
Generating Focused Random Tests
Using Directed Swarm Testing

Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, Arpit Christi
School of Electrical Engineering and Computer Science

Oregon State University, United States
{alipour,alex,gopinath, christie}@eecs.oregonstate.edu

ABSTRACT
Random testing can be a powerful and scalable method for finding
faults in software. However, sophisticated random testers usually
test a whole program, not individual components. Writing random
testers for individual components of complex programs may re-
quire unreasonable effort. In this paper we present a novel method,
directed swarm testing, that uses statistics and a variation of ran-
dom testing to produce random tests that focus on only part of a
program, increasing the frequency with which tests cover the tar-
geted code. We demonstrate the effectiveness of this technique us-
ing real-world programs and test systems (the YAFFS2 file system,
GCC, and Mozilla’s SpiderMonkey JavaScript engine), and dis-
cuss various strategies for directed swarm testing. The best strate-
gies can improve coverage frequency for targeted code by a factor
ranging from 1.1-4.5x on average, and from nearly 3x to nearly
9x in the best case. For YAFFS2, directed swarm testing never
decreased coverage, and for GCC and SpiderMonkey coverage in-
creased for over 99% and 73% of targets, respectively, using the
best strategies. Directed swarm testing improves detection rates for
real SpiderMonkey faults, when the code in the introducing com-
mit is targeted. This lightweight technique is applicable to existing
industrial-strength random testers.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging;

Keywords
random testing, regression testing, swarm testing

1. INTRODUCTION
Random testing [19] (sometimes called fuzzing) is now widely

recognized as an effective approach for testing software systems,
including compilers [31,32,37], standard libraries [29], static anal-
ysis systems [7], and file systems [16]. Random testing is used in
both complex custom-built testing systems (such as those just cited)

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

and simple test harnesses built in a couple of hours. Random test-
ing is often easy to use, widely applicable, and can perform well
in theory as well as practice [4]. However, random testing has a
few important limitations. One critical limitation is that, for the
most part, random testing has little ability (without considerable
human effort) to focus on part of a system under test (SUT). Ran-
dom testers typically target an entire program or module, and have
no mechanism for focusing testing on code of particular interest,
other than writing a new, customized random test generator.

Much of the efficiency of random testing comes from its blind,
undirected nature [38]. It is seldom practical to implement different
random testers for all the potential focuses that might be needed,
and many powerful random testers [16, 31, 37] tend to be based
on generating complete inputs (e.g. programs or function call se-
quences) as whole system tests; these tools seldom even attempt
to provide module-level testing. Of course, tests generated by a
random tester can be selected from based on their coverage, but re-
playing pre-existing tests defeats much of the point of random test-
ing, losing the ability to produce an essentially unlimited number
of tests automatically, making effective use of any available testing
budget and exploiting massive parallelism.

Techniques for making better use of random tests in situations
requiring more focus, such as regression testing, are now appear-
ing [13], but these do not allow the creation of true focused random
tests: newly generated random tests that are specifically intended
to test targeted (for instance, changed) code in a system. Focus
can be highly desirable for a variety of reasons. For example, re-
cently changed code is often buggy (perhaps up to one third of code
changes introduce some bug [23]). Moreover, newly changed code
has, by definition, been far less tested than long-standing code, es-
pecially in systems where aggressive random testing is applied rou-
tinely. At present random testing does not even support an easy way
to direct testing to aggressively cover changed code. In addition to
changed code, focused random tests are useful in any cases where
a part of a system is suspected to be more fault-prone or difficult
to cover than the remainder of the SUT. The inability to perform
efficient targeted testing is a real deficiency in random testing.

While some other techniques (symbolic execution [11, 36] and
search-based techniques [20, 27]) for test generation allow for tar-
geting of specific source code, those techniques usually have not
been scaled to the generation of, e.g., whole-program inputs for in-
dustrial strength compilers1. Hand-tooled whole-program random
testers, however, are a popular technique for testing such systems,

1SAGE [10] for symbolic execution, and the work of Kifetew et
al. [22] for search-based testing are promising exceptions, though
in the first case only a limited evaluation over coverage, not faults,
was performed, and in the second case the Rhino JavaScript tests
are arguably more limited than those generated by jsfunfuzz.

including C compilers [25,37], JavaScript engines [21,31,32], and
Google’s Go language [34]. More critically, search-based and sym-
bolic techniques are designed to support the generation of a test that
covers a desired target, not the production of an arbitrary number of
different tests hitting a target. For example, most search-based sys-
tems attempt to produce one test for each coverage target, and con-
sider a statement tested once it has been covered once, only cover-
ing it additionally as needed to cover other targets. While very use-
ful for generating a high-coverage suite, this does not address the
need to test a suspect statement in a diverse and essentially unlim-
ited number of ways, given sufficient compute resources. Focused
random tests combine the nearly unlimited novelty of random test
generation with the ability to target testing to code of particular in-
terest, without forcing developers to write custom random testers
for code components.

In this paper, we propose a method, directed swarm testing, that
makes the generation of random tests that focus on selected code
targets possible. Using swarm testing [18] (a variation of random
testing) and recording statistical data on past testing results [17]
enables generation of new random tests that target (that is, have
higher probability of covering, and thus higher coverage frequency
for) any given source code element, usually without modifying an
existing, highly-tuned random tester. This ability has further uses
than just simple change-based “regression testing”; for example, a
compiler developer using Csmith [37] and concerned about the cor-
rectness of a particular set of seldom-executed lines in a complex
optimization’s implementation may apply this technique. Assum-
ing that data on past testing has already been collected, the process
can be as simple as putting the source lines of interest into a file
and running a simple script that launches in parallel a large set of
Csmith instances tuned to have high coverage of the suspect code.
In our experiments, the fraction of tests that cover targeted code
was improved by up to nearly 9x over running the random tester as
usual, and the improvement is typically on the order of 2x or more.
The more rarely code is covered in undirected tests — so long as it
has been covered enough in past data to make a basis for statistical
analysis — the more its coverage frequency can be boosted.

To our knowledge, this goal of increasing frequency of coverage
(as opposed to generating at least one test hitting a coverage tar-
get, a common goal of testing methods) is both novel and clearly
useful. The goal is, in a sense, incomparable to the goal of cover-
ing never-before-covered code targets, since our assumption is that
some test(s) hitting the targeted code already exist; we aim to pro-
duce many more tests hitting the targets, since it is well known that
for most faults it is not sufficient simply to cover the faulty code
— it must be covered under the right conditions. This motivates
producing a diverse set of tests covering any code warranting ex-
tra attention, whether that code is suspicious due to modification,
static analysis warnings (that may be false positives), code smells,
or any other heuristics for potential faults.

Our experimental results show that, for single targets, across all
strategies proposed, directed swarm testing improves the fraction
of tests that hit a target by 3.5x on average for YAFFS2, 2.5x on
average for GCC, and 1.6x on average for SpiderMonkey. Directed
swarm testing improved coverage for 100%, 95%, and 69.5% of
targets (again, across all strategies) for YAFFS2, GCC, and Spider-
Monkey respectively. Results for multiple targets are more com-
plex, but still promising, though as the number of targets increases
the effectiveness over swarm testing decreases (as it must, in the
limit: targeting all code is equivalent to targeting none). We com-
pare our method both against the baseline random test generators
(hand-tooled optimized random testing) and modified test genera-
tors using swarm testing.

Contributions of this paper include:

• Introduction of the (to our knowledge) novel goal of increas-
ing the frequency with which an automated test generation
method produces tests covering specific code targets.

• A novel method (directed swarm testing) for generating fo-
cused random tests: randomly generated tests that have sig-
nificantly increased probability of covering selected source
code targets (Section 3).

• Strategies for targeting both individual source code targets
and multiple source code targets at once (Section 4).

