical
report, Georgia Institute of Technology, 1979.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In International Conference on Software Engineering,
pages 402–411, 2005.

[3] N. Broberg. The haskell-src-exts package. http:
//hackage.haskell.org/package/haskell-src-exts.

[4] K. Claessen and J. Hughes. Quickcheck: a lightweight
tool for random testing of haskell programs.
SIGPLAN Not., pages 53–64, 2011.

[5] R. DeMillo, R. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.
Computer, 11(4):34–41, 1978.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, 1978.

[7] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov. Comparing non-adequate
test suites using coverage criteria. In ACM
International Symposium on Software Testing and
Analysis. ACM, 2013.

[8] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen,
and A. Groce. An empirical comparison of mutant
selection approaches. under submission.

[9] R. Gopinath, C. Jensen, and A. Groce. Mutant
census: An empirical examination of the competent
programmer hypothesis. In Technical Report, School of
EECS, Oregon State University.

[10] D. Gorin. The hint package - runtime haskell
interpreter.
http://hackage.haskell.org/package/hint.

[11] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr.
Swarm testing. In International Symposium on
Software Testing and Analysis, pages 78–88, 2012.

[12] R. Hamlet. Testing programs with the aid of a
compiler. Software Engineering, IEEE Transactions
on, SE-3(4):279–290, 1977.

[13] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649–678,
2011.

[14] R. Lämmel and S. P. Jones. Scrap your boilerplate: a
practical design pattern for generic programming. In
Proceedings of the 2003 ACM SIGPLAN international
workshop on Types in languages design and
implementation, TLDI ’03, pages 26–37, 2003.

[15] A. Mathur. Performance, effectiveness, and reliability
issues in software testing. In Computer Software and
Applications Conference, 1991. COMPSAC ’91.,
Proceedings of the Fifteenth Annual International,
pages 604–605, 1991.

[16] A. Offutt, G. Rothermel, and C. Zapf. An
experimental evaluation of selective mutation. In
Software Engineering, 1993. Proceedings., 15th
International Conference on, pages 100–107, 1993.

[17] W. Wong and A. P. Mathur. Reducing the cost of
mutation testing: An empirical study. Journal of
Systems and Software, 31(3):185 – 196, 1995.

[18] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid.
Operator-based and random mutant selection: Better
together. In IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2013.

http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/hint

	Introduction
	Mutation Operators
	Re-ordering for Pattern Matching
	Mutation of Lists and List Expressions
	Type-aware Function Replacement

	MuCheck Architecture
	Mutation DSL
	Mutation Generation
	Mutation Configuration
	Abstract Syntax Manipulation

	Mutation Execution

	Example: Quick Sort
	Discussion
	Competent Programmer Hypothesis
	Mutation Operators
	Reducing the Cost of Mutation Testing

	Conclusion
	References

