
TSTL: A Language and Tool for Testing (Demo)

Alex Groce, Jervis Pinto, Pooria Azimi, Pranjal Mittal
Oregon State University, USA

agroce@gmail.com,pinto@eecs.oregonstate.edu,
azimip@onid.oregonstate.edu,mittal.pranjal@gmail.com

ABSTRACT
Writing a test harness is a difficult and repetitive program-
ming task, and the lack of tool support for customized auto-
mated testing is an obstacle to the adoption of more sophis-
ticated testing in industry. This paper presents TSTL, the
Template Scripting Testing Language, which allows users
to specify the general form of valid tests for a system in a
simple but expressive language, and tools to support testing
based on a TSTL definition. TSTL is a minimalist template-
based domain-specific language, using the source language of
the Software Under Test (SUT) to support most operations,
but adding declarative idioms for testing. TSTL compiles
to a common testing interface that hides the details of the
SUT and provides support for logging, code coverage, delta
debugging, and other core testing functionality, making it
easy to write universal testing tools such as random testers
or model checkers that apply to all TSTL-defined harnesses.
TSTL is currently available for Python, but easily adapted
to other languages as well.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability

Keywords
Domain-specific languages, testing tools, Python

1. INTRODUCTION
Automated testing often requires a user to write a test

harness — essentially a program that defines and generates
the set of valid tests for the Software Under Test (SUT).
Such harnesses are common to random testing, many kinds
of model checking, and various machine-learning influenced
approaches [6]. Unfortunately, these harnesses themselves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

are complex software artifacts and it is all too easy to spend
valuable testing time hunting down bugs in the test harness
and not the SUT. Harness code is often highly repetitive
(choosing between a set of available API calls to make, and
assigning values to parameters in those calls, for example)
and is almost always tightly coupled to one particular test
generation method. TSTL [9] is a language and tool in-
tended to make these difficulties less onerous.

First, TSTL allows a harness to be defined in a declara-
tive style, and provides support for many common testing
idioms. Second, adapting a more declarative approach al-
lows TSTL to output a generalized interface for testing: a
class that allows a testing tool to determine available test
actions, check for success or failure of tests as they progress,
and even automatically produce logs, collect and analyze
code coverage, and delta-debug failed tests, without change
for different SUTs, but without sacrificing the generality of
a hand-built test generator: the definition of valid tests also
encodes the idiosyncrasies of the SUT.

Figure 1 shows a simple TSTL file, defining valid tests of
an AVL tree implementation. Most of the file is actually
Python code. TSTL compiles such a file into Python code
defining a class for testing tools to interface. Figure 2 shows
an example of a simple random tester using that interface,
concise but featuring delta debugging [17] and branch cover-
age reporting. The key idea of TSTL is to take a definition of
valid actions (typically API calls) that can be performed by
the SUT and transform this into a class representing a graph
with transitions between the states produced by performing
those actions. This allows us to separate the problem of
describing the set of valid tests of a program from the prob-
lem of actually choosing and executing some of those tests.
TSTL tracks code coverage, handles exceptions, and per-
forms other book-keeping (including providing easy-to-use
state storage and backtracking), resulting in a simple clean
definition not only of test harnesses but of algorithms for
searching their induced test graphs.

In this paper we demonstrate the current functionality
of TSTL. A more detailed description of TSTL [9] is avail-
able elsewhere, providing further information on the algo-
rithm used to compile (really, expand) TSTL harnesses, the
core TSTL language in BNF, and the design choices behind
TSTL. Since that paper was finalized, TSTL has been used
by over 100 students, and refined based on their feedback
and our own work in practical testing problems and research.
New features include the ability to refer to the value of an ex-
pression at function entry with the construct PRE%(expr)%,
a logging facility, support for serializing tests in order to

01 @import avl

02 @import math

03 <@

04 def heightOk(tree):

05 h = tree.tree_height()

06 l = len(tree.inorder())

07 if (l == 0):

08 return True

09 m = math.log(l,2)

10 # Demonstrate PRE

11 assert (PRE%(tree.inorder())%

12 == tree.inorder())

13 return h <= (m + 1)

14 def it(s):

15 l = []

16 for i in s:

17 l.append(i)

18 return sorted(l)

19 @>

20 source: avl.py

21 pool: %INT% 4

22 pool: %AVL% 2 REF

23 pool: %LIST% 2

24 log: 1 %AVL%.inorder()

25 property: heightOk(%AVL%)

26 property: %AVL%.check_balanced()

27 %LIST%:=[]

28 ~%LIST%.append(%INT%)

29 %INT%:=%[1..20]%

30 %AVL%:=avl.AVLTree()

31 %AVL%:=avl.AVLTree(%LIST%)

32 ~%AVL%.insert(%INT%) =>

(len(%AVL,1%.inorder()) ==

PRE%(len(%AVL,1%.inorder()))%+1)

or PRE%(%AVL,1%.find(%INT,1%))%

33 ~%AVL%.delete(%INT%) =>

(len(%AVL,1%.inorder()) ==

PRE%(len(%AVL,1%.inorder()))%-1)

or not PRE%((%AVL,1%.find(%INT,1%)))%

34 ~%AVL%.find(%INT%)

35 %AVL%.inorder()

36 len(%AVL,1%.inorder()) > 5 ->

%AVL%.display()

37 reference: avl.AVLTree ==> set

38 reference: insert ==> add

39 reference: delete ==> discard

40 reference: find ==> __contains__

41 reference: (\S+)\.inorder\(\) ==> it(\1)

42 reference: METHOD(display) ==> CALL(print)

43 compare: find

44 compare: inorder

Figure 1: Simple TSTL file to test an AVL tree class,
showing various features of TSTL. AVLTree defines
methods including insert, delete, find, etc.

import sut

import random

sut = sut.sut()

NUM_TESTS = 1000

TEST_LENGTH = 200

for t in xrange(0,NUM_TESTS):

sut.restart()

T = []

for s in xrange(0,TEST_LENGTH):

action = random.choice(sut.enabled())

T.append(action)

r = safely(action)

if sut.newBranches() != []

print ’NEW BRANCHES:’

print sut.newBranches()

if not r:

print ’EXCEPTION:’, sut.error()

R = sut.reduce(T, sut.fails)

print ’FAILING TEST:’, R

elif not sut.check():

print ’PROPERTY FAILED:’

print sut.error()

R = sut.reduce(T, sut.failsCheck)

print ’FAILING TEST:’, R

Figure 2: A simple random tester using the interface
provided by TSTL.

save them to a file, a method for expecting certain changes
in values from a call, and a generalized delta debugging [17]
facility supporting arbitrary properties (e.g., reducing a test
case so it keeps the same code coverage [5]) in addition to
bug reduction. While this tool paper focuses on TSTL’s use
in API-call based testing, TSTL can also support grammar-
based testing, as shown in the NFM paper [9]. TSTL is
available from github (https://github.com/agroce/tstl)
or as a package in Pypi.

2. A BRIEF TSTL TUTORIAL
We demonstrate TSTL’s use to test an AVL tree imple-

mentaiton (Figure 1) as an example of a typical SUT.

2.1 Section 1: Python Code
One of the challenges of defining a domain-specific lan-

guage for testing is that test harnesses often need to per-
form arbitrary computation, and programmers do not want
to learn a new language. TSTL is a template language that
expands to source code in the SUT’s language, and complex
functionality is handled by using the underlying language, in
this case Python. The harness begins (lines 1-2) with import

statements to load any needed Python modules, including
the actual SUT, the avl module. TSTL lines beginning with
an“@”indicate raw Python code. TSTL processes such lines
in some cases (for example, reimporting any modules when
the SUT is re-initialized to its starting state), but in general
simply reproduces them in compiled output.

Lines 3-19 define two utility functions for testing. The first
of these checks that the AVL tree in question satisfies the
AVL guarantee that a tree will be balanced. It also checks
that after the height computation, the tree’s inorder traver-
sal is unchanged from its value at function entry. TSTL au-

tomatically expands this into the equivalent Python code,
caching PRE expressions used multiple times in the body.
The it function returns an “inorder traversal” of the Python
set used as a reference implementation for the AVL tree.

2.2 Section 2: Preamble
Lines 20-26 define some basic properties of the test har-

ness. First, line 20 tells TSTL that the avl.py file contains
all source code on which coverage should be collected.

Lines 21-23 define the value pools that are used in testing
[1, 4]. A test in TSTL is a sequence of assignments and calls,
and the value pool contains the values used. A pool value
consists of a name (e.g. %INT%), an integer noting how many
different values of that pool are available (here, the harness
can remember up to 4 different INTs), and, optionally, the
keyword REF indicating that two copies of all pool values of
this type are to be maintained, one for the SUT itself and
one as a reference implementation for differential testing [12,
8]. Pool values are always set off in “%” characters to distin-
guish them from actual Python variables, since pool values
potentially represent several actual Python variables, and
are used by TSTL to define the graph structure of a test, as
explained in Section 2.3. Here the AVL trees are maintained
as a reference pool, since we want to automatically test that
the AVL tree implements a set.

Line 24 tells TSTL that if the logging level is at least 1,
the inorder traversal of every AVL pool should be printed
after each test action.

Lines 25 and 26 declare the properties that must be invari-
antly true after each test action: first, the height of every
AVL tree must be ok, as defined by our Python function,
and second the AVL implementation’s own function for en-
suring it is balanced must return True. Recall that our har-
ness maintains two AVL pool values, so TSTL checks these
properties for each AVL tree in the pool.

2.3 Section 3: Actions
Lines 27-34 are the heart of the harness definition, the

actual steps that can be taken in a valid test. Lines 27-28
allow the construction of arbitrary length lists of integers.
Line 29 defines the range of integers allowed in the INT pool,
using the %[..]% construct. Lines 30 and 31 provide for ini-
tialization of AVL trees, either with the constructor for an
empty tree or the constructor that takes a list and produces
an AVL tree containing all elements in the list. Lines 32-36
allow the basic AVL tree API calls — insertion, deletion,
searching, inorder traversal, and printing. Note that code
can be proceeded by a list (in curly braces) of exceptions to
be expected as possible valid behavior. The two most inter-
esting recently added features shown here are 1) that guards
can be defined by a user, limiting the conditions in which an
action is enabled, using the syntax guard -> action and
2) a check to perform after an action has been performed
(which can include use of PRE) can be provided, using the
syntax action => check. This code also uses the ability to
back (or forward) reference the pool variable chosen in an
expansion, e.g. %INT,1% is expanded to the same INT used
in the first “normal” pool reference in the action.

In large part, this section of the harness is just Python
code, with one line for each action. The TSTL compiler is
responsible for producing a valid graph definition based on
the pool values used from this code. Actions using a pool
value are not enabled until the pool is initialized — lines with

an assignment using := define initializations. Furthermore,
a pool value cannot be re-initialized until it has been used
in some other action, to avoid useless test sequences such as
assigning first 1 and then 5 to the same INT pool value. The
use of a “~” before a pool value use indicates that this usage
should not enable re-initialization. Appending an item to
a LIST, for example, does not “use it up” but constructing
an AVL tree from a list allows that list pool value to be
re-initialized. AVL trees cannot be over-written until they
have been traversed at least once.

2.4 Section 4: Reference Definition
One of the most convenient features of TSTL is its in-

tegrated support for differential testing, where the SUT’s
behavior is compared to that of a reference implementation
[12, 8], and differences are reported as bugs. Differential
testing is a powerful method for finding bugs in software
ranging from simple container classes to optimizing com-
pilers [16], but its implementation in a testing system often
requires writing a large amount of repetitive, and sometimes
subtle, code. TSTL allows a harness to indicate, using tex-
tual patterns, how calls to the SUT are to be transformed
into calls to a reference, and which return values from the
SUT and reference should be compared for equivalence.

Lines 37-42 show that to create a reference for an AVL-
Tree, the matching constructor (either taking no argument
or a list) should be called in Python’s built-in set class. AVL
insertion is handled by the add method for sets, and deletion
with discard. AVLTree find is equivalent to the __con-

tains__ method on Python sets, and an inorder traversal
(sorted list of elements) is provided by our it function. Note
that the last reference definition, on line 41, has to use reg-
ular expressions to transform an AVLTree method call into
a function call on the reference set. There is also, as shown
in line 42, syntactic sugar for this transformation (or the
opposite). Finally, lines 43 and 44 tell TSTL that when-
ever an action containing a find call or an inorder call is
performed, the return values for the operation on the SUT
should be compared to the operation on the reference. If
there is no compare: indicator, return values of calls are
not compared, the more typical case for many reference op-
erations (e.g. our AVLTree’s add does not return the same
type as set’s insert, so comparison is not possible).

2.5 Using the Harness
In order to test avl.py, a TSTL user would first com-

pile the harness by typing: tstl avl.tstl. The tstl tool
takes several command line arguments, such as the class and
Python file to output, and whether to include code coverage
instrumentation, but by default compiles the given file into
sut.py and makes a class called sut. The self-contained
file sut.py produced from our example harness is over 7,000
lines of Python code (this includes actual testing code plus
support code common to all TSTL-generated harnesses). If
the random tester in Figure 2 is in a file called rt.py the user
can then test the AVL implementation (or any other SUT
compiled into sut.py) by typing: python rt.py. If the AVL
tree code has a bug, it is likely the tool will quickly detect
it and print out a short test case that exposes the problem.
The TSTL release includes some simple testers, including a
much more configurable random tester than is shown here,
a rudimentary model checker, and machine-learning-based
algorithms for testing (e.g. a variant of beam search [9]).

3. RELATED WORK
To our knowledge, there has been no previous tool provid-

ing similar functionality. There exist various testing tools
and languages of a somewhat different flavor: e.g. Korat
[13], which has a much more fixed input domain specifica-
tion, or the tools built to support the Next Generation Air
Transportation System (NextGen) software [3]. The clos-
est of these is the UDITA language [4], a Java extension
with non-deterministic choice operators and assume, which
yields a different language but shares some of TSTL’s goals.
TSTL aims more at the generation of tests than the filter-
ing of tests (as defined in the UDITA paper), while UDITA
supports both approaches. This goal of UDITA (and re-
sulting need for first-class assume) means that it is hosted
inside a complex tool, JPF [15], rather than generating a
stand-alone simple interface to an SUT. Building a version
of UDITA for a new language is far more challenging than
porting TSTL. UDITA also supports many fewer constructs
to assist test harness development; e.g., users must imple-
ment their own logging, delta-debugging, and must write
what looks like harness code. Work at JPL on languages for
analyzing spacecraft telemetry logs [7] is a working example
of a Python-based declarative language for testing purposes.
The pool approach to test case construction is derived from
work on canonical forms and enumeration of unit tests [1].

4. CONCLUSIONS AND FUTURE WORK
TSTL is currently a useful working prototype, capable

of production-quality testing. We do expect that the ex-
perience of more users will introduce some changes in the
language and interface. Our hopes for TSTL are threefold.
First, we hope that TSTL can provide an easy way for non-
academic developers to use automated testing in their own
work, without much effort, and to take advantage of the
work of testing researchers, who will provide TSTL tools
for their testing algorithms. Second, we hope that TSTL
can serve as a way for students to learn about automated
testing, since Python is now one of the most popular intro-
ductory languages in computer science [14]. Finally, TSTL
can provide a way for researchers to rapidly prototype new
testing algorithms, and apply them with ease to any SUTs
for which a TSTL harness has been defined. Writing meta-
analysis tools to automatically apply multiple algorithms
(or the same algorithm with different parameters) to TSTL
SUTs and statistically analyze the results is fairly easy, and
we have some rudimentary scripts for this purpose already
in place in our own environment.

The next step for TSTL is to move beyond Python to
provide testing support for other languages. Scala, Ruby,
and other scripting languages are obvious targets (we be-
lieve a Scala implementation would be a relatively easy ef-
fort, and perhaps allow integration with sophisticated log
analysis tools [2]). Java, C, and C++ may require somewhat
more complex implementations, but should also be possible.
Finally, we believe TSTL can also target harnesses for model
checkers such as CBMC [11] and SPIN [10].

Acknowledgments: The authors would like to thank
the students (especially Francis Vo) in winter term 2015 sec-
tions of CS 362 and 562 at Oregon State University for their
comments, contributions, and complaints about TSTL. A
portion of this research was funded by NSF CCF-1217824
and NSF CCF-1054876.

5. REFERENCES
[1] J. Andrews, Y. R. Zhang, and A. Groce. Comparing

automated unit testing strategies. Technical Report
736, Department of Computer Science, University of
Western Ontario, December 2010.

[2] H. Barringer and K. Havelund. TRACECONTRACT:
a Scala DSL for trace analysis. In Formal Methods,
pages 57–72, 2011.

[3] D. Giannakopoulou, F. Howar, M. Isberner,
T. Lauderdale, Z. Rakamarić, and V. Raman. Taming
test inputs for separation assurance. In International
Conference on Automated Software Engineering, pages
373–384, 2014.

[4] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid,
V. Kuncak, and D. Marinov. Test generation through
programming in UDITA. In International Conference
on Software Engineering, pages 225–234, 2010.

[5] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and
J. Regehr. Cause reduction for quick testing. In
Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on,
pages 243–252. IEEE, 2014.

[6] A. Groce and M. Erwig. Finding common ground:
choose, assert, and assume. In Workshop on Dynamic
Analysis, pages 12–17, 2012.

[7] A. Groce, K. Havelund, and M. Smith. From scripts to
specifications: The evolution of a flight software
testing effort. In International Conference on Software
Engineering, pages 129–138, 2010.

[8] A. Groce, G. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In International Conference on Software Engineering,
pages 621–631, 2007.

[9] A. Groce and J. Pinto. A little language for testing. In
NASA Formal Methods Symposium, pages 204–218,
2015.

[10] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
2003.

[11] D. Kroening, E. M. Clarke, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, pages
168–176, 2004.

[12] W. McKeeman. Differential testing for software.
Digital Technical Journal of Digital Equipment
Corporation, 10(1):100–107, 1998.

[13] A. Milicevic, S. Misailovic, D. Marinov, and
S. Khurshid. Korat: A tool for generating structurally
complex test inputs. In International Conference on
Software Engineering, pages 771–774, 2007.

[14] E. Shein. Python for beginners. Communications of
the ACM, 58(3):19–21, 2015.

[15] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering, 10(2):203–232, Apr. 2003.

[16] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 283–294, 2011.

[17] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. Software Engineering,
IEEE Transactions on, 28(2):183–200, 2002.