• Empirical results showing the effectiveness of these strate-
gies on large real-world software systems and test generators
with complex test features (the YAFFS2 flash file system, the
GCC compiler, and Mozilla’s SpiderMonkey JavaScript en-
gine) (Sections 5 and 6).

• Empirical results of effectiveness of these strategies on find-
ing real faults in a large software system (Sections 5 and 6).

2. PRELIMINARY CONCEPTS
Swarm testing [18] is a testing approach that improves the diver-

sity of tests by randomizing the configuration of a test generation
system (typically a random tester, though it is also applicable to
model checking [1, 12]). The idea behind swarm testing is simple:
most random test generators support a natural concept of features.
A feature is a property of a test case that can be controlled by a test
generator. A configuration of a test generator is often defined by a
set of features. For example, in grammar-based testing, features are
usually terminals or productions in the grammar, and in API-based
testing each function or method call is a feature. The traditional
approach to random testing is to always make all features available
in the construction of each test. Swarm testing, in contrast, ran-
domly chooses (with base probability of 50%) which features to
include in each test, omitting about half of all available features in
each test. This often increases the effectiveness of testing due to
interactions between features, and the fact that, since tests are lim-
ited in size, including many features necessarily means including
less of each individual feature. Swarm testing has been recognized
as essential to getting good results from compiler fuzzers [25] and
has sometimes nearly doubled fault detection and/or coverage for
mature random testers [17]. Swarm testing has also been applied to
the CCG C compiler testing tool [28] and the GoSmith [34] fuzzer
for Google’s Go language, and a Constraint Logic Programming
technique extending the ideas in swarm testing has been used to
discover faults in the Rust type system [9].

Adapting most random testers to support swarm testing is sim-
ple. Features are often opportunistically chosen to match existing
configuration. For example, Csmith supports numerous controls
on C code generated, in order to, e.g., test compilers with known
bugs. Using Csmith with a configuration simply requires calling it
with command line arguments (e.g., csmith -no-pointers
-no-structs -no-unions). For jsfunfuzz configuration
of features for generating JavaScript code was introduced using
a 50-line Python script that considers each choice in the recur-
sive code generator to be a feature. Random testing based on API
calls is usually trivial to modify to exclude calls at will, as in our
YAFFS2 tester. Figure 1 shows examples of features for C and
JavaScript tests. Note that a feature can be a relatively simple gram-
matical construct or, depending on how tests are generated, a more
complex semantic feature (e.g., irreducible control flow). Given a

static uint16_t func_1(void) {
uint16_t l_24[3][2] = {{0xD44FL, 0xD44FL},

{0xD44FL, 0xD44FL}, {0xD44FL, 0xD44FL}};
return l_24[1][1]; }

int main (int argc, char* argv[]) {
func_1();
return 0; }

(A) Simplified random test case generated by Csmith, (boilerplate removed). This test
case features arrays but does not feature pointers, structs, jumps, or volatiles.

tryItOut("L: {constructor = __parent__; }");
tryItOut("prototype = constructor;");
tryItOut("__proto__ = prototype;");
tryItOut("with({}){__proto__.__proto__=__parent__;}");

(B) Simplified random test case (without jsfunfuzz infrastructure) for SpiderMon-
key JavaScript engine. Features here include labels, assignments, and with blocks,
but do not include try blocks, infinite loops, or XML.

Figure 1: Features for Random Test Cases
configuration, a tester can usually generate an unbounded number
of different tests containing (at most) those features.

2.1 Triggers and Suppressors
A target is any behavior of the SUT that is produced by some

(but usually not all) test cases. The most obvious targets are faults
and coverage entities, e.g.: whether a test case exposes a given
fault, whether a given block or statement is executed, whether a
branch is taken, or whether a particular path is followed. Hence,
faults, blocks, branches, and paths are targets and a test case hits a
target if it exposes or covers it. Given the concepts of features and
targets, we can ask whether a feature f “helps” us to hit a target
t: that is, are test cases with f more likely to hit t? That some
features are helpful for some targets is obvious: e.g., executing the
first line of a method in an API library usually requires the call to
be in the test case. Less obviously, features may make it harder to
hit some targets. For example, finite-length tests of a bounded stack
that contain pop calls are less likely to execute code that handles
the case where the stack is full, closing files may make it harder to
cover complex behavior in a file system, and including pointers in
a C program prevents some optimization passes from running [18].

There are three basic roles that a feature f can serve with respect
to a target t: a trigger’s presence makes t easier to hit, a suppres-
sor’s presence makes t harder to hit, and an irrelevant feature does
not affect the probability of hitting t. The relation between features
and targets can be non-trivial to predict and understand in large
programs with complex features.

In previous work [17], it was shown that for all non-trivial SUTs
examined, most targets had a few triggers and a few suppressors.
We adopt from that work a formal definition of trigger and sup-
pressor features based on Wilson scores [35] over hitting fractions
in pure (undirected) swarm testing. Given feature f , target t, and
test case population P where f appears in tests at rate r, compute
a Wilson score interval for a given confidence (e.g., 95%) (l, h) on
the proportion of tests hitting t that contain f . If h < r, we can be,
e.g., 95% confident that f suppresses t. The lower h is, the more
suppressing f is for t. When l > r, f is a trigger for t. If neither of
these cases holds, we can say that f is irrelevant to t. The appro-
priate bound (lower or upper) may then be used as a conservative
estimate for the true fraction F of tests with f hitting t:

F (f, t) =

 r iff l ≤ r ≤ h; (irrelevant)
l iff l > r; (trigger)
h iff h < r. (suppressor)

F is easily interpreted when the rates for features are set at 50%
in P , as in normal swarm testing. Critically, because of the way

swarm testing works, feature/target relationships are always causal,
evidence of a genuine semantic property of the SUT [17].

3. DIRECTED SWARM TESTING
We can exploit the fact that most targets of real-world SUTs have

both triggers and suppressors to focus swarm testing on a given tar-
get, or set of targets. Directed swarm testing is performed similarly
to conventional swarm testing, and like swarm testing, usually re-
quires little or no modification of the base test generator. The dif-
ference between directed swarm testing and conventional swarm
testing is that, instead of using completely random configurations,
directed swarm testing uses configurations based on the trigger and
suppressor information collected for a single target or a set of tar-
gets. Rather than a single algorithm, directed swarm testing is a
family of strategies for choosing features in testing, with one con-
straint: when targeting t, directed swarm testing never uses config-
urations containing any suppressors of t.

When directed swarm testing is applied to multiple targets T at
once, as is often useful in testing changed code, it may only target
some subset of T in each individual test generation. A directed
swarm testing strategy is effective if it increases the average rate
at which tests hitting targets t are generated above the base rate
for non-directed swarm testing. The larger the increase, the more
effective the directed swarm testing strategy.

A typical application of directed swarm testing could be target-
ing changes made to the SUT. A developer has just implemented a
new feature, and in the process added a new function f to the code,
modified four lines of code in an existing function g, and added
calls to f in three locations scattered throughout the program, all
guarded by an existing conditional. The developer can run existing
regression tests [13], and run an existing random tester in swarm
mode, to detect bugs in the new feature. However, the function g
is called by relatively few regression tests, and undirected swarm
testing only calls g once in every twenty tests. The calls to f are
only slightly more frequent. Assuming the unmodified code is cor-
rect, many of the tests generated in undirected swarm testing will
be useless. Fortunately, it is easy to construct a set of targets for
directed swarm testing in this situation: the modified lines in g are
obvious targets, and previous random testing results should contain
enough information to calculate their triggers and suppressors with
high confidence. The code for f, in contrast, is new; the developer
has no information on triggers and suppressors for f itself. How-
ever, the developer always has information on some existing code
that precedes new code to be targeted, and is as close as possible
to it in the revised CFG for the SUT (the proof is trivial: if new
code has no such nodes, it is either unreachable in the CFG, or the
new code is the first node in the CFG, in which case it is always
called and does not need to be targeted)2. The developer performs
directed swarm testing, using this set of targets, and, if directed
swarm testing is effective, is able to either find a bug or establish
that the new code is likely correct much more quickly, since she
has increased the frequency with which tests validate the changes.
The measure of success is how many tests covering changed code
are produced within a given testing budget (or how quickly a fault
is detected, when the code is faulty).

A major advantage of directed swarm testing is that, like swarm
testing, it has essentially the same extremely low overhead as all
random testing. The only additional cost for directed swarm testing
is to collect coverage information when running some swarm tests,
in order to compute triggers and successors for a program. Running

2It might also be possible to use code dominated by the changed
code as a target, but there does not always exist any such code.

some random tests with coverage instrumentation is already a com-
mon practice in aggressive testing, so this is hardly a major burden,
even with the need to re-baseline trigger/suppressor information as
code evolves over time. In previous work, triggers and suppres-
sors for lines of code that continued to exist through many software
versions did not change dramatically, even from major release to
major release, for Mozilla’s SpiderMonkey JavaScript engine [17].
In short: baselining is cheap, part of existing good testing practice,
and there is considerable evidence that re-baselining of coverage
relationships can be performed infrequently in various testing ap-
plications [13, 14, 33].

4. CONFIGURATION STRATEGIES
Figure 2 shows the overall workflow of directed swarm testing,

which is simple. First, swarm testing is performed as usual, with-
out any targets, to detect faults and collect coverage information
over the entire SUT. In order to apply directed swarm testing, the
only information from this testing that is required is the set of (cov-
erage, configuration) tuples for all tests generated in undirected
swarm testing. This information can, as described in the introduc-
tion (Section 2.1) and in more detail in the empirical work of Groce
et al., [17], be used to compute, for each source code target t (in
this paper’s experiments, a statement), the set of triggering features
T (t), suppressing features S(t), and irrelevant features I(t). The
heart of a directed swarm testing method is a strategy for producing
configurations for new tests based on T (t), S(t), and I(t). This can
be done for a single t or for a set of targets T . While the idea that
knowledge of triggers and suppressors should enable us to improve
testing for targets seems clear, there are trade-offs to consider in
determining the actual configurations to use in testing for targets.
Most importantly, the triggers and suppressors are determined with
respect to a distribution of test cases such that most tests have about
half of all features enabled; causal patterns may change when using
a very different configuration distribution. While hitting the targets
is important, it is also essential to maintain some test diversity to
maximize the value of each individual test run — after all, simply
running a single chosen test case that hits a target (with mutation
fuzzing) may “maximize” target coverage, but loses almost all ad-
vantages of random testing.

4.1 Single-Target Strategies
We first consider the simplest case, targeting a single source code

element. This is likely to be a very common goal, even for regres-
sion testing. If a developer only changes code in a single basic
block, it is essentially one target with one set of triggers and sup-
pressors (since the coverage vectors for all statements in a basic
block are necessarily the same). Even modifying a few lines of
code that are nearby in the CFG of the SUT is probably likely to
involve similar triggers and suppressors, in most cases. In fact,
multiple nearby targets can probably be effectively targeted in most
cases by choosing their nearest common control flow dominator
(for example, when all the modified code is in a single function)3.

We propose three basic strategies for a single target, t:

1. Half-swarm: The Half-swarm strategy produces configura-
tions for testing in the same way as undirected swarm testing,
with the exception that all features in S(t) (the suppressors)
are omitted from each configuration and all features in T (t)
are included in each configuration. It can be trivially im-
plemented by applying an AND mask for suppressors (with

3A common statement dominated by all targets can also be used, if
such a statement exists.

all 1 bits except for suppressors) and an OR mask for trig-
gers (with all 0 bits except for triggers) as a final stage in
undirected swarm testing. In other words, a configuration
Ci = {f |f ∈ T (t) ∪ randomSample(f |f 6∈ S(t))},
where randomSample returns a random sample of a set
such that each element has a 50% chance of being included.

2. No-suppressors: The No-suppressors strategy uses only one
configuration, which includes all triggers and irrelevant fea-
tures, but no suppressors: C = {f |f 6∈ S(t)}.

3. Triggers-only: The Triggers-only strategy, as the name sug-
gests, also uses a single configuration for all testing, where
all triggers are included and no other features are included:
C = {f |f ∈ T (t)}.

The motivation for Half-swarm is that swarm testing is effec-
tive, and directed swarm testing should, perhaps, remain as close
to undirected swarm testing as possible, except for taking triggers
and suppressors into account. The motivation for the other two
strategies is that while swarm testing is effective for general testing
of an SUT, it may not be ideal when generating focused random
tests. The diversity that makes swarm testing useful may be use-
less or harmful for increasing frequency of coverage for a single
target; however, it is not clear if a minimal or maximal configu-
ration that respects triggers and suppressors would be best, given
this assumption. Triggers-only uses a minimal configuration, with
only those features known to improve coverage of the target in-
cluded, while No-suppressors is maximal, only omitting features
known to hinder coverage of the target. The computational cost for
all techniques is the same (and essentially identical to that of non-
directed swarm testing or pure random testing). As we see below,
in addition to the basic empirical question of effectiveness, the id-
iosyncracies of some random testers may also determine which of
these strategies should be chosen. In particular, for some testers, if
very few features are present in a configuration, it may not generate
any valid tests. When there are many features and a 50% chance of
inclusion, the problem does not arise, but using Triggers-only may
frequently fail to generate valid configurations.

4.2 Multiple-Target Strategies
For multiple targets, T , our strategies reduce the problem to that

for single targets t ∈ T :

1. Round-robin: The Round-robin strategy simply applies a
single-target strategy in a round-robin fashion, for t ∈ T .

2. Merging: The Merging strategy attempts to merge triggers
and suppressors for targets in T to produce a minimal set of
meta-targets, then uses round-robin.

The motivation behind Round-robin is simple: to cover a set of
targets, split the testing time between those targets. If multiple tar-
gets have similar suppressors and triggers, we may end up covering
a target with tests not aimed at that target, but the basic idea is sim-
ply to assume all targets are equally important and cannot be tested
at once. Round-robin is parameterized on a single-target strategy.

Merging approaches are more complex. They are motivated by
an observation: if for two targets, t1 and t2, ¬∃f.(f ∈ S(t1)∧f ∈
T (t2)) ∨ (f ∈ T (t1) ∧ f ∈ S(t2)), then there may be no reason
we have to target t1 and t2 with different configurations. They do
not have any conflicts, where a conflict is a feature that suppresses
one target but triggers the other target.

Algorithm 1 illustrates one simple algorithm to produce a set
of targets T ′ for targets T . Given targets ti, tj ∈ T , we say tj

Swarm Testing Configuration Strategy
[(coverage,configuration)]

Directed Swarm Testing
[configuration]

Figure 2: Workflow of directed swarm testing.

subsumes ti, denoted tj = ti, if and only if, S(ti) ⊂ S(tj) ∧
T (ti) ⊂ T (tj). In other words, tj requires a stricter combination
of features than ti. Subsumption merging removes ti and only
keeps the stricter combination of features, assuming that it will test
both targets. The computational cost of the algorithm is quadratic
in the number of targets to consider merging (and thus negligible
for likely sets of targets).

