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ABSTRACT

Scaling symbolic execution to large programs or programs
with complex inputs remains difficult due to path explosion
and complex constraints, as well as external method calls.
Additionally, creating an effective test structure with sym-
bolic inputs can be difficult. A popular symbolic execution
strategy in practice is to perform symbolic execution not
“from scratch” but based on existing test cases. This paper
proposes that the effectiveness of this approach to symbolic
execution can be enhanced by (1) reducing the size of seed
test cases and (2) prioritizing seed test cases to maximize ex-
ploration efficiency. The proposed test case reduction strat-
egy is based on a recently introduced generalization of delta-
debugging, and our prioritization techniques include novel
methods that, for this purpose, can outperform some tradi-
tional regression testing algorithms. We show that applying
these methods can significantly improve the effectiveness of
symbolic execution based on existing test cases.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Reliability, Experimentation

Keywords: Symbolic execution, Test case reduction, Test
prioritization

1. INTRODUCTION
Symbolic execution has been one of the most promising

and exciting areas of automated testing research for many
years now [9]. Symbolic execution “runs” a program, re-
placing concrete inputs with symbolic variables that rep-
resent all possible values. When a program branches, the
execution takes both paths (if they are feasible under cur-
rent constraints) and a set of path conditions on symbolic
variables is modified for each path to record the new con-
straints on the symbolic values. Constraint solvers can be
used to produce a concrete input from a symbolic path or
to check safety of operations (determining if, for example,
current path constraints ensure that a division is applied
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to a non-zero value). Dynamic symbolic execution com-
bines symbolic execution with concrete execution in order
to improve scalability [9]. However, the promise of (dy-
namic) symbolic execution-based testing has been frustrated
by scalability problems, including the path explosion prob-
lem and the challenge of solving for complex constraints. In
terms of program paths generated per unit of testing time,
symbolic execution can be a much less efficient approach to
automated testing than explicit-state model checking or ran-
dom testing [13]. For some large programs and generalized
symbolic harnesses, symbolic execution basically does not
yet work.

One popular method for addressing these problems is to
not perform symbolic execution“from scratch”using a highly
generalized test harness, but to seed symbolic execution from
existing inputs, augmenting an existing suite [18,19,29,30].
For example, the zesti (Zero-Effort Symbolic Test Improve-
ment) extension of KLEE is based on the observation that
symbolic-execution can take advantage of regression test
cases [23]. Other work, motivated by a desire to efficiently
reproduce field failures, has shown that symbolic execution
can scale better based on a “test case” (a call sequence) than
when using only a point-of-failure or call stack [17]. The
best-known and most successful large-scale application of
symbolic execution to real-world testing, Microsoft’s SAGE,
is based on seeded exploration from test inputs [2].

Previous investigations have considered the question of
how best to symbolically augment a test suite for purposes
of dealing with changes to the code [24, 30]. However, the
literature does not, to our knowledge, address the problem
of seeded symbolic execution in general, aimed at improv-
ing an existing test suite for a fixed program. Because of
its high cost as a pure technique and its improved effective-
ness given a base of test cases, dynamic symbolic execution
may best fit into a two-stage testing process. In the first
stage, a much less expensive automated testing approach,
such as random testing [14, 25] is used to generate an ini-
tial suite of test cases until coverage saturates. Remaining
uncovered branches at this point are likely to be difficult
enough to cover to justify the cost of symbolic execution. In
many cases, the probability of coverage for some reachable
branches by randomized methods is essentially zero. The
goal of the two-stage approach is to maximize total code
coverage as rapidly as possible, under the assumption that
this will result in effective and efficient fault detection.

The first stage of this two-stage approach to testing is
difficult to generalize: the optimal approach depends heavily
on the testing method used and the structure of the test



Figure 1: Workflow of this approach

space. This paper considers the more well-scoped problem
of improving the effectiveness of the second stage: given a
suite of existing test cases, how can we improve the efficiency
of seeded symbolic execution based on those test cases? The
evaluation criteria for proposed methods is simple: given a
total testing budget B, how can additional code coverage
over the starting suite be maximized?

Two basic approaches are possible. First, the test cases
themselves may be modified to improve their suitability as
a basis for symbolic exploration. Symbolic techniques are
generally more expensive to apply to larger seeds, for the
obvious reasons (the set of paths is larger, the program state
becomes more complex, and there are more symbolic inputs
to solve for). It is therefore reasonable to expect that re-
ducing the size of input test cases should improve the scala-
bility of symbolic exploration. The basic purpose of seeded
symbolic augmentation is arguably to explore the “coverage
neighborhood” of a test input, which leads to the hypothe-
sis that a test input of smaller size but with the same code
coverage will almost always lead to more efficient symbolic
exploration than a larger test that does not increase coverage
over the smaller test. Delta-debugging [33] is a well-known
technique for reducing the size of test cases, but it is only
useful for failing test cases, and often reduces test cases so
much that they are a poor basis for symbolic exploration.
However, recent work has shown that delta-debugging using
preservation of source code coverage rather than failure as
a property to be preserved can produce extremely efficient
regression suites based on existing tests [12].

Second, seeded symbolic exploration can be seen as a pow-
erful variation of regression testing, which suggests the use
of test case prioritization [32]. For example, an obvious ap-
proach is to attempt to run regression tests in such an order
that total code coverage is maximized as quickly as possible.
The hypothