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ABSTRACT

Test reduction has long been seen as critical for automated testing.
However, traditional test reduction simply reduces the length of
a test, but does not attempt to reduce semantic complexity. This
paper extends previous efforts with algorithms for normalizing and
generalizing tests. Rewriting tests into a normal form can reduce
semantic complexity and even remove steps from an already delta-
debugged test. Moreover, normalization dramatically reduces the
number of tests that a reader must examine, partially addressing
the “fuzzer taming” problem of discovering distinct faults in a set
of failing tests. Generalization, in contrast, takes a test and reports
what aspects of the test could have been changed while preserving
the property that the test fails. Normalization plus generalization
aids understanding of tests, including tests for complex and widely
used APIs such as the NumPy numeric computation library and the
ArcPy GIS scripting package. Normalization frequently reduces the
number of tests to be examined by well over an order of magnitude,
and often to just one test per fault. Together, ideally, normalization
and generalization allow a user to replace reading a large set of
tests that vary in unimportant ways with reading one annotated
summary test.
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1 INTRODUCTION

It has long been understood that effective automated testing often
requires test reduction [25, 39, 40, 50] to produce useful tests. In fact,
test reduction is now standard practice in industrial testing tools
such as Mozilla’s jsfunfuzz [45-47].! However, simply reducing
the length of a test does not produce true semantic simplicity. There
may be many 1-minimal?® tests that present different variations of
a single fault. Far too often, reading more than one of these tests
provides no additional information on the fault.

Consider the three 1-minimal tests in Figure 1. These tests are
very similar, and all result in an unbalanced AVL tree (due to a
missing call to rebalance in delete). However, the tests are syn-
tactically different, and a testing system that collects failing tests
will present all three of these tests to a user. In this paper we pro-
pose to go beyond test reduction and convert all three of these
tests into a single, normalized form that preserves failure while
deemphasizing accidental aspects of each test, such as particular
integer values and variable names, and ordering of steps.

Figure 2 shows the result of applying our test normalization
algorithm to the three tests in Figure 1, and then applying our
test generalization algorithm to the normalized test. All three tests
normalize to the same test. Normalization is enabled by a term
rewriting algorithm [14, 36] that operates on the level of test actions,
and is thus language-agnostic: it works by successively rewriting
tests into “simpler” versions that preserve failure and are likely to
retain the underlying cause of the failure. Many different reduced
tests therefore normalize to the same form. Unlike delta-debugging,
normalization applies even to 1-minimal tests, and often provides
further reduction beyond the level of 1-minimality.

The test also includes comments, produced by our generalization
[43] algorithm, indicating what about the test can be changed while
preserving the property that the test fails. Generalization uses auto-
mated experiments to discover a semantic neighborhood of failing
tests. E.g., the value 1 assigned to int® in step 0 is not essential.
It could be changed to any value in the range 5-20. Similarly, the
exact ordering of many steps in the test is inessential. Changing
any of these aspects of the test (one at a time) will preserve failure.
Generalization shows the user how a failure represents a family of
similar failing tests.

Combining normalization and generalization avoids common
problems with understanding automatically generated tests. For

! Approaches that optimize for short tests [9, 18] may not require reduction, but random
testing [7, 33], model-checking [20], and symbolic execution [51] can all benefit.
2No single component of a 1-minimal/delta-debugged [50] test can be removed without
causing the test to pass.
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Test #1 Test #2 Test #3

avle = avl.AVLTree() into = 14 avll = avl.AVLTree()
into = 4 avle = avl.AVLTree() int3 = 18

int2 = 13 int2 = 13 avll.insert(int3)
int3 = 7 int1 = 15 inte =5
avle.insert(int2) avle.insert(int1) int3 =12
avle.insert(int3) int1 = 11 avll.insert(int@)
int1 = 15 avle.insert(int2) inte = 15
avle.insert(int1) avle.insert(int@) avll.insert(int@)
avle.insert(int@) avle.insert(int1) avli.insert(int3)
avle.delete(int2) avle.delete(int@) int1 = 15

avll.delete(int1)
Figure 1: Three random tests for one fault.

instance, when a large integer appears in a test, the question arises —
is this value important, or just a random number of no significance
[27]? Large values in a normalized test are always essential, because
normalization includes value minimization. Without generalization,
however, it would be easy to assume all small numeric values in
normalized tests are accidental. Generalization allows users to
distinguish actually essential small values.

Normalization is not yet a complete solution to the problem
of identifying distinct faults (e.g., our algorithms do not apply to
complex custom test generators such as Csmith [49] or jsfunfuzz
[46]), but it is often highly effective. Running 100,000 tests (of
length 100) on the faulty AVL tree produces 860 failing tests with
no duplicates. Normalizing these reduces the number of distinct
failing tests to just 22. Ideally all failures due to the same fault
in the SUT (Software Under Test) would normalize to a single,
representative test. We aim to approximate such a canonical form
for faults. Figure 5, in Section 2.1.2, shows an AVL tree test for this
fault that normalizes differently. In experiments with 82 AVL tree
faults, the mean number of distinct failures after normalization for
1,000 tests was just 3.1 (with median 2).

The contributions of this paper are 1) the idea of test normal-
ization and generalization as key steps towards a goal of “one test
to rule them all” (per fault), 2) algorithms for normalization and
generalization that make use of the abstract interface for testing
provided by the TSTL [28-30, 35] domain-specific language (DSL)
[17], and 3) experimental results showing the value of these ideas.
Normalization frequently provides significant additional test length
reduction for complex SUTs, and can reduce the set of failures to be
examined by more than an order of magnitude. Normalization and
generalization have also been useful in understanding complicated
tests for a variety of real-world software systems.

2 FORMAL DEFINITIONS

TSTL [28, 29, 35] is a language for defining the structure of tests
(usually API-call sequences, but also grammar-based tests), and a
set of tools for use in generating, manipulating, and understanding
those tests. Figure 3 shows a simplified portion of a TSTL definition
(called a harness [23, 26]) of tests for an AVL tree class, in the
latest syntax for TSTL. Given a harness like the one in Figure 3,
TSTL compiles it into a class file defining an interface for testing
that provides features such as querying the set of available testing
actions, restarting a test, replaying a test, collecting code coverage
data, and so forth. The TSTL release [30] provides testing tools that
use the interface for testing and debugging.

The key point for our purposes is merely that a TSTL test har-
ness defines a set of pools whose instances hold values produced
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#L

into =1

# or into =5

# - into = 20

# swaps with step 4
int1 = 3

# or intl1 =5

# - intl = 20

# swaps with step 6
avle = avl.AVLTree()
#] (steps in [] can be in any order)
avle.insert(int@)
#L

into = 2

# swaps with step @
avle.insert(int1)

#] (steps in [] can be in any order)
intl = 4

# or intl =5

# - int1 = 20

# swaps with step 1
avle.insert(int1)
avle.insert(int@)
avle.delete(int1)
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Figure 2: Normalization and generalization for all three
tests. Lines beginning with # are comments in Python, used
for annotations.

