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ABSTRACT
Automated test generation tools (we hope) produce failing tests
from time to time. In a world of fault-free code this would not
be true, but in such a world we would not need automated test
generation tools. Failing tests are generally speaking the most
valuable products of the testing process, and users need tools that
extract their full value. �is paper describes the tools provided by
the TSTL testing language for making use of tests (which are not
limited to failing tests). In addition to the usual tools for simple
delta-debugging and executing tests as regressions, TSTL provides
tools for 1) minimizing tests by criteria other than failure, such as
code coverage, 2) normalizing tests to achieve further reduction and
canonicalization than provided by delta-debugging, 3) generalizing
tests to describe the neighborhood of similar tests that fail in the
same fashion, and 4) avoiding slippage, where delta-debugging
causes a failing test to change underlying fault. �ese tools can be
accessed both by easy-to-use command-line tools and via a powerful
API that supports more complex custom test manipulations.
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1 INTRODUCTION
Automated test generation tools, in essence, exist in order to pro-
duce failing tests. However, once a tool has produced either one
such test or a large set of such tests, the real work of a user of
such a tool begins in earnest. First, users of course wish to be
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able to replay failed tests, and run batches of tests as regressions
(possibly collecting code coverage information as well). If the test
format of a tool is not executable, it is also useful to be able to
produce executable, standalone tests. Second, with most test gen-
eration methods, it is important to reduce the size of the test to
make it easier to understand (and quicker to run as a regression
test) [7, 10, 20, 21, 29]. Most industrial-strength automated testing
systems support test minimization, usually using a variation of
delta-debugging [22, 27, 28]. Some such systems make it easy to
customize the criteria by which a test is reduced. However, such
systems usually do not provide algorithmic defenses against the
problem of slippage (where, in the absence of a good failure label-
ing system, the reducer may change a failure due to one fault to
a failure due to another, and o�en less interesting, fault [4, 16]).
Additionally, a user may want to semantically simplify a test, to
make it not only shorter but simpler and less complex in ways that
go beyond mere test length [9]. Such functionality is less common,
or only a byproduct of specialized minimization methods. Finally,
users may want to be informed of the neighborhood of a failing
test: which similar tests also fail (and, equally important, which
similar tests do not fail) [9]. Again, this functionality is usually not
present in current automated test generation tools.

�e TSTL testing language and tool, currently implemented for
testing Python programs, supports all of these features, both as
command-line tools and API interfaces for more complex uses.

2 A BRIEF TSTL PRIMER
TSTL [12, 13, 17] is a language, tool suite, and “library constructor”
for testing Python programs. TSTL aims to o�er both the immedi-
ate feedback of property-driven testing tools like �ickCheck and
Hypothesis [5, 22] and longer-term automated test generation, as
well as serve as a platform for experimenting with novel test gener-
ation and test manipulation methods. Unlike most�ickCheck-like
tools, TSTL is focused on generating unit tests that consist of se-
quences of method/function calls [2], rather than generating input
data for functions (though TSTL can generate arbitrary data, since
data creation is usually easily expressed as a sequence of construc-
tions and modi�cations of data). TSTL is available on github at
h�ps://github.com/agroce/tstl. Simply typing pip install tstl
on a system with pip installed will also install TSTL.

�e user of TSTL writes a test harness [8] that describes the
actions that are possible during testing, and the pools of values that
are generated during testing (these are both the inputs to methods
tested and the objects to be tested, in most cases). Figure 1 shows a
simple TSTL harness to test a Python stack implementation. �e
harness creates integer values (in the range 1-20) and stacks, up
to 4 of each. It calls the various methods of the stack. For stack

https://github.com/agroce/tstl
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@import stack

pool: <stack> 4 # These are the variables used in tests,
pool: <value> 4 # stack0...stack3 and value0...value3

<value> := <[1..20]> # := is Python assignment, but
<stack> := stack.Stack() # marks a value as initialized

<stack>.push(<value>) # This is a test action
{IndexError} <value> := <stack>.pop() # ... as are all these
not <stack,1>.isEmpty() -> <value> := <stack>.pop()
{IndexError} <value> := <stack>.peek()
not <stack,1>.isEmpty() -> <value> := <stack>.peek()

Figure 1: A simple TSTL harness for a stack.

operations that can cause under�ow, there is both a version of the
action that guards the action with a check on stack emptiness and
a version that throws away the return value and allows the call
to throw an IndexError exception. TSTL also supports automatic
di�erential [24] testing, where one implementation serves as a
reference model for the So�ware Under Test, and other features.
See the journal paper on TSTL [17] or the online documentation
on github for more details.

To make use of the stack harness, we save it into a �le, such as
stack.tstl. �en at a command prompt, we compile the �le into
a standalone interface for testing the stack, sut.py, and (usually)
invoke the basic TSTL testing tool, tstl rt to look for faults.

> tstl stack.tstl
> tstl rt --timeout 30

If we forget how to use the tools, all TSTL command line tools
produce a full list of options when called with the --help argu-
ment. For most tools this list is short and simple; the “random tester”
tstl rt, however, has a very large number of options, since it sup-
ports pure random testing, swarm testing [15], genetic-algorithm
based testing, control over action probabilities, Markov-model
driven testing, and a large array of other con�guration se�ings.

TSTL generates 738 tests (of 100 operations each) and performs
73,749 actions. In this case, there is no fault to be found. �is paper
describes the tools TSTL provides for working with tests in the
instance when a fault is detected.

3 THE BASIC TSTL TEST TOOLS
Instead of the fault-free stack, we can test a real-world program
with real faults, such as the SymPy library for performing symbolic
mathematics in Python [1]. �e SymPy harness can be found in
the TSTL github repository examples/sympy directory.

> tstl sympy.tstl
> tstl rt --swarm --noCover --full

...
UNCAUGHT EXCEPTION
ERROR: (<type ’exceptions.RuntimeError’>,
RuntimeError(’maximum recursion depth exceeded’,)

...
return func(a, b)

...
SAVING TEST AS failure.67076.test

...
STOPPING TESTING DUE TO FAILED TEST
36.4984600544 TOTAL RUNTIME
> wc -l failure.67076.test
72
> head -n5 failure.67076.test
self.p v[3] = sympy.Symbol(’j’,positive=True)
self.p expr[0].evalf()
self.p expr[0] = self.p expr[0] + self.p expr[3]
self.p expr[3] = self.p expr[3] + self.p expr[1]
self.p expr[1] = self.p expr[3] % self.p expr[0]

We have instructed the random tester to use swarm testing [15]
and not collect code coverage, in order to improve the chances of
quickly �nding a fault. By default tstl rt uses delta-debugging
to minimize tests before saving them, but we have also instructed
tstl rt to simply save the original test case --full. �e unre-
duced test (which causes Python to enter an in�nite recursion se-
quence) consists of 72 steps, saved in a non-executable, technically
(but not very) human-readable, textual format (in an automatically
generated �le name, based on the process ID). �is is not a very
useful test, so we want to reduce it:

> tstl reduce failure.67076.test reduced.test --noNormalize
STARTING WITH TEST OF LENGTH 72
REDUCING...
REDUCED IN 31.3780119419 SECONDS
NEW LENGTH 7
ALPHA CONVERTING...
c0 = sympy.Integer(4) # STEP 0
c1 = sympy.Integer(9) # STEP 1
v0 = sympy.Symbol(’k’,positive=True) # STEP 2
expr0 = sympy.Rational(c1,c1) # STEP 3
expr1 = sympy.Product(expr0,(v0,c0,c0)) # STEP 4
expr2 = c1 # STEP 5
expr3 = expr2 % expr1 # STEP 6

�is test, reduced using standard delta-debugging [29], is short.
Also, note that TSTL automatically alpha-converts the test so that
it uses variables to store intermediate values in a reasonable way
(starting with v0 rather than arbitrarily beginning with v3, for
example). However, the test is neither as short as possible nor,
more importantly, as simple as possible. For debugging we may
well wonder: does it ma�er that c0 is 4 and c1 is 9? Is the use of the
variable k relevant? If we want to know the answers, we can run
the reducer to normalize [9] the test, in place of simply reducing it:

> tstl reduce reduced.test normalized.test --noReduce
STARTING WITH TEST OF LENGTH 7
NORMALIZING...
NORMALIZED IN 383.565114975 SECONDS
NEW LENGTH 5
c0 = sympy.Integer(1) # STEP 0
v0 = sympy.Symbol(’a’) # STEP 1
expr0 = c0 # STEP 2
expr1 = sympy.Sum(expr0,(v0,c0,c0)) # STEP 3
expr0 = expr0 % expr1 # STEP 4

Notice that normalizing a test is much more expensive than
simply reducing it, but the payo� is an even shorter and simpler
test1. By default, the TSTL random test generator reduces tests
before saving them, and the standalone tstl reduce tool is used to
normalize interesting tests. Calling tstl rtwith the --normalize
option avoids going through the standalone tool. Normalization
here pays o� by revealing that the use of a Rational and exact
numeric/symbol values are not relevant.

Now that we have an extremely simple test, we can replay it in
a “verbose” mode to see more exactly what is happening during
the test, as shown in Figure 2. �is shows the values, types, and
changes in values of every pool variable involved in each step of
the test (and would show the state of a reference implementation,
if we were performing automated di�erential testing).

In addition to replaying a single test, we can replay a number
of saved tests using the tstl regress command, which takes as
input a list of all test �les to run, and produces a coverage report in
addition to the outcome of each test. By default it stops on the �rst
1For details on how much shorter and simpler, see the conference paper on test case
normalization and generalization [9]. Note that normalization times are usually faster
in the current release than reported in that paper, due to the implementation of a
useful heuristic for reducing nearly 1-minimal tests suggested by David R. MacIver
[23], the author of the Hypothesis tool.
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> tstl replay normalized.test --verbose
STEP #0: ACTION: c0 = sympy.Integer(1)
c0 = None : <type ’NoneType’>
=> c0 = 1 : <class ’sympy.core.numbers.One’>
==================================================
STEP #1: ACTION: v0 = sympy.Symbol(’a’)
v0 = None : <type ’NoneType’>
=> v0 = a : <class ’sympy.core.symbol.Symbol’>
==================================================
STEP #2: ACTION: expr0 = c0
c0 = 1 : <class ’sympy.core.numbers.One’>
expr0 = None : <type ’NoneType’>
=> expr0 = 1 : <class ’sympy.core.numbers.One’>
==================================================
STEP #3: ACTION: expr1 = sympy.Sum(expr0,(v0,c0,c0))
c0 = 1 : <class ’sympy.core.numbers.One’>
v0 = a : <class ’sympy.core.symbol.Symbol’>
expr0 = 1 : <class ’sympy.core.numbers.One’>
expr1 = None : <type ’NoneType’>
=> expr1 = Sum(1, (a, 1, 1)) : <class ’sympy.concrete.summations.Sum’>
==================================================
STEP #4: ACTION: expr0 = expr0 % expr1
expr0 = 1 : <class ’sympy.core.numbers.One’>
expr1 = Sum(1, (a, 1, 1)) : <class ’sympy.concrete.summations.Sum’>
RAISED EXCEPTION: <type ’exceptions.RuntimeError’>
maximum recursion depth exceeded in cmp

FAILED STEP
(<type ’exceptions.RuntimeError’>,
RuntimeError(’maximum recursion depth exceeded in cmp’,)
...

Figure 2: Verbose replay of a TSTL test.

failing test, but can be directed to run all tests with --keepGoing.
Regression runs can also generate an HTML coverage report using
the facilities of the coverage.py library [3].

Finally, we can generalize the test, to see what alternative, similar
tests also produce the same failure:

> tstl generalize normalized.test
GENERALIZING...
#[
c0 = sympy.Integer(1) # STEP 0
# or c0 = sympy.Integer(2)
# - c0 = sympy.Integer(10)
v0 = sympy.Symbol(’a’) # STEP 1
# or v0 = sympy.Symbol(’b’)
# - v0 = sympy.Symbol(’d’)
# or v0 = sympy.Symbol(’x’)
# - v0 = sympy.Symbol(’z’)
# or v0 = sympy.Symbol(’e’,positive=True)
# - v0 = sympy.Symbol(’l’,positive=True)
# swaps with step 2
#] (steps in [] can be in any order)
expr0 = c0 # STEP 2
# or expr0 = sympy.Rational(c0,c0)
# or expr0 = sympy.pi
# or expr0 = sympy.E
# or expr0 = sympy.I
# swaps with step 1
expr1 = sympy.Sum(expr0,(v0,c0,c0)) # STEP 3
# or expr1 = sympy.Product(expr0,(v0,c0,c0))
expr0 = expr0 % expr1 # STEP 4
# or expr2 = expr0 % expr1
# or expr3 = expr0 % expr1
GENERALIZED IN 239.682291985 SECONDS

With this information, the basic underlying structure of the fault
is made clear: using the modulo operator on a Sum or Product over
an empty range (whether that range is 2 . . . 2 or π . . . π , with any
variable name allowed by our SymPy harness, causes the failure.
�e ordering of operations, other than to the extent required for
data �ow, is not important.

Now that we understand the fault, we may want a non-TSTL
test to run in a debugger to try out possible solutions. Generating
a standalone Python executable test is easy:

> tstl standalone normalized.test normalized.py

In this example, reduction or normalization has always been with
respect to a failure. However, simply by providing the --coverage
option to tstl reduce or tstl generalize the same approaches
can be applied to reduce tests by their code coverage, a useful
method for producing very e�cient regression tests [6, 7]. Running
tstl rt with the --quickTests option will also produce a suite
of such coverage-based reduced regression tests.

4 AVOIDING SLIPPAGE
Test slippage [4, 16] is when a weak labeling of failed tests (e.g.,
simply checking that a failing test still causes some kind of uncaught
exception) results in a test that originally failed due to one fault
being reduced to a test that fails due to a di�erent fault.

�ere is a need for �exibility in handling slippage and fault signa-
tures in general; with some programs, many exceptions may reveal
the same fault, with other programs even the same assertion on the
same line of code can be violated due to di�erent underlying faults.
TSTL therefore provides a few ways to avoid slippage, and also
some ways to intentionally induce “good” slippage where a failing
test is reduced to produce multiple tests that fail due to di�erent
faults [16]. First, the random test generator and the reduction, and
generalization tools all take the --keepLast option, which forces
reduced tests to have the same �nal action as the original test. �is
is a heuristic for avoiding slippage discovered during �le system
testing at NASA [10]. Second, the reducer and generalizer take
a --matchException argument that forces reductions to fail due
to the same type of exception (but not exact message); this is the
default behavior for the random tester, where the user has more
reason to be concerned about losing the original fault since it is not
stored in a �le.

While these methods are useful for producingmore precise labels
for failure, they are not helpful in instances where precise labeling
is impossible, such as many di�erential testing se�ings [4]. For
these cases, and for using reduction as a mutation-based fuzzing
tool to look for new faults, TSTL provides two more modes. First,
using the --multiple option con�gures tstl reduce to use the
comb-block algorithm [16] to a�empt to produce as many reduced
tests as possible, that are all as di�erent as possible from each other.
�e e�ort extended to consider combinations of test components
can be con�gured with the --recursive and --limit options. Sec-
ond, the --random �ag to the reducer causes the order of possible
reductions to be randomized, so that di�erent runs of the reducer
will produce di�erent reduced tests.