Algorithm 1 Algorithm for Merging using Subsumption only.
1: for ∀ti ∈ T do
2: if ∃tj ∈ T |tj = ti then
3: D = D ∪ ti
4: end if
5: end for
6: return t ∈ T |t /∈ D

Algorithm 2 Algorithm for Aggressive Merging, with randomized
approximation of optimal merges (n = # of trials).
1: B = T
2: for i = 0 . . . n− 1 do
3: M = T
4: while ∃ti, tj ∈ M : ti 6= tj ∧ (¬∃f.(f ∈ S(ti) ∧ f ∈
T (tj)) ∨ (f ∈ T (ti) ∧ f ∈ S(tj))) do

5: pick ti, tj
6: T (tm) = f |f ∈ T (ti) ∨ f ∈ T (tj)
7: S(tm) = f |f ∈ S(ti) ∨ f ∈ S(tj)
8: I(tm) = f |f 6∈ T (tm) ∧ f 6∈ S(tj)
9: M =M∪ tm − ti − tj

10: end while
11: if |M| < |B| then
12: B =M
13: end if
14: end for
15: return B

It is also possible to merge in a more Aggressive fashion. In
the absence of conflicts, we can in principle merge any two tar-
gets even where neither is stricter than the other, treating them as
one target t′, with T (t′) = f |f ∈ T (t1) ∨ f ∈ T (t2), S(t′) =
f |f ∈ S(t1) ∨ f ∈ S(t2), and I(t′) = f |f 6∈ S(t′) ∧ f 6∈ T (t′).
In this way, we can keep merging targets (replacing the two non-
conflicting targets with the new meta-target) without conflicts to
produce a small set of configurations that are directed at many tar-
gets at once. However, finding the merges to produce a truly min-
imal set of configurations is in NP-complete, equivalent to the op-
timal tuple merge problem [30]. We implemented an SMT-based
exact solver for merging targets using Z3 [8], which was able to
construct perfect solutions for up to 20 targets (typically solving
for 300 features in less than 2 minutes, but sometimes taking more
than 10 minutes), but did not scale to 40 targets at all, even with
very few features (timing out after many hours). Fortunately, due
to the fact that most targets have either absolutely few (< 3) trig-
gers and suppressors or at least relatively few (< 5% of features)
triggers and suppressors [17], random ordering of matches (using

the best solution after a fixed number of trials) approximates ex-
act solutions effectively and quickly. In our experiments, a random
approximation of optimal merging, even using 1,000 trials, always
produced a nearly-optimal set of configurations (at most one larger
than the optimal set produced by Z3) in less than 1 second, for up
to 20 targets. In experiments, we used 10,000 trials. Algorithm 2
shows the randomized algorithm for Aggressive Merging of targets.
We assume that Subsumption Merging has already been applied be-
fore this algorithm is called.

Both the Subsumption and Aggressive Merging strategies are,
like the Round-robin strategy, parameterized on a single-target con-
figuration strategy. It is, in part for this reason, not clear whether
(and how much) we should merge configurations. Merging targets
produces “more specialized” configurations that leave little room
for the basic single-target strategies to operate (because merging
increases the numbers of fixed triggers and suppressors for each
merged target). Round-robin maintains maximal configuration di-
versity (consistent with directing the testing). Subsumption Merg-
ing assumes that when one target subsumes another, they are truly
similar and can be tested in the same way. Aggressive Merging uses
as few configurations as possible, but may result in a very small
number of targets with very few irrelevant features. Whether such
targets can actually be effectively tested by the same configurations
is not obvious without empirical investigation.

5. EVALUATION METHODOLOGY
We used three medium-moderately large C programs (shown in

Table 1) to evaluate directed swarm testing. While not extremely
large, these are all important systems-software programs, the typi-
cal of the kind of program for which an effective dedicated random
tester can be expected to exist. For YAFFS2 (formerly the default
image file system for Android), we used custom test generation
tools descended from those used to test the file systems for NASA’s
Curiosity Mars Rover [16], and applied in previous work on com-
bining random testing and symbolic execution [38]. For GCC, we
used the Csmith [37] C compiler fuzzer to generate tests. Csmith
is a highly effective tool that has been used to detect more than 400
previously unknown bugs in GCC, LLVM, and other production
C compilers. For SpiderMonkey, Mozilla’s JavaScript engine, we
used jsfunfuzz [31], a well-known JavaScript fuzzer responsi-
ble for finding more than 6,400 bugs in SpiderMonkey, combined
with a small Python script to add swarm testing. The other two test
generators already supported swarm testing.

Our subjects were chosen with two criteria in mind: first, they
represent different kinds of features for swarm testing. YAFFS2
features are API calls, but (unlike the Java libraries more com-
monly used in the literature of API-call test generation), the calls
modify a single, very complex program state (the file system itself)
with complex dependencies. Features for SpiderMonkey testing
using jsfunfuzz are actual production rules in a recursive gen-
erator, very difficult for a human engineer to understand (but easy
to implement in a swarm tester). The complex recursive generation
makes it an interesting subject to gauge the limits of our technique.
Finally, test features in Csmith [37] are high-level semantic features
of C programs, some of which do not correspond to simple gram-
mar productions, and the features were devised to help compiler

Table 1: Experimental Subjects
SUT LOC Fuzzer Description

YAFFS2 15K yaffs2tester Flash File System
GCC 4.4.7 860K Csmith C and C++ Compiler

SpiderMonkey 1.6 118K jsfunfuzz JavaScript Engine For Mozilla

engineers deal with compilers with limited support for various C
features, not for use in swarm testing. Second, we wanted our sub-
jects to be representative of the kinds of system software subjected
to aggressive, sophisticated random testing.

Table 2 shows parameters for our experiments. In this table:
Features shows the number of features in the SUT that can be
tested by the corresponding fuzzer, seed time shows time spent in
minutes to generate the initial (undirected swarm) test suite that is
used for extracting trigger/suppressor features for statements, and
directed time shows the time spent for directed testing of targets.
The stochastic nature of random testing required us to run experi-
ments multiple times to ensure results are statistically significant.
For each test subject we generated between 30 and 60 initial test
suites (# Suites) using undirected swarm testing. We collected
data on configurations and coverage from these tests, and computed
Wilson scores (and thus triggers and suppressors) for all statements
covered in the tests. For each such test suite, we picked up to 35
sets of random targets (statements), with sizes 1, 5, 10 and 20 (up
to 5 for each size) to evaluate directed swarm testing4. We also
used the default configuration of each test generator to produce one
traditional (non-swarm) random test suite for each swarm test suite
produced (thus from 30-60 pure random suites), to compare the
effectiveness of directed swarm testing and traditional random test-
ing, using the same time budget.

We randomly chose targets (statements) covered by 10% to 30%
of test cases in the original test suite, to restrict evaluation to tar-
gets that are at least somewhat difficult to cover, but for which a
statistical basis for directed swarm testing definitely exists. For
more rarely covered targets, where triggers and suppressors are less
certain, the nearest control-flow dominator with sufficient cover-
age in tests can be used as a replacement target. Note that with
a large amount of historical coverage data, as might be collected
in an overnight test run on a stable version, many more targets
would have statistical support for accurate triggers and suppres-
sors. The 10%-30% selection is only to enable experiments using
limited coverage data, not a limitation of directed swarm testing.

For the single-target sets we applied each of the Half-swarm,
Triggers-only, and No-suppressors strategies. For all multiple tar-
get sets, we also applied Round-robin, Subsumption, and Aggres-
sive strategies (in each case paired with a single-target strategy, for
nine strategies in all). We varied the time for undirected testing and
directed testing according to suite complexity in each case. In total,
we ran tests for slightly more than 3,000 hours and generated over
20,000 test suites.

Our primary measure of effectiveness is simple. For any test
suite, we compute the hitting fraction HF for tests that cover a
target t (if there are n tests in a suite andm tests cover t then,HF =
m
n

) — if every test in a suite covers t, HF = 1.0 and if no tests
cover t, HF = 0.0. Suppose the hitting ratios in an undirected
suite and directed suite are HFu and HFd respectively, we use
the ratio HFd

HFu
to measure the effectiveness of directed testing in

hitting targets more frequently. Note that directed test suites with

4We also collected data for size 2, 3, and 4 target sets, which will
be provided in a technical report; in the interests of space, these
results, which shed little light on multi-target strategies and were
similar to results for size 5, are omitted from this version.

Table 2: Experimental Parameters.
SUT # Features Seed

time
(min.)

Directed
time
(min.)

Undirected
Suites

YAFFS2 43 15 5 60
GCC 25 60 10 30

SpiderMonkey 171 30 10 54

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●

●

●

●

●

●

●●

●

●●●●
●
●●

●

●●

●

●●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●●●

●
●

●

●
●
●

●

●

●●

●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

0.00

0.25

0.50

0.75

1.00

YAFFS2 GCC SpiderMonkey

H
F

Technique
Undirected Swarm Testing
Directed Swarm Testing

Figure 3: Hitting fraction in undirected swarm testing (HFu) versus
directed swarm testing (HFd) over all strategies.

HFd
HFu

> 1.0 offer improvement over undirected test suites. This is
the measure a developer wants to increase via targeting.

6. RESULTS
Our experimental results address six basic research questions:

• RQ1: (How much) does directed swarm testing improve cov-
erage for single targets?

• RQ2: Which strategies for single-target directed swarm test-
ing are most effective?

• RQ3: (How much) does directed swarm testing improve cov-
erage for multiple targets at once?

• RQ4: Which strategies for multiple-target directed swarm
testing are most effective?

• RQ5: Can directed swarm testing help detect actual faults?

• RQ6: How much does directed swarm testing improve cov-
erage over traditional random testing?

Figure 3 illustrates the distribution of targets’ hitting fraction
(HF) for (undirected) swarm testing and directed swarm testing.
It shows that, in most cases, the hitting fraction for targets in di-
rected swarm testing is much higher than the hitting fraction for
undirected swarm testing. For brevity, in the rest of this section, we
use “directed swarm testing” and “directed testing” interchange-
ably, as directed swarm testing is the only directed testing approach
we evaluate (and, to our knowledge, the only one applicable to our
subject programs).

Table 3 provides much more detailed information about the per-
formance of directed testing for single-target directed testing5. It
5Tables containing detailed results for multi-target testing were
omitted due to space limitations, and appear in tech report online.

Table 3: Results for single-target directed random testing.
Strategy HFd

HFu
> 1 count mean std. dev min 25% 50% 75% max p-val

YAFFS2
Half-swarm 1.0 218.0 3.56 0.59 1.38 3.11 3.7 3.96 5.01 0.0

No-suppressors 1.0 216.0 3.03 0.7 1.03 2.4 3.19 3.56 4.44 0.0
Triggers-only 1.0 218.0 3.94 0.64 2.26 3.57 4.0 4.25 7.87 0.0

GCC
Half-swarm 0.99 138.0 2.4 0.99 0.94 1.69 2.19 3.0 6.33 0.0

No-suppressors 0.94 135.0 2.56 1.0 0.0 1.86 2.59 3.23 5.58 0.0
Triggers-only 0.92 129.0 2.28 1.0 0.53 1.53 2.13 2.94 5.29 0.0

SpiderMonkey
Half-swarm 0.73 260.0 1.75 1.06 0.0 0.88 1.74 2.49 4.39 0.0

No-suppressors 0.65 260.0 1.15 0.62 0.0 0.61 1.27 1.6 3.14 0.30234
Triggers-only 0.84 19.0 4.56 3.01 0.11 2.6 3.62 7.23 8.82 0.0006

summarizes HFd
HFu

for different strategies. In this table, “count”
contains the number of test suites generated by directed swarm
testing using strategies described in the corresponding row. The
HFd
HFu

> 1.0 column shows the fraction of test suites where tar-
get(s) were covered more often by the directed swarm testing than
the corresponding initial undirected swarm testing. For example,
the value 0.8 in this column means: in 80% of test suites generated
by directed swarm testing, the HF for targets is higher than the orig-
inal undirected swarm. “mean”,“std. dev”, “min”, “25%”, “50%”,
“75%” and, ”max“ respectively denote average, standard deviation,
minimum, first quartile, second quartile (i.e. median), third quar-
tile and maximum of HFd

HFu
in test suites generated by corresponding

strategies in each row.

6.1 RQ1 and RQ2: Single-Target Strategies
Table 3 shows the results for single-target directed swarm testing

under different directed testing strategies, including p-values for
Wilcoxon tests. Figure 4 visualizes these results. Table 3 shows
that directed swarm testing has been successful in increasing HF
for targets for YAFFS and GCC. For all strategies with YAFFS,
directed swarm testing always increased hitting ratio. The hitting
fraction of targets using directed swarm testing was more than three
times more than the hitting fraction in the undirected testing, on
average. For GCC, directed swarm testing increased the hitting
fraction of targets for more than 90% of targets. On average, the
directed testing increased the hitting fraction of targets by a factor
of 2 or more.

The results for SpiderMonkey are mixed partly because the de-
sign of jsfunfuzz is such that, if we remove certain features, the
fuzzer cannot produce any test cases at all. Moreover jsfunfuzz
encodes SpiderMonkey’s feature set by paths through a complex re-
cursive code generation system that resembles a grammar. In many
cases, with SpiderMonkey, the triggers for a target are low-level
productions that are only reachable through top-level parts of the
fuzzer that correspond to irrelevant features — they are highly re-
dundant. This makes it hard to identify triggers and suppressors,
since the chance of undirected swarm generating a configuration
disabling all paths is small. However, even for SpiderMonkey, di-
rected swarm testing increases the hitting fraction of more than
half of targets, and Half-swarm had mean improvement close to
2x. Note that most configurations for the Triggers-only strategy
could not generate any test cases.�
�

�

Observation 1: Directed swarm testing, with the exception
of one strategy for SpiderMonkey, significantly (p < 0.01)
increases coverage frequency over undirected testing.

The average improvement for single-target directed testing ranges
from 1.15x for SpiderMonkey with the No-Suppressor strategy to
nearly 4x for Triggers-only with YAFFS2.

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

YAFFS2 GCC SpiderMonkey
SUT

H
F

d

H
F

u

Strategy
Half−Swarm

No−Suppressors

Triggers−only

Figure 4: Single-target strategies compared.�
�

�

Observation 2: There is no clear best strategy for single-target
testing, though it is clear that adopting Triggers-only may be
risky in some settings.

6.2 RQ3 and RQ4: Multiple-Target Strategies
For analysis of multi-target directed testing, we use the average

hitting fraction, i.e. HF , for comparison of effectiveness of di-
rected testing. Figure 5 shows results HFd

HFu
with various target set

sizes. The most obvious trend is that, while it is effective, the ef-
fectiveness of directed testing decreases with an increase in number
of targets. For YAFFS, targeted testing always increases the hitting
fraction of targets, on average between 1.89x to 2.82x .

In GCC, directed testing improves hitting fraction for 81.2% of
all target sets. No-suppressors and Half-swarm strategies improve
the hitting fraction of targets in 95.7% of cases. On average, they
improve hitting factor between 1.3x to 2.26x.

Directed swarm testing improves the hitting fraction for 73.4%
of target sets in SpiderMonkey. The Triggers-only strategy for
SpiderMonkey could not generate tests for many targets, due to
the complex recursive code generation in jsfunfuzz (mentioned
earlier) generating test suites for only about 41% of targets. Half-
swarm and No-suppressor strategies improve the hitting fraction
for 72.2% of their targets, between 1.07x and 1.48x on average,
for target set sizes of 10 and 5, respectively.

The result of rank-sum test of effectiveness of multiple-target
testing suggests that the Triggers-only strategy does not perform
well in generating effective configurations to increase the frequency
of coverage for targets6. Given the risks seen in single-target testing
and the lackluster results here, we believe that Triggers-only may
be the least effective strategy, despite its good results for YAFFS2
single-target directed swarm testing. It may be that Triggers-only is
simply too extreme: conventional random testing uses all features
in every test, and swarm testing can often improve this by reducing
the fraction of features by half. Lowering it to the small number of
6Full statistical test results in tech report.

triggers for many targets may simply not match the behavior most
random testers are designed to work with, or produce too little com-
plex interaction of software components to provide good testing.�
�

�
�

Observation 3: For YAFFS, GCC, and SpiderMonkey, for
No-suppressor and Half-swarm strategies, the hitting fraction
of at least 95% of target sets increases significantly using di-
rected swarm testing (p < 0.01, Wilcoxon rank-sum).

Figure 6 shows the performance of different merge strategies
across test subjects, and Figure 7 shows how merge strategies af-
fected the number of effective targets (how much merging was pos-
sible). Aggressive merging produced consistently very small sets of
targets, while Subsumption results are generally closer to Round-
robin than to Aggressive. The difference between the Round-robin
and Subsumption strategies in hitting fractions was therefore min-
imal (and in most cases, not statistically significant). The most
likely explanation is that when two targets have similar enough trig-
gers and suppressors to merge, for our subjects, testing one target
in round robin is likely to “accidentally” target the other target as
well. Aggressive merging improved hitting fractions for GCC and
SpiderMonkey, but performed poorly for YAFFS2.

6.3 RQ5: Actual Fault Detection
In addition to our basic results showing that directed swarm test-

ing can improve the frequency of coverage of targets, we also per-
formed experiments on actual fault detection — the hypothesis that
producing more tests hitting a code target will likely find faults in-
volving that code more easily seems obvious, but there could be
confounding factors, such as reduction of some other form of test
diversity produced by swarm testing. These experiments are based
on 7 randomly chosen known (fixed) SpiderMonkey faults. For
each of these faults, we targeted the statements in the code com-
mit that introduced the fault. Evaluation was based on comparing
30 minute undirected and directed swarm suites, and counting how
many times the fault was detected, on average, over a large (> 50)
number of trials. For two of the faults, neither directed nor undi-
rected testing ever detected the fault. The commit sizes for the
remaining 5 faults were 40, 13, 5, 17, and 15 statements, respec-
tively. Table 4 shows detection rates for undirected swarm testing
and directed strategies, with the best detection rate for each fault
in bold. Triggers-only is omitted from results, due to its difficul-
ties producing valid SpiderMonkey tests, and Aggressive merging
did not actually produce any additional merges over those provided
by Subsumption. While no single strategy dominated all others,
some basic points are clear: first, undirected swarm never had the
best detection rate, and had the worst detection rate for 3 of the 5
faults. Second, Round-robin Half-swarm never had the worst de-
tection rate, and had the best detection rate for 2 of the 5 faults, and
improved the detection rate compared to undirected swarm testing
by an average of 2.56x. Subsumption No-suppressors also always
improved on undirected testing. Due to the large number of similar
results (most runs did not detect a fault), however, these differences
were only statistically significant for Fault #5.�
�

�
�

Observation 4: Directed swarm testing, for 5 real Spider-
Monkey faults, ususally detected real faults much more fre-
quently than undirected testing. Round-robin Half-swarm was
arguably the most effective approach.

6.4 RQ6: Comparison with Random Testing
We chose to use random testing without swarm configuration

as an external evaluation. If directed testing cannot improve the

YAFFS2

Number of Targets

H
F

d

H
F

u

1

2

3

4

5 10 20

●
● ●

●
●
●●
●
● ●

●●
●●

Half−swarm
Aggressive

5 10 20

●

●
●

No−suppressors
Aggressive

5 10 20

●
●

●

●●●●
●

●
●

●
●

●

●
●●

Triggers−only
Aggressive

● ●
●

●●

Half−swarm
Subsumption

●
● ●

●

●

No−suppressors
Subsumption

1

2

3

4

● ●
●

●
●●

Triggers−only
Subsumption

1

2

3

4

● ● ●

Half−swarm
Round−robin

●
● ●

●
●

No−suppressors
Round−robin

● ● ●

Triggers−only
Round−robin

GCC

Number of Targets

H
F

d

H
F

u

0

1

2

3

4

5 10 20

● ● ●

●●● ●●

Half−swarm
Aggressive

5 10 20

● ● ●

●

No−suppressors
Aggressive

5 10 20

● ● ●

●

●
●
●

●●

Triggers−only
Aggressive

● ● ●

●

●●●
●

Half−swarm
Subsumption

● ● ●

●●●

●

No−suppressors
Subsumption

0

1

2

3

4

● ● ●

●
●

●
●

●

Triggers−only
Subsumption

0

1

2

3

4

● ● ●

●
●

●

Half−swarm
Round−robin

● ● ●

●

● ●

No−suppressors
Round−robin

● ● ●

●

●

●
●

Triggers−only
Round−robin

SpiderMonkey

Number of Targets

H
F

d

H
F

u

0

1

2

3

4

5 10 20

● ● ●

●●
●

●

●
●

Half−swarm
Aggressive

5 10 20

● ● ●

●
●

●

●

●●

No−suppressors
Aggressive

5 10 20

●
● ●

Triggers−only
Aggressive

● ● ●

●

●

Half−swarm
Subsumption

● ● ●

●

●

●

No−suppressors
Subsumption

0

1

2

3

4

●

●
●

●

●

Triggers−only
Subsumption

0

1

2

3

4

● ● ●

●

●●

●●

Half−swarm
Round−robin

● ● ●

●

No−suppressors
Round−robin

●

●
●

●

Triggers−only
Round−robin

Figure 5: Multi-target strategies compared.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●●●
●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

1

2

3

4

YAFFS2 GCC SpiderMonkey

ne
w

ra
tio

/in
itr

at
io

MergeMode

Aggressive

Round−robin

Subsumption

Figure 6: Merge strategies over all multi-target strategies.

●●●

●●●

●●●

●

5

10

15

20

YAFFS2 GCC SpiderMonkey

C
on

fig
ur

at
io

n
S

iz
e

MergeMode

Aggressive

Round−robin

Subsumption

Figure 7: Number of targets after merging, by merge strategy.

hitting fraction of targets over pure random testing, the applica-
bility of our technique would be questionable. Comparison with
other techniques would have little value, as the testing strategies
in most search-based and symbolic testing methods we are aware
of essentially aim to cover each code target once, not to maxi-
mize frequency of coverage, unless the target coincidentally is hit
when covering other targets. Frequency of coverage is therefore
a largely meaningless metric for these methods, while it is often
used by engineers evaluating random testers (if a random tester hits
a code target very infrequently it can be seen as a problem with
the tester) [16]. We compared the average hitting fraction of tar-
gets in single-targeted experiments over all strategies for each SUT
(HFd), with the average hitting fraction in test suites generated

Table 4: Detection rate of actual faults in the test suites gener-
ated by each technique in a 30-minute test suite generated by
each test strategy.

Test Strategy Fault #1 Fault #2 Fault #3 Fault #4 Fault #5
Undirected Swarm 13.6 0.07 0.24 0.26 0.07

Round-robin Half-swarm 31.9 0.19 0.35 0.56 0.29
Round-robin No-suppressors 34.2 0.26 0.17 0.46 0.69

Subsumption Half-swarm 33.0 0.24 0.12 0.10 0.29
Subsumption No-suppressors 33. 1 0.31 0.29 0.31 0.46

●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

0

1

2

3

4

5

6

7

8

9

10

YAFFS2 GCC SpiderMonkey

Figure 8: HFd
HFr

, random vs. directed.

by traditional random testing (HFr) under the same time budget
as in the single-target directed swarm experiments, with the same
number of trials as in the earlier single-target experiments. Fig-
ure 8 illustrates the results. We used a paired t-test between HFd
and HFr . Table 5 summarizes the results, showing average hitting
fractions, confidence intervals on the effect size, and p-values.

Table 5: The result of t-test comparing the hitting fraction of targets
in directed random testing and random testing without swarm.

SUT HFr HFd confidence-interval p-value
YAFFS2 0.671 0.819 (0.126,0.170) 0.0000
GCC 0.342 0.425 (0.053,0.113) 0.0000
SpiderMonkey 0.198 0.276 (0.059,0.097) 0.0000

�

�
	Observation 5: Directed swarm testing significantly (p <

0.01) increases hitting fractions over pure random testing.

7. THREATS TO VALIDITY
Threats Due to Sampling Bias: Our results are based on results

from only three large open source software programs. While we
believe that these programs are well tested examples of real-world
programs, there is a possibility that they are not representative. All
our subjects are “systems” software in C, for example. Generaliz-
ing to other languages and types of code may be unwarranted.

Limited External Evaluation: We used pure random testing
as our external evaluation. We are aware that there are other tech-
niques that aim to cover particular code targets, most notably search-
based techniques and symbolic execution. However, to our knowl-
edge, all of these tools aim to produce a single test covering each
target, not a set of highly diverse tests that frequently cover the tar-
get(s); even tools aiming to test code patches (e.g. KATCH [26])
aim to hit targets only once.

8. DISCUSSION
While our results generally support the effectiveness of directed

swarm testing, it is surprising how difficult it is to identify a single
best strategy for directed swarm testing. Triggers-only is likely
ineffective, but choosing between Half-Swarm, No-Suppressors,
Round-Robin, Subsumption, and Aggressive strategies is not sim-
ple. In part we attribute this to the underlying complexity of what is
happening in (directed) swarm testing: each configuration defines

a (usually effectively infinite) set of tests. This is, of course, the
point of random testing, that an unbounded number of diverse tests
can be generated, using all available testing budget.

Swarm testing improves random testing in many cases, in the
long run, by increasing the diversity of generated tests. This di-
versity can come with a price, however: for a fixed testing budget,
because swarm testing improves diversity, the hitting fraction for
many individual targets will be lower than for pure random test-
ing (when swarm testing increases overall coverage, this is almost
required — hitting more targets means hitting each target less of-
ten [18]). In fact, we noticed that comparing hitting fractions for
undirected swarm testing and pure random testing, we often saw
better hitting fractions for pure random testing, despite the fact that
fault detection and overall coverage tend to show swarm testing
performing much better for reasonably-long test runs [18]. Con-
figuration strategy not only determines individual test behavior, but
determines how quickly coverage saturates due to (lack of) diver-
sity of tests created. Swarm testing produces very diverse tests;
random testing without swarm configuration produces much less
diverse tests. Our directed swarm testing strategies introduce a
large number of choices in between these extremes, with a given
focus [12]. Our experiments show that a variety of configuration
methods can improve hitting fractions, but understanding how to
best choose a strategy for, e.g., short vs. long budget directed test-
ing is an open question we would like to address. However, the pri-
mary aim of directed swarm testing will typically be to detect faults
quickly. One reasonable approach is to extend the diversity-centric
ideas of swarm testing to strategy selection, and run in parallel di-
rected tests for a change set using all of the viable strategies (e.g.,
all but Triggers-only).

9. RELATED WORK
The most closely related work is our previous work introducing

swarm testing [18] and the notions of triggers and suppressors [17].
We expand on that work by using the concepts introduced to enable
a practical way to generate focused random tests.

There are several approaches for generating a test case that cov-
ers a chosen source code target once. Of these, search-based test-
ing [20,27] and (dynamic) symbolic execution [11,36] are the most
notable ones. Symbolic execution [24] formulates an execution
path in the program as a constraint formula problem and gener-
ates inputs that satisfy the path conditions and hence cover the tar-
get. Dynamic symbolic execution improves the scalability of pure
symbolic execution by using information from concrete executions
to replace over-complex constraints, simplifying problems of han-
dling, e.g. system calls and pointers [11]. Search-based testing
reduces the problem of covering a particular entity in the program
to a search problem and uses techniques such as genetic algorithms
and hill climbing, to solve that problem [20, 27].

There are many previous efforts to improve random testing. Ran-
doop [29] generates tests for object-oriented programs by calling
random APIs, but uses feedback to guide test sequence creation.
Nighthawk [2] uses genetic algorithms on top of a random tester
to modify the configuration of the random tester to optimize it for
a given goal (i.e., fitness function). Adaptive random testing [5, 6]
aims to improve random testing by using a distance measure to
select more uniformly distributed tests, though its effectiveness in
practice has been criticized [3]. ABP-based testing uses reinforce-
ment learning to guide test generation [15].

To our knowledge, none of these approaches are applicable to the
problem we address. First, we believe that our approach is the only
attempt to produce a large set of diverse tests (due to random vari-
ation, in our case, but any type of diversity would be useful) that

cover certain code targets with high frequency. While symbolic
execution and search-based testing may be helpful for producing
tests targeting a given element in source code, they simply attempt
to hit the target, not produce many tests hitting the target in various
ways. Moreover, these approaches are not always easy to apply to
complex SUTs (such as a production quality compiler that takes as
input full programs in a complex language), and symbolic execu-
tion in particular is often far less efficient than random testing [38].
Symbolic execution unfortunately simply fails to scale to very large
systems with complex input, in many cases, or requires seed tests.
The approach proposed in this paper is often trivial to apply to ex-
isting random test generators for complex software systems and,
like pure random testing, has extremely low overhead (collecting
coverage information on some random test runs is the only real
cost, and this is only paid during data collection, not during new
testing runs). While other methods are suitable for generating a
single test targeting specific code (and this is their common usage),
the high cost of each test generated by many methods might make
them unsuitable for our purposes of high frequency of coverage in
diverse tests, even if some variation were proposed allowing the
generation of multiple tests for a target.

10. CONCLUSIONS AND FUTURE WORK
In this paper we demonstrate that using collected statistics on

code coverage and swarm testing, it is possible to produce focused
random tests — truly random tests that nonetheless target specific
source code. While results for the various strategies for directed
swarm testing vary, in general the method is able to increase the
frequency with which tests cover targeted code by a factor often
more than 2x, and sometimes up to 8 or 9x. This approach is readily
applicable to existing, industrial-strength random testing tools for
critical systems software, and therefore out-of-the-box scalable to
applications such as testing production compilers and file systems.

In conjunction with existing regression suites and other meth-
ods, we hope that applying some element of “regression testing”
(targeting code changes) to highly diverse and cost-effective ran-
dom testing can make it easier to find faults in changed or other-
wise suspicious parts of complex systems. For example, if static
analysis indicates that a source code line may have a bug, but the
analysis technique is subject to false positives, it may be useful to
subject such lines to further scrutiny with targeted tests. If muta-
tion testing reveals that many mutants of certain code lines survive
an existing test suite or a large number of random tests, directed
swarm testing can be used to produce random tests that have more
chance of killing these mutants, for inclusion in regression tests.
Targeting source code that is very infrequently covered during ex-
tensive random testing, but covered enough to provide a basis for
statistical estimation of triggers and suppressors may lead to cov-
ering code that the seldom-covered code dominates in the CFG,
improving the overall effectiveness of large-scale random testing.
Targeting faults, rather than source code lines, can help improve
suites for fault localization, by producing more failing tests to ana-
lyze. We believe there may be further practical applications of the
combination of test suite statistics and variation in test case config-
urations. The changes in effectiveness of directed swarm testing,
depending on the strategy chosen for balancing focus and diversity
also show the difficulty of understanding complex testing systems.

Acknowledgements: The authors thank Scott Davies for discov-
ering the equivalence to optimal tuple matching, and John Regehr,
Darko Marinov, Milos Gligoric, Josie Holmes, and Mihai Cobodan
for useful discussions. A portion of this work was funded by NSF
grants CCF-1217824 and CCF-1054786.

11. REFERENCES
[1] ALIPOUR, M. A., AND GROCE, A. Bounded model

checking and feature omission diversity. In International
Workshop on Constraints in Formal Verification (2011).

[2] ANDREWS, J. H., LI, F. C. H., AND MENZIES, T.
Nighthawk: A two-level genetic-random unit test data
generator. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software
Engineering (New York, NY, USA, 2007), ASE ’07, ACM,
pp. 144–153.

[3] ARCURI, A., AND BRIAND, L. Adaptive random testing:
An illusion of effectiveness. In International Symposium on
Software Testing and Analysis (2011), pp. 265–275.

[4] ARCURI, A., IQBAL, M. Z. Z., AND BRIAND, L. C.
Formal analysis of the effectiveness and predictability of
random testing. In International Symposium on Software
Testing and Analysis (2010), pp. 219–230.

[5] CHEN, T. Y., KUO, F.-C., MERKEL, R. G., AND TSE,
T. H. Adaptive random testing: The art of test case diversity.
J. Syst. Softw. 83, 1 (Jan. 2010), 60–66.

[6] CHEN, T. Y., LEUNG, H., AND MAK, I. Adaptive random
testing. In Advances in Computer Science-ASIAN 2004.
Higher-Level Decision Making. Springer, 2005, pp. 320–329.

[7] CUOQ, P., MONATE, B., PACALET, A., PREVOSTO, V.,
REGEHR, J., YAKOBOWSKI, B., AND YANG, X. Testing
static analyzers with randomly generated programs. In NASA
Formal Methods Symposium (2012), pp. 120–125.

[8] DE MOURA, L. M., AND BJØRNER, N. Z3: an efficient
SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems (2008), pp. 337–340.

[9] DEWEY, K., ROESCH, J., AND HARDEKOPF, B. Fuzzing
the rust typechecker using CLP. In Automated Software
Engineering (2015), pp. 482–493.

[10] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y.
Grammar-based whitebox fuzzing. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2008),
PLDI ’08, ACM, pp. 206–215.

[11] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart:
Directed automated random testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA,
2005), PLDI ’05, ACM, pp. 213–223.

[12] GROCE, A. (Quickly) testing the tester via path coverage. In
Workshop on Dynamic Analysis (2009).

[13] GROCE, A., ALIPOUR, M. A., ZHANG, C., CHEN, Y.,
AND REGEHR, J. Cause reduction for quick testing. In
Software Testing, Verification and Validation (ICST), 2014
IEEE Seventh International Conference on (2014), IEEE,
pp. 243–252.

[14] GROCE, A., ALIPOUR, M. A., ZHANG, C., CHEN, Y.,
AND REGEHR, J. Cause reduction: delta debugging, even
without bugs. STVR 26, 1 (2015), 40–68.

[15] GROCE, A., FERN, A., PINTO, J., BAUER, T., ALIPOUR,
A., ERWIG, M., AND LOPEZ, C. Lightweight automated
testing with adaptation-based programming. In IEEE
International Symposium on Software Reliability
Engineering (2012), pp. 161–170.

[16] GROCE, A., HOLZMANN, G., AND JOSHI, R. Randomized
differential testing as a prelude to formal verification. In
International Conference on Software Engineering (2007),
pp. 621–631.

[17] GROCE, A., ZHANG, C., ALIPOUR, M., EIDE, E., CHEN,
Y., AND REGEHR, J. Help, help, I’m being suppressed; The
significance of suppressors in software testing. In 2013 IEEE
24th International Symposium on Software Reliability
Engineering (ISSRE) (Nov 2013), pp. 390–399.

[18] GROCE, A., ZHANG, C., EIDE, E., CHEN, Y., AND
REGEHR, J. Swarm testing. In Proceedings of the 2012
International Symposium on Software Testing and Analysis
(New York, NY, USA, 2012), ISSTA 2012, ACM, pp. 78–88.

[19] HAMLET, R. Random testing. In Encyclopedia of Software
Engineering. Wiley, 1994, pp. 970–978.

[20] HARMAN, M., MANSOURI, S. A., AND ZHANG, Y.
Search-based software engineering: Trends, techniques and
applications. ACM Comput. Surv. 45, 1 (Dec. 2012),
11:1–11:61.

[21] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing with
code fragments. In Proceedings of the 21st USENIX
Conference on Security Symposium (Berkeley, CA, USA,
2012), Security’12, USENIX Association, pp. 38–38.

[22] KIFETEW, F. M., TIELLA, R., AND TONELLA, P.
Combining stochastic grammars and genetic programming
for coverage testing at the system level. In Search-Based
Software Engineering (2014), pp. 138–152.

[23] KIM, S., WHITEHEAD, E., AND ZHANG, Y. Classifying
software changes: Clean or buggy? Software Engineering,
IEEE Transactions on 34, 2 (March 2008), 181–196.

[24] KING, J. C. Symbolic execution and program testing.
Communications of the ACM 19, 7 (1976), 385–394.

[25] LE, V., AFSHARI, M., AND SU, Z. Compiler validation via
equivalence modulo inputs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation
(2014), pp. 216–226.

[26] MARINESCU, P. D., AND CADAR, C. Katch: high-coverage
testing of software patches. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering
(2013), ESEC/FSE 2013, pp. 235–245.

[27] MCMINN, P. Search-based software testing: Past, present
and future. In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International
Conference on (March 2011), pp. 153–163.

[28] NAGAI, E., HASHIMOTO, A., AND ISHURA, N. Scaling up
size and number of expressions in random testing of
arithmetic optimization in c compilers. In Workshop on
Synthesis and System Integration of Mixed Information
Technologies (2013), pp. 88–93.

[29] PACHECO, C., LAHIRI, S. K., ERNST, M. D., AND BALL,
T. Feedback-directed random test generation. In Proceedings
of the 29th International Conference on Software
Engineering (Washington, DC, USA, 2007), ICSE ’07, IEEE
Computer Society, pp. 75–84.

[30] ROBERTSON, E. L., AND WYSS, C. M. Optimal tuple
merge in NP-complete. Tech. Rep. TR599, Indiana
University Bloomington, July 2004.

[31] RUDERMAN, J. Introducing jsfunfuzz. https:
//www.squarefree.com/2007/08/02/introducing-jsfunfuzz/.

[32] RUDERMAN, J. Releasing jsfunfuzz and DOMFuzz.
https://www.squarefree.com/2015/07/28/
releasing-jsfunfuzz-and-domfuzz/, 2015.

[33] SHI, A., GYORI, A., GLIGORIC, M., ZAYTSEV, A., AND
MARINOV, D. Balancing trade-offs in test-suite reduction. In
FSE (2014), pp. 246–256.

[34] VYUKOV, D. gosmith: Random Go program generator.
https://code.google.com/p/gosmith/.

[35] WILSON, E. B. Probable inference, the law of succession,
and statistical inference. J. of the American Statistical Assoc.
22 (1927), 209–212.

[36] XIE, T., TILLMANN, N., DE HALLEUX, J., AND SCHULTE,
W. Fitness-guided path exploration in dynamic symbolic
execution. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on (2009),
IEEE, pp. 359–368.

[37] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding
and understanding bugs in c compilers. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA,
2011), PLDI ’11, ACM, pp. 283–294.

[38] ZHANG, C., GROCE, A., AND ALIPOUR, M. A. Using test
case reduction and prioritization to improve symbolic
execution. In International Symposium on Software Testing
and Analysis (2014), pp. 160–170.