@import avl

pool: <int> 4 CONST

pool: <avl> 3

property: <avl>.check-balanced()
<int> := <[1..20]>

<avl> := avl.AVLTree()
<avl>.insert(<int>)
<avl>.delete(<int>)
<avl>.find(<int>)
<avl>.inorder()

Figure 3: Part of TSTL harness for AVL trees.

and used during testing [4] (a common approach to defining API-
testing sequences) and a finite set of actions that are possible during
testing, typically API calls and assignments to pool instances. In
this example, there are two pools, one named int and one named
avl. There are four instances of the int pool, which means that
a test in progress can store up to 4 ints at one time (in variables
named int®@, int1, int2, and int3), and three instances of the avl
pool. The actions defined are: setting the value of an int to any
integer in the range 1-20 inclusive, setting the value of an avl to a
newly constructed AVL tree, and calling insert, delete, find and
inorder with chosen pool instances. Figure 1 in the introduction
shows three valid tests produced by running a random test gener-
ator on the TSTL-compiled interface produced by this definition.
TSTL handles ensuring that tests are well-formed. No pool instance
(such as avl1) can appear in an action until it has been assigned
a value. No pool instance that has been assigned a value can be
assigned a different value until it has been used in an action, to
avoid degenerate sequences such as int3 = 10 followed by int3
= 4. Each action in a test is called a “step” — the first step of the
first test in Figure 1 is storing a new AVL tree in av10, for example.
A test is just an ordered sequence of actions, which is equivalent to
a set of numbered steps. Because our normalization is defined in
terms of actions, steps, and pools, it is language agnostic.

The definition of pools and actions in TSTL defines a total order
on all actions. First, actions are ordered by their position in the
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harness definition file. All insert actions therefore precede all
delete actions, and all delete actions precede find actions. One
line of TSTL typically defines more than one action. For example,
the line <avl>.insert(<int>) defines 12 actions, one for each
choice of avl and int pool instance, e.g. avl@.insert(int®),
avll.insert(int@), and av1@.insert(int1). These are ordered
lexically, with the first pool instance appearing in the text taking
precedence. Value ranges, such as in the int initialization, are also
ordered in the natural way, with lower values first. Given this total
order, each action can be assigned a unique index, from 0 up to 1
less than the total number of actions. Initially, this kind of ordering
(and numbering) for each action was intended to allow for a kind
of Godel-numbering of tests, for use in proofs about properties of
test-generation algorithms [4].

The ordering of actions also allows us to concisely define a prac-
tical method for normalizing tests, by simple syntactic means, by
considering an action “simpler” than another action if it has a lower
index. One intuitive concern with normalization based on action or-
dering is that a user may not place actions in a “good” order. What
if normalization rewrites actions into “more complex” actions? The
exact ordering usually does not matter, it only matters that there
exists some ordering to guide normalization and generalization. Ac-
tions will only be replaced or swapped if, causally, the predicate
(failure) is indifferent to the choice. The normal form’s existence
matters much more than the precise contents, in the context of
that semantic restriction. In cases where there is a clear notion of
simplicity (e.g., more vs. fewer optional parameters to a call, fewer
array dimensions), simplest-first is often also most natural in TSTL.

2.1 Normalization

A test normalization algorithm has a simple goal: we ideally aim
to produce a function f : t — t (a function that takes a test and
returns a test) such that: (1) if ¢ fails, f(¢) fails®; (2) if t; and t,
fail due to the same fault, f(t1) = f(t2); (3) if t1 and #; fail due to
different faults, f(t1) # f(t2).

Such a function would define a true canonical form for tests,
where each underlying fault is uniquely represented by a single
test. In general, it seems clear that defining such a function f is
(at least) as difficult as automatic fault localization and repair, and
likely undecidable. Therefore, we aim at approximating the goal, by
providing a set of simple transformations such that: (1) f changes
many tests to the same test, (2) f has low probability of changing
two tests failing for different reasons into the same test, and (3) f
is not unreasonably expensive to compute. The implementation for
f (in fact, for a family of f-approximating functions, with different
tradeoffs in runtime and level of normalization) involves defining
a set of rewrite rules such that for a test ¢, the rules define a finite
set of candidate tests C(t) where t' € C(t) if t = t’, possible
simplifications of ¢, where each t’ is the result of applying some
rewrite rule to ¢. The notion of simplicity is defined by a restriction
on the rewriting rules. For any rewrite t = ¢/, we require that
[C(t")] < |C(t)]. Such a rewrite system is necessarily strongly
normalizing: any sequence of rewrites chosen will eventually end

3Normalization can be generalized to apply to any predicate over tests, not just failure
[22]; a passing test can be normalized, though without some more interesting predicate,
such as preservation of coverage, this is not clearly useful.
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in a term (test) that cannot be further rewritten, since the total
length of a rewrite sequence is bounded by the initial |C(¢)| [14].

In the setting of TSTL, where test actions have a defined total or-
der, two simple principles can be applied to produce useful rewrite
rules. All rewrites reduce the sum of the indices of the actions in the
test, make the test’s actions more ordered by index, or reduce test
length. This guarantees that the rewrites are strongly normalizing.
The second principle that determines the rewrite rules is that each
rule ought to be unlikely to change the underlying cause for test fail-
ure. To that end, the rules for normalization always either change
at most one action (possibly in multiple steps, but in a uniform
way) or make no changes to the actions performed, only to the pool
instances used or the positions of actions in the test. We cannot
guarantee normalization does not change the underlying fault in
a test; however, the limited scope of rewrites should minimize the
chance of fault change (known as “slippage” [8, 34]).

2.1.1 Rewrite Rules. Figure 4 shows the rewrite rules used in
TSTL normalization. The notation in the rules is relatively simple.
A step is an action paired with an number indicating its position in
a test, where the first action is step 0, etc.; e.g., (2 : a) indicates the
third step of the test is action a (indexing is from 0). A(z, ¢’) is the
set of all steps in t such that t(i) # ¢’(i).

For ordering, we say that a < b iff the index of action a is lower
than that of action b. We compare steps with < by comparing
their actions — (i : @) < (j : b) iff a < b. For a set or sequence
of actions or steps, we define the min of the set to be the lowest
indexed action in the set, and use these to compare sets: s; < s3
iff min(s1) < min(sz). For pool instances, p < p’ if and only if p’s
pool index is lower than that for p” and p and p’ are from the same
pool. For example, int® < int3, but avle £ int4.

The term t[x — y] denotes the test t with all instances of x
replaced by y. Here, x and y can be actions, steps, or pool in-
stances. t[x < y] is similar, except that x and y are swapped. Term
t(i,j)[x > y] is the same as t[x > y], except that the replacement
is only applied between steps i and j, inclusive. Finally, t_;(x)
denotes t with all steps containing x that are before step i moved to
step i, preserving their previous order, shifting steps at i and after i
to make room for the moved steps, again preserving order.

2.1.2  Normalization Algorithm. These rules alone do not de-
termine a complete normalization method; it is also necessary to
determine the order in which they are applied. The order in our
default implementation is the order above, with the modification
that in practice the ReplacePool and ReplaceMovePool rewrites
are checked in the same loop (e.g., for every possible replacement
of a pool instance, both rules are checked, in the order given above).
The order was determined after considerable, but not exhaustive,
trial and error, and aims to apply more general, but less expensive,
rules first. The core algorithm, assuming a set of ordered rewrite
rules defines C(t), is given as Algorithm 1. Here pred is an arbi-
trary predicate indicating that the candidate test still satisfies the
property of interest that held for the original test ¢. In most cases,
this predicate will be “the test fails” but we also have preserved
code coverage for regression suites [22]. Notice that after applying
each rewrite rule, we perform delta-debugging on the new base
test, since often a rewrite makes other steps irrelevant.
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o SimplifyAll: t = t[a > a’]
where a’ < a

Covers the case where all appearances of an action can be replaced with a lower-
indexed action.

e ReplacePool: ¢ = t(i, j)[p — p’]
wherep < p’ and0 < i < j < |t]

Covers the case when all appearances of an instance of a pool instance can be
replaced with a lower-indexed instance from that pool (possibly only within a range of
steps).

e ReplaceMovePool: t = t_,; (p’)[p — p’]
where p < p’and 0 < i < |t]

Covers the case when all appearances of an instance of a pool can be replaced with
a lower-indexed instance of that pool, if all steps containing the new instance before a
certain step are then moved to that step.

e SimplifySingle: t = t[(i : a) — (i : @’)]
where a’ < a

Covers the case where one action can be replaced with a simpler (lower-indexed)
action.

e SwapPool: t = t(i, j)[p © p’]
where A(t', t) < A(t, t')
and0 < i < j < |¢]
andp < p’

Covers the case where swapping two pool instances (within a range of steps) re-
duces the minimum action index of the steps.

e SwapAction: t = t[(i:a) > (i:b), j:b)— (j:a)]
wherei < jand b < a

Covers the case where two actions can be swapped in the test, with the lower-
indexed action appearing first.

e ReduceAction: t = t[(i: a) - (i:a’)]
where |ddmin(t’)| < |¢|

Covers the case where an action can be replaced by any action, enabling further
delta-debugging.

Figure 4: Rewrite rules for normalization.

Algorithm 1 Basic algorithm for normalization

: modified = True

: while modified do

modified = False

fort’ € C(t) do

if pred(¢’) then

modified = True
t=ddmin(t’)
break (exit for loop)

H end if

10: end for

11: end while

12: return ¢

WoONNN W

Original test: Normalized:
9: int0 = 10 0: into =1
1: int2 = 7 1: int1 = 2
2: avll = avl.AVLTree() 2: avle = avl.AVLTree()
3: avll.insert(int2) 3: avle.insert(int@)
4: avll.insert(into) 4: avle.insert(intl)
5: int1 =1 5: int1 =3
6: int3 =1 6: avle.insert(intl)
7: avlil.insert(int3) 7: int1 = 4
8: int3 = 15 8: avle.insert(intl)
9: avll.insert(int3) 9: avle.delete(into)
10: avli.delete(int1)

Normalization Steps:
SimplifyAll: inte = 10 — int@ = 2
SimplifyAll: int2 = 7 + int2 =3
SimplifyAll: int3 = 15  int3 = 4
ReplacePool: int2 — intl
ReplacePool: avll — avlo
ReplacePool: int3 — int@
SwapAction: (0: int@ = 2) > (6: intd = 1)
SwapPool: int@ < int1 (between steps 2 and 10)
SwapAction: (1: int1 = 3) ¢ (5: intl = 2)

Figure 5: An example of normalization steps.

Figure 5 shows the sequence of rewrites to normalize an AVL
tree failure. The numbering of steps appears inconsistent in the
first SwapAction because a successful delta-debugging removes a
no-longer-needed step after a rewrite. The pattern in this example,
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where successful rewrites are roughly equal to the original number
of steps, is frequently seen across SUTs.

The worst-case complexity of normalization can be given an
upper bound by recalling our rule that each rewrite must lower the
number of possible rewrites by at least one. This means if there are
n possible rewrites of a test, there can be at most n predicate checks
for the current test, then at most n — 1 checks for the rewritten
test, and so on, for a total of @ predicate checks, where n
is the number of possible rewrites of the test ¢ being normalized:
n = |C(t)|. Test execution to check the predicate can be assumed
to have a constant cost since the length of the test does not usually
change by more than a few steps during normalization.

How many rewrites can a test t have? Assume there are k steps
in the test and « possible actions. The action replacement rewrites
(SimplifyAll, SimplifySingle, and ReduceAction) allow for at
most k(a — 1) rewrites each. There are < k? possible SwapAction
rewrites, and < k2 (a—1) possible rewrites for each of ReplacePool,
ReplaceMovePool, and SwapPool*. There are therefore at most
n = k% + 3k%(a@ — 1) + 3k(a — 1) rewrites, over-approximating
(since an action cannot be rewritten to itself). Each rewrite also
requires a ddmin call, which is quadratic in k [50]. Substituting

@ above, we see that the

this expression into the expression
worst-case cost for normalization is O(k*?). While this is worse
than the quadratic cost of delta-debugging, this algorithm is applied
to already 1-minimal tests, unlike delta-debugging. The k in our
quartic complexity is therefore, for random tests, typically an order
of magnitude smaller than the k in delta-debugging [22, 25, 39],
which can partly balance the additional cost for typical tests whose
unreduced length is much larger than reduced length.

We believe that if normalization can decrease human effort in
examining large numbers of redundant tests, this price is more than
reasonable. In practice, most actions are not enabled at most steps,
and the rules are applied in an order that quickly converges on a
normal form for many tests. In our experiments, normalization was
only very expensive when delta-debugging was also costly, and
appeared to be worse than delta-debugging by a constant factor,
somewhere in the range of 2-100x. With multiple faults, normal-
ization provides a quantifiable compensating value in shorter time
until all faults have been examined [8].

The simplest optimization is to improve on the constant ordering
of rewrite rules. Once a rule fails to produce a candidate that satis-
fies pred, that rule should be moved to the end of the ordering of
rewrites, since once a rule fails once to produce any valid rewrites,
it frequently produces no further reductions. This simple change
typically halves the time required for normalization. When test
execution is very expensive, the set of candidate tests can be further
restricted: limiting action replacements to cases where Levenshtein
[41] distance (text edit distance) between the code for actions is
bounded to a small value was effective in reducing runtime, and
often had little impact on final results. A further useful optimiza-
tion when normalizing large numbers of tests is to cache results
across tests (since the algorithm is deterministic for a given pred).

4The details of how these bounds are determined, in that pool changes are also action
changes, are not critical, and a more detailed analysis is somewhat involved, and
beyond the scope of this paper; we note that like delta-debugging, the worst-case
complexity is seldom observed, and offer some further optimizations.
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For very large numbers of tests, this is the most important opti-
mization. For systems with expensive replay, delta-debugging of
each new base test can be omitted: the ReduceAction rewrite will
eventually remove extraneous steps. It is also trivial to parallelize
normalization by checking the predicate over multiple candidates
at once. As soon as a candidate satisfies the predicate, a parallel
implementation can proceed with that candidate as the new base,
making the algorithm nondeterministic (in practice, we suspect the
same final result will usually appear), or the algorithm can wait for
all earlier-in-sequence candidates to be checked, and only proceed
when no candidate that would be checked earlier is in the queue.

2.2 Generalization

The core idea of generalization is to use methods similar to those
involved in normalization to provide a user with information about
changeable aspects of a test. Some values and orderings of steps
in a test are essential to the failure: when changed, they cause
the test to no longer fail. Many others, however, are accidental
— any concrete test has to choose some values and step ordering
(enforced by the normalization process) but many such choices are
arbitrary, or at least allow variance, with respect to the cause of
failure. Generalization automatically performs experiments to dis-
tinguish essential and accidental aspects of a test, and summarizes
the results. We can define a finite set of simple variations on a test,
and summarize which variations maintain a predicate of interest.
In the typical case of failure, generalization simply presents the
user with all “very similar” tests that also fail. Formally speaking,
a generalization algorithm produces as output a set of rewrites of
a test t satisfying pred such that each rewrite also satisfies pred.
Presenting a generalization involves concisely expressing these
(small) rewrites.

2.2.1 Generalization Algorithm. The core algorithm (Algorithm
2) is simple, using only swaps and single-action rewrites:

Algorithm 2 Basic algorithm for generalization

1: swap=0

2: replace =0

3: for (i, a) € t do

4:  fora :a > ado:

5: if pred(¢[(i, a) — (i, @’)]) then

6: replace = replace U((i, a), (i, a’))

7: end if

8: end for

9: forj:i<j<|t|-1A(:b)> (i:a)do
10: if pred(¢[(i : @) > (i : b), (j : b) > (j : a)]) then
11: swap = swap U((i, a), (J, b))

12: end if

13: end for

14: end for

15: return (swap, replace)

This algorithm collects all steps that can be replaced with other
actions or swapped with other steps, and returns the set to be
reported to the user. This version assumes the test has already
been normalized, but can be extended to any test by removing the
restrictions that a > a’ and (j : b) > (i : a). The complexity of
generalization is simpler to determine than that of normalization.
If we assume all actions are enabled at each step, and there are a
actions and k steps, checking for replacements requires k(a —1) test
executions, when every action is the lowest-indexed action. In that
worst case, no swaps are possible. The complexity of checking for
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#L

testo = []

# or testd = sut0.test()
actionlist@ = sut@.actions() # STEP 1
# or actionlist@ = sut@.enabled()
#] (steps in [] can be in any order)
action@ = actionlisto[0]

#L

test@.append(action@)

predd = sute.fails

#] (steps in [] can be in any order)
sut@.normalize(testo,predo) STEP
sut@.normalize(testo,predo) # STEP
# or (

# testo = [1]

# sut@.normalize(testo,predd)

# )

s

STEP @

++

STEP 2

*+

STEP
STEP

** ++
o s w

o

Figure 6: Generalized test for TSTL itself, showing fresh
value generalization.

swaps in the worst case is quadratic in k. In practice, most actions
are not enabled at most steps, and most actions in a test are not the
lowest-indexed action. Basic generalization is trivial to parallelize.

2.2.2  Fresh Values and Misleading Tests. A side-effect of delta-
debugging and normalization is reduction of the number of vari-
ables in a test. While usually helpful, this can sometimes result
in misleading tests. In a stateful system, putting the system into
a bad state may require building a complex object. Once system
state is corrupted, however, the complex object is irrelevant, and its
appearance in the call leading to failure can be misleading. In previ-
ous work at NASA, we observed that sometimes a delta-debugged
file system test [24, 25] would use an open file descriptor in a call,
leading to the suspicion that the file had been corrupted, when in
fact the file system’s state was damaged, and the same operation on
any file would have failed. We therefore propose a more aggressive
generalization: replacing a pool instance use with a fresh value.

Consider the test in Figure 6, produced by a TSTL harness for
TSTL itself’. The problem involves an invalid cache, produced
by normalizing a test with only one action. Without fresh value
generalization, it appears that the failure is due to normalizing
test@ again. The annotation after step 6 lets us see that the failure
will take place even for a fresh test. Without this generalization,
the state of test may appear to be important, not the system state.

Formalizing this generalization requires additional notation. U(a)
is the set of pool instances used in the action a — pool instances that
appear in the action, but not on the left-hand side of an assignment.
I(a, p) is a predicate that is true iff action a stores a new value in
pool instance p. Finally, t[+(a : i)] denotes test ¢ with the action a
inserted at step i and each step from i onwards moved to a position

one higher.
In practice, the fresh set returned should be pruned to avoid
redundant actions. It is not useful information that inte = 1

; intl = 2; int@ = 1; f(int@) failsif inte0 = 1; int1
= 2; f(int®@) fails. Redundancy elimination also needs to take
into account the potential assignments to a pool instance from the
replace generalization, which are also redundant. Furthermore,
it is useful to distinguish between pools that are never modified,
only assigned to, and pools that are modified without appearing
on a left-hand side (LHS). As an example, if an integer is used as

5Since Python TSTL provides a Python API that API can be used as the SUT in testing,
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Algorithm 3 Basic algorithm for fresh object generalization

1: fresh=0
2: for (i, a) € t do
3: for p € U(a) do

4: for a’ : I(d’, p) do

5: if pred(t[+(a’, i)]) then
6: fresh = fresh U(i, a’)
7: end if

8: end for

9: end for

10: end for

11: return fresh

an argument to a function, the pool instance’s last assignment is
still valid and should be omitted from “fresh” values, as redundant.
However, calling a function on an AVL tree may modify it, making
an assignment non-redundant, even if it is the last appearance of
that pool instance on the LHS. We use the CONST tag (see Figure
3) to mark values than cannot be modified on the RHS. Further
extensions of the fresh value generalization could be considered.
For example, if a fresh value for some object requires use of a
complex constructor, values required to call the constructor can
also be produced, if needed, recursively. In our experiments so far,
simple fresh value generation sufficed, as inputs to constructors
were usually available in the pools. Knowing all possible fresh
values is likely unimportant.

3 EXPERIMENTAL RESULTS

This section presents some initial results of applying normalization
and generalization, and comparing the results to delta-debugging
(which we refer to as reduction) alone. All tests were generated
using pure random testing, based on TSTL harnesses developed
previously, all included in the TSTL release [30]. We also tested
the Python interface to Z3 [13], but did not find faults thus far;
normalization did help produce more comprehensible and uniform
Z3 quick tests [22].

These experiments are intended to establish the basic potential
value of the techniques, and provide, for seven Python libraries rang-
ing from small to large and complex, some initial data on research
questions. These are: RQ1: How effectively does normalization
reduce the number of failures reported? RQ2: How often does
normalization lose faults? RQ3: What is the cost of normalization
and generalization? RQ4: How much additional reduction over
delta-debugging can normalization provide? We also examined
the question of whether normalization and generalization provide
substantial benefits in understanding complex tests, in a qualitative
way, by examining tests for some of the larger SUTs studied. The
primary threat to validity is that we have only applied our methods
to tests produced using random testing for seven subjects, writ-
ten in Python (some small, some large). The benefits for human
understanding would require a human study to fully evaluate.

Our experimental subjects and results can be divided into three
parts. First, we studied simple programs with small failing tests, in
order to use mutation analysis to thoroughly investigate RQ1-3,
especially in the context of tests without a good fault signature,
where normalization is most needed to reduce failures to exam-
ine. Second, we studied larger and more realistic programs with a
large number of lengthy, complex failures, largely to provide more
information on RQ4 (additional reduction beyond that provided
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Figure 7: Effects of normalization on AVLTree and XML
parser mutants.

by delta-debugging). Finally, we examined a much smaller num-
ber of failures for subjects where each reduction or normalization
required an extremely long time to complete, and understanding
individual tests is a difficult task.

3.1 Mutation-Based Experiments

Our small subjects are a simple Python AVL tree found on the web
[48], with 225 lines of code® and a simple XML parser with about
260 lines of code [15]. For both subjects, we produced mutants using
the MutPy tool [32], then filtered the set to contain only mutants
that produced at least 1 failing test in 1,000 tests. MutPy generates
mutants using both the standard “core” operators common to many
tools [5] and a few Python-specific operators. We then used the fil-
tered mutants to generate higher-order mutants (“pairs”) composed
of two mutants, such that each of the mutants could be detected
in isolation: that is, there existed at least one failing test such that
fixing the other mutant left the test still failing. For AVL, there were
82 failing mutants (out of 228 total), from which we sampled 364
pairs, restricted to mutants modifying different source lines; 364
random samples were required to sample each mutant at least twice.
Of these, 238 pairs had independently detectable faults. For XML,
only 5 of 357 mutants generated were detectable due to a weak
specification. There were thus only 9 pairs with independently
detectable faults, and we evaluated all of these.

3.1.1  RQI: Reduction in Number of Failures. Figure 7 shows the
reduction in number of distinct failing tests produced by reduc-
tion alone vs. reduction and normalization, for AVLTree and XML
mutants; note the log-scale y-axis. All differences are statistically
significant by paired Wilcoxon test [6], at p < 0.05. For 38 of the
82 AVL single mutants, normalization was perfect (1 failure); for
XML, only one mutant was perfectly normalized. Normalization
was perfect (1 or 2 failures”) for 115 of the 238 AVLTree pairs, but

® All sizes non-comment, non-blank lines, by cloc [12].
"Yes, in some cases, a single test case detects either fault unless both are fixed.
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none of the XML pairs. Even when the result was not perfect, im-
provment was usually quite dramatic, from about 500 failures on
average per mutant or mutant pair for AVL and about 100 for XML
to less than 5 for AVL and less than 10 for XML.

A second way to examine reduction in a multi-fault setting is
to consider the mean number of tests a user must examine before
seeing all faults [8]. For the AVL mutant pairs, a user must exam-
ine almost 20 tests (on average) before encountering at least one
instance of both faults. With normalization, this drops to a mean
of just 2 tests. The difference is significant with p < 1.4 x 107°.
The difference in number of tests before encountering both faults
in XML pairs was not statistically significant (for these 5 faults,
failure rates are very similar, so hitting both is easy no matter how
many failures there are; however, satisfying oneself that all faults
have been seen is much harder with a very large number of tests
to examine).

3.1.2  RQ2: Slippage via Normalization. Mutants also provided
a way to evaluate the danger of normalization losing faults, RQ2.
Faults can be lost when normalization changes a test failing due to
one fault into a test failing due to a different fault, a problem known
as “slippage” [8, 34]. The AVL and XML testers pose an interesting
slippage challenge, as the failure signatures are not useful, and
the tests for faults are likely to be very close to each other in the
combinatorial space, due to the simplicity of the tested interfaces.
Out of the 238 AVL mutant pairs, normalization produced tests
exposing both faults for 80.7% of pairs (19.3% slippage at the suite
level). Interestingly, for 4 AVLTree pairs normalization took a set
of reduced tests not capable of exposing both faults, and produced
a smaller set of tests that was capable of detecting both faults. For
XML pairs, the slippage rate was 12.5% (of the 9 pairs, only 1 lost
a fault, and in that case the faults were both syntactically and
semantically very similar: within 1 line and with similar effects).

Recall that of our 364 AVL mutant pairs, only 238 could be inde-
pendently detected; in most cases this was due to reduction itself
introducing slippage (in a few cases, one fault completely masks
another; e.g., if the constructor always fails, insert failures cannot
be detected). Slippage due to reduction itself is very rare for some
SUTs but common for others (up to 23% for Mozilla’s JavaScript
engine) [8]. For the AVLTree example, the slippage rate for re-
duction is almost 30%, 10% worse than that for normalization; for
XML, however, reduction alone never caused slippage. Mitigation
approaches for slippage during reduction [34] should also apply to
normalization.

3.1.3  RQ3: Normalization Runtime. The mean cost to reduce an
AVLTree test was 0.05 seconds; the mean cost for normalization
was 0.38 seconds. For XML, the mean cost for reduction was 12.6
seconds vs. 120.8 seconds for normalization. Note that in all our
results the cost of normalization is given on an already-reduced
test, so the inputs for normalization are smaller than those for
reduction; however, this is the expected use-case for normalization.
Comparing on equal-sized tests would simply involve adding the
costs for reduction to those for normalization, as an additional step
of normalization. The criticality of caching for normalizing large
numbers of tests is evident. Out of 60,226 normalizations performed
in our full AVLTree mutant experiments, 59,972 (99.6%) resulted in
a cache hit (most of these after a small number of normalization
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steps). In fact, the total number of rewrites performed during the
AVL mutant experiments was only 145,780, for a mean of only 2.4
non-cache-hit rewrites of each test. For XML, there were 3,829
cache hits over a total of 3,929 normalizations.

3.2 Experiments Using Real Faults

3.2.1 XML Parser. We also investigated one real fault, triggered
by the empty tag (<>), and one seeded fault, triggered when adding
two nodes with the same name, for the XML Parserl. A comment in
the code indicates the seeded fault is realistic, and probably existed
in an earlier version of the code. Running 1,000 tests produced 848
failing tests. Without normalization, it took only 37.45 seconds to
execute and delta-debug all 1,000 tests. The output was 717 distinct
failing test cases. Normalization increased the runtime to 354.7
seconds, but output only 5 failures (3 for the original fault and 2 for
the seeded fault). The XML parser also shows that normalization
and generalization work for programs with string inputs defined
by a grammar in TSTL, as well as for pure-API testing.

3.2.2 TSTL. As noted in Section 2.2.2, TSTL is used to test
TSTL’s own API interface (the code is about 2,700 LOC; a compiled
SUT is often > 30KLOC). We discovered one fault while testing
the latest version of TSTL, the cache-related problem shown in
Figure 63. Generating and reducing 100 tests for it required 1,090
seconds and produced 90 failures. Normalization and generalization
increased total runtime to 3,690 seconds, but only 2 failures.

3.2.3 SymPy. SymPy [2] is a widely used open source pure
Python library for symbolic mathematics. SymPy is used by several
other projects, has over 400 contributors, has over 25,000 commits
to date, and consists of more than 225KLOC. The TSTL tester for
SymPy focuses on core expressions and algebraic simplification,
and covers about 15KLOC and 21,000 branches of the system. Test-
ing this core resulted in discovery of a number of faults in SymPy,
detected by assertion violations or uncaught (and not expected) ex-
ceptions. Some of these have been reported to the project; however,
since SymPy currently has 2,128 open issues, with one opened ap-
proximately each day, only one has (at this point) been fixed. If we
assume that each different assertion violation or exception message
indicates a different underlying fault, SymPy provides us with a set
of 40 complex, hard-to-understand real faults for evaluating nor-
malization. While we expect that this is an over-approximation of
the actual number of distinct faults, inspection of the tests and the
covered code suggests it is not far from the actual number. Because
we used a (we believe) non-lossy fault identification method (the
exact failure symptom), our SymPy results are relatively useless
for RQ2, but they answer RQ1, RQ3, and RQ4 for a large, realistic
system and real faults.

We generated, normalized, and reduced tests until we had 500
tests, exhibiting all 40 fault signatures. Some SymPy faults (not
included in our count of 40 tests) cause infinite loops, stopping
reduction or normalization. Of 570 failures, 549 reduced and 500
both reduced and normalized.

RQ1: Reduction alone did not reduce the number of distinct
failing tests at all. Normalization reduced the total number of

8We note that normalizing a test with respect to the predicate that it does not normalize
(by a different predicate) may produce a headache in the TSTL user.
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Table 1: Summary of results for SymPy and SortedContainers.

Original Reduced Normalized
SUT #Tests  Length  Actions/Test  Total #Acts | #Tests Length  Actions/Test  Total #Acts  Time | # Tests Length  Actions/Test  Total #Acts  Time
SymPy 500 44.7 20.7 50 500 9.98 8.1 50 19.7 114 5.48 5.28 32 594
SortedContainers 168 80.8 14.4 95 168 13.2 7.4 27 0.09 2 6 5 7 134.1

distinct failing tests to 114. There were 12.5 mean different failing
tests, per fault, for both unreduced and reduced tests, and only 3.15
mean failing tests per fault for normalized tests. This difference was
significant, with p = 0.003. Normalization reduced the number of
tests to examine for 11 of the 13 faults with more than one failure;
in 2 cases, the normalization was perfect (one failure).

RQ3: The mean time for reduction was 104.45 seconds, with a
median of 19.70 seconds. The mean time for normalization was
594 additional seconds, with a median of 260.214 seconds. The
difference was significant, with p < 1 x 10780,

RQ4: The mean length of unreduced tests was 44.664 steps, with
a median of 40.5 steps. For reduced tests, this shrank to a mean of
9.984 and a median of 9.0 steps. Normalized tests had mean length
of 5.48 steps and median of 5.0 steps. SymPy failures show that
normalization reduces not only the length of tests, but the number
of actions (roughly speaking, different API/method calls/functions)
that must be considered for debugging: reduced tests included
8.116 mean different actions, but normalized tests only 5.282 mean
different actions. These differences were all statistically significant
with p < 1 x 10776, Normalization made it possible to completely
ignore a large number of SymPy functions for debugging purposes.
The unreduced and reduced tests included all 50 SymPy functions
tested. The normalized tests, however, included only 32 of these, and
enabled us to ignore such complex code as trigonometric expansion
and simplification, power expansion, logarithmic combination, and
even generalized expansion. Figure 8 graphically shows the impact
of normalization on length and number of functions covered by
reduced tests. The lower part of the figure shows changes in test
length, and the upper part shows, for the same fault, the change in
number of different actions. The green boxplots show reduced tests,
while the emphasized blue boxplots show normalized tests. It is
clear that normalization not only has a significant effect on average,
but has a large benefit for most individual faults. The reduction
in tests to examine is also shown, indirectly, by the fact that the
“boxes” for normalized data are often simply lines because the tests
are similar or identical.

3.2.4 SortedContainers. SortedContainers [37] is a popular li-
brary of about 2KLOC, that provides pure Python sorted containers
that are as fast as C extension containers. We have reported 3
bugs in SortedContainers (all quickly corrected). One of these bugs
causes an infinite loop, making it difficult to reduce or normalize.
We therefore only present results for the other two faults reported.
We generated 168 failing tests, all distinct, exhibiting both reported
faults, over 15 hours of testing. All failures reduced and normalized.
RQ1-RQ3: Reduction did not reduce the number of failures, but did
reduce mean test length from 80.8 to 13.2 steps (median from 85.0
to 12.5), and mean number of different actions per test from 14.4 to
7.4 (median from 14.0 to 8.0). Normalization was perfect: all tests
normalized to two canonical tests, one per fault, both with only
6 steps and 5 distinct actions — a > 50% reduction in size beyond
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Figure 8: Effects of normalization on SymPy tests.

delta-debugging. Changes were significant with p < 1.0 x 10724,
There were 95 total different actions in tests before reduction, 27 in
tests after reduction, and only 7 between the two normalized tests.
RQ4: Reduction took a mean of 0.09 seconds, normalization a mean
of 134.1 seconds (median 0.06 vs. 57.0) (significant, p < 1 x 10728),

Table 1 summarizes mean results for SymPy and SortedCon-
tainers, our primary results for large numbers of failing tests for
real faults of complex programs where normalization is perhaps as
useful for additional reduction beyond delta-debugging as it is for
reducing the number of tests to examine.

3.25  NumPy. Our final two case studies provide little informa-
tion on RQ1 and RQ2; for these SUTs, failure rates are low enough
or test reduction runtimes high enough that each failure is usu-
ally dealt with one-by-one. However, the value of normalization
and generalization for further reduction (RQ4) and aiding in un-
derstanding tests is effectively shown by these complex programs.
They also provide results for RQ3 when even test reduction is ex-
pensive. NumPy [1] is a widely used Python library that supports
large, multi-dimensional matrices and provides a huge library of
mathematical functions. The SciPy library for scientific computing
builds on NumPy. Developing tests for NumPy is challenging, be-
cause none of the authors are experts in numeric computation, and
the specification of correct behavior is often somewhat subtle. As
an example, consider the test in Figure 9. Prior to normalization,
understanding why the test leads to a violation of self-equality for
an array is difficult: the reduced-only test has 42 steps and includes
not only array multiplication and addition, but subtraction, array
copying, reshaping, flattening, filtering by unique elements, and
raveling. After normalization, it is much clearer what is happening:
1) array® contains NaN and 2) this is correct behavior (the array
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dimo = 1 # STEP @

# or dimo = 10

shape@ = (dimo) # STEP 1

# or shape@ = (dime@, dim@)

# or shape@ = (dim@, dime@, dim@)

array® = np.ones(shape@) # STEP 2

array@ = array@ + array@ # STEP 3

array@ = array@ + array@ # STEP 4

# or array@ = array@ * array@

array@ = array@ * array@ # STEP 5

array@ = array@ * array@ # STEP 6

array@ = array@ x array@ # STEP 7

array@ = array@ x array@ # STEP 8

array@ = array@ * array@ # STEP 9

array@ = array@ x array@ # STEP 10
array@ = array@ x array@ # STEP 11
array@ = array@ * array@ # STEP 12
array@ = array@ * array@ # STEP 13
array@ = array@ - array@ # STEP 14
assert (np.array.equal(array@,array0))

Figure 9: Normalized and generalized NumPy test.

should contain NaN). The greater length and much larger number
of operations involved in the original reduced test obscures this
critical point. In NumPy, array equality does not hold for objects
containing NaN, so the assertion must be modified. As far as we
know, normalization transforms all instances of this fault into this
canonical test, but our data is insufficient to make a definite claim.

Other, more complex, failures have also made it clear that nor-
malization is useful for additional test length reduction for NumPy,
and that generalization makes any surprising restrictions on test
values clear. For NumPy tests, normalization takes much longer
than reduction, in part due to the expense of operations on large
arrays. For almost all tests, the mean time to reduce tests is about
4-5 seconds, and the time for normalization is between 712 and
774 seconds. Generalization takes between 52 and 59 seconds in
these cases. The exception was a test of 45,206 steps (!) leading
to a memory exhaustion error and crash. This was reduced (over
nearly a day) to a test with 10 steps, which then normalized (in
only 2 hours) to a test with 8 steps. The normalized test involved
no operations other than array initialization, array flattening, and
array addition. The reduced test involved larger array dimensions,
array multiplication, and array subtraction, as well.

3.2.6  Esri ArcPy. Esri is the single largest Geographic Informa-
tion System (GIS) software vendor. Esri’s ArcGIS tools are widely
used for GIS analysis. Automation is essential for complex GIS
analysis and data management, and Esri has long provided tools
for programming GIS software systems. One such tool is a Python
site-package, ArcPy [3]. ArcPy is a complex library, with dozens
of classes and hundreds of functions. Most of the code involved
in ArcPy functionality is the C++ source for ArcGIS itself (which
is not available), but the released Python interface code alone is
over 50KLOC. We have discovered and reported six crash-inducing
faults in ArcPy/ArcGIS [35].

Figures 10 and 11 show one crash-inducing test, after initial
delta-debugging (from over 2,000 test steps) (Figure 10) and after
normalization and generalization (Figure 11). In this setting normal-
ization has contributed a significant amount of additional reduction
over delta-debugging. For the crash fault shown in this paper, nor-
malization reduced the length from 19 steps to 11 steps. For three
other crashes, normalization reduced the tests from 18 to 14 steps,
from 27 to 20 steps, and from 20 to 16 steps. One crash fault only
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shapefile2 = "C:\arctmp\new3.shp" # STEP @
shapefilel = "C:\arctmp\new3.shp" # STEP 1
featureclass2 = shapefile2 # STEP 2
featureclass@ = shapefilel # STEP 3
shapefilelist2 = glob.glob("C:\Arctmp\*.shp") # STEP 4
fieldname® = "newf3" # STEP 5
shapefilel = shapefilelist2 [0] # STEP 6
featureclass1 = shapefilel # STEP 7
arcpy.CopyFeatures_management(featureclass1,featureclass2) # STEP 8
opl = ">" # STEP 9
newlayer2 = "12" # STEP 10
vall = "100" # STEP 11
selectiontype2 = "SWITCH.SELECTION" # STEP 12
fieldnamel = "newf1" # STEP 13

arcpy.MakeFeaturelLayer_management(featureclass@, newlayer2) # STEP 14
arcpy.SelectLayerByAttribute_management

(newlayer2,selectiontype2,’ "’+fieldname@+’" ’+opl+vall) # STEP 15
opo = ">" # STEP 16
arcpy.Delete_management (featureclass2) # STEP 17
arcpy.SelectLayerByAttribute_management

(newlayer2,selectiontype2, ’ "’+fieldnamel+’" ’+op@+vall) # STEP 18

Figure 10: Test with reduction-only for ArcPy.

reduced from 10 steps to 9 steps, but the omission was informative.
None of the ArcPy faults experienced slippage — the normalized
test was always clearly the same fault as the reduced test. The cost
of normalization is high — in our runs, it has taken from 17,340
seconds up to 24,769 seconds. However, in this setting even delta-
debugging is extremely expensive — the cost of reduction alone
has ranged from 7,930 seconds to 8,688 seconds. Generalization has
taken between 3,203 and 11,149 seconds. These high costs are due
to the need to run tests in a sandbox environment to avoid killing
the testing process, and the runtime of complex GIS analyses. Even
under these circumstances, reducing, normalizing, and generalizing
tests has been a more effective use of human time than trying to
understand the faults without help. For example, in the test shown
in this paper, it was important to understand that the SQL query
and selection type are not essential, but using a freshly created
layer will not result in a crash: the problem appears to be that Ar-
cGIS (or ArcPy) does not invalidate layers built from a feature class
when that feature class is deleted. In this instance, a generalization
(the fresh values generalization in particular) is informative by its
absence: we know that it was attempted, but prevented failure.
The reduced, non-normalized test (Figure 10) makes this far less
clear, as the use of CopyFeatures and the multiplicity of shapefiles
involved disguises the essence of the problem.

We are also preparing a test suite that covers as much as possible
of the Python source in the latest version of ArcPy and records
the values returned. For future versions of ArcPy, a “semantic diff”
based on these calls can be produced, allowing developers to see
how API usage changes with new releases. The tests in the suite are
normalized and generalized (based on code coverage and output,
not failure — these tests all pass) to make them easy to understand,
and show which parameter combinations do not change results.

4 RELATED WORK

This work builds on the idea behind delta-debugging [50]: tests
should not contain extraneous information that is not needed to re-
produce failure (or some other behavior [21, 22]). Delta-debugging
and slicing [40] are limited, generally, to producing subsets of the
original test, not modifying parts of the test to obtain further sim-
plicity. We extend this concept by also allowing modification or
re-ordering, which also allows further length reduction.
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shapefilelist@® = glob.glob("C:\Arctmp\*.shp")
#L

shapefile@ = shapefilelist@ [0] # STEP 1
newlayer@ = "11" # STEP 2
# or newlayero = "12"

# or newlayero = "13"

# swaps with steps 3 456 7

#] (steps in [] can be in any order)

#L

featureclass@ = shapefile@ # STEP 3
# swaps with step 2

fieldname® = "newf1" # STEP 4
# or fieldname@ = "newf2"

# or fieldname@ = "newf3"

# swaps with steps 2 8

selectiontype® = "SWITCH_SELECTION" # STEP 5
# or selectiontype@ "NEW_SELECTION"

# or selectiontype@ "ADD_TO_SELECTION"

# or selectiontype@ "REMOVE_FROM_SELECTION"

# or selectiontype@ "SUBSET_SELECTION"
#
#
o]

# STEP @

or selectiontype@ "CLEAR_SELECTION"
swaps with steps 2 8

po = ">" # STEP 6
# or opo = "<"

# swaps with steps 2 8

vale = "100" # STEP 7
# or vale = "1000"

# swaps with steps 2 8

#] (steps in [] can be in any order)

arcpy .MakeFeaturelLayer_management (featureclass@, newlayer@) # STEP 8
# swaps with steps 4 56 7

arcpy.SelectlLayerByAttribute_management

(newlayer®@,selectiontype@,’ "’+fieldname@+’" ’+op@+val@) # STEP 9
arcpy.Delete_management (featureclasso) # STEP 10
arcpy.SelectlLayerByAttribute_management

(newlayer@,selectiontype@,’ "’+ fieldname@+’" ’+op@+val@) # STEP 11

Figure 11: Normalized and generalized ArcPy test.

Normalization is in part motivated by the fuzzer taming [8] prob-
lem: determining how many distinct faults are present in a large
set of failing tests. This is a key problem in practical application
of automated testing. Previous work on fuzzer taming [8] used
delta-debugging to reduce some tests to syntactic duplicates.

Zhang [52] proposed an alternative approach to semantic test
simplification that, like our approach, is able to modify, rather than
simply remove, portions of a test. However, because Zhang operates
directly over a fragment of the Java language, rather than using
an abstraction of test actions allowed, the set of rewrite operations
performed is highly restricted: no new methods can be invoked,
statements cannot be re-ordered, and no new values are used. These
restrictions limit the approach’s ability to simplify tests and make it
inappropriate for normalization, as opposed to simplification. The
approach also performs little syntactic normalization: e.g., it does
not even force a test to use fixed variable names when variable name
is irrelevant. CReduce [44] performs some simple normalization
as part of a complex test reduction scheme for C code, and the
peephole-rewrite scheme used in CReduce is also an inspiration for
the approach taken by our normalizer.

Work on automatically producing readable tests [10, 11] is also
related, in that it aims to “simplify” tests. Readable tests are in-
tended to assist debugging by humans, while our normalization
and generalization aims to increase the information density of a
test, further reduce length, and address the fuzzer taming problem.
The approaches are orthogonal and could likely be profitably com-
bined: users might be best served by normalized, generalized tests
modified to improve readability.

The most closely related work to our generalization efforts is
Pike’s SmartCheck [43]. SmartCheck targets algebraic data in
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Haskell, and offers an interesting alternative approach to reduction
and generalization. Test generalization is also akin to dynamic
invariant generation, in that it informs the user of invariants over
a series of test executions [16]. Fraser and Zeller proposed general-
izing unit tests [19], but without the goal of preserving a predicate
such as test failure. The only other work we are aware of that is
similar to generalization concerns essential and accidental aspects
of model checking counterexamples [27, 31, 38].

5 CONCLUSIONS AND FUTURE WORK

This paper introduces test normalization and generalization. The
methods presented are significant steps towards a difficult goal:
providing users of automated testing with a single test, as short
and simple as possible, for each underlying fault in the SUT, and
annotations describing the general conditions under which the fault
manifests as failure. Normalization approaches this ideal by rewrit-
ing numerous distinct failing tests into a smaller, often minimal,
set of simpler tests. Generalization uses automated experiments
to distinguish essential and accidental elements of a test. In our
experiments, normalization reduced the number of failures to ex-
amine by well over an order of magnitude, often to the ideal of one
per fault, and reduced the length of tests beyond what is possible
with delta-debugging alone. While there is doubt about the utility
of automatic fault localization [42] in real-world debugging, few
practicing testers doubt the value of being provided with a minimal
number of minimally-sized failing tests [24, 39, 45].

The algorithms for normalization and generalization depend only
on a (possibly somewhat arbitrary) total order over test actions and
an abstract form for tests, suitable for term rewriting. Our approach
is therefore likely applicable to any source language and many differ-
ent test generation methods, including those that already produce
short tests [9, 18]. TSTL-based normalization and generalization
are currently available in a well-tested Python version [29, 30];
there is also a beta version, with more limited normalization, for
Java. The goal of normalization and generalization can also be
pursued in settings other than API sequence or string grammar
testing. The difficulties of defining a normal form for JavaScript
[46] or C [49] tests are non-trivial, but not obviously overwhelming
[44]. Less effective methods than ours might still aid debugging and
assist fuzzer taming [8]. Simple generalization (e.g., is this numeric
constant essential, can these two statements be swapped?) and a
limited form of fresh value generalization should be easy to apply,
even for complex programming language tool tests.

The working version of TSTL [30] supports normalization and
generalization. Although derived via lengthy experiment-driven
evolution, our rules are likely not yet ideal (though many “obvious”
optimizations such as applying alpha-conversion to lower pool
indices before normalization turn out to be surprisingly harmful).
Further experimental evaluation of normalization and generaliza-
tion over more SUTs is important to quantify effectiveness and
motivate new rewrites and generalizations. The TSTL implemen-
tations are designed to allow these to be easily added, in order to
bring testing closer to the goal of “one test to rule them all”

Acknowledgements: The authors would like to thank John Regehr, and Lee Pike for their
comments. The current implementation of normalization is considerably faster than reported in

this paper thanks to a suggestion of David R. Maclver with respect to the ReduceAction rule.
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