5 API ACCESS TO TOOL FUNCTIONALITY
In addition to the command-line tools described here, TSTL also
makes it easy to perform sophisticated test manipulations in code.
When a TSTL harness is compiled it produces an sutmodule provid-
ing an abstract interface for testing the SUT. It is this interface that
tstl rt, tstl reduce, and the other tools interact with, making
test generation and manipulation independent of the SUT.

�e interface includes reduce, normalize and generalizemeth-
ods for reduction and normalization that provide many more pa-
rameters for �ne-tuned control of the algorithms than are provided
by the command line tools. �ese methods are all higher-order
functions, so the predicate for the algorithm to maintain as true
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can be an arbitrary function of a test. �e interface to the SUT
also provides methods to return commonly used predicates, such
as matching the coverage of a test, or failing a property check.
Because TSTL’s reduction implementations do not require their
initial input to satsify the predicate, this can be used for unusual
applications. For example, if are testing an XML parser, have a long,
high-coverage test, and wish to modify it to produce an input that
takes as long as possible to parse, we can de�ne a function:

def takesLonger(t):
global WCET, SUT
start = time.time()
SUT.replay(t)
elapsed = time.time() - start
if elapsed > WCET:

WCET = elapsed
return True

return False

and call SUT.reduce(longTest,takesLonger) a�er se�ingWCET
to the runtime for the initial test.

6 RELATEDWORK
�e tools described here are obviously inspired by delta-debugging
[29] and the idea that tests should not contain extraneous parts not
needed to cause test failure (or other behavior of interest [6, 7]).
Delta-debugging and slicing [21] produce subsets of the original
test, but do not modify parts of the test to obtain further simplicity.
Our work on normalization [9] extends this idea to rewrite tests
into a more canonical’ form.

Zhang [30] proposed an approach to semantic test simpli�cation
that is also able to modify, rather than simply remove, portions of
a test. However, Zhang’s simpli�cation operates directly over a
fragment of Java, rather than using an abstraction of test actions,
with limited power: no new methods can be invoked, statements
cannot be re-ordered, and no new values are used. It also does not
even force a test to use �xed variable names when variable name
is irrelevant. CReduce [27] performs some simple normalization
as part of its test reduction for C code. By writing a TSTL harness
that is in the form of constructor calls to create an AST, TSTL can
reduce and normalize hierarchically structured input data in ways
similar to CReduce and Hierarchical Delta Debugging [25]. �e
methods for avoiding slippage are based on both our recent work
[16] and older heuristics for avoiding test slippage [10].

�e most closely related work to our test generalization [9] is
Pike’s SmartCheck [26]. SmartCheck works with algebraic data
in Haskell, and is an alternative approach to reduction and gener-
alization. �e only other work we are aware of that is similar to
generalization concerns causality in model checking counterexam-
ples [11, 14, 18].

7 CONCLUSIONS AND FUTUREWORK
�is paper presents a set of tools, part of the TSTL [17] testing
language and tool suite, for le�ing users make the most of the tests
the tool generates. In addition to standard replay, regression, and
minimization, TSTL implements some powerful new techniques
from the recent literature for manipulating tests [9, 16].

As future work, we plan to continue to develop TSTL’s tools for
working with tests. Some improvments are simple: for instance,
the TSTL random tester currently provides simple fault localization
over the tests generated during a run (if there are any failures) [19],

but not for regression tests. More importantly, we plan to continue
to use TSTL as a platform for experimenting with and making
available novel methods for making use of automatically generated
tests, including methods for composing and de-composing tests
and generating information from tests that can be used to guide
future testing.
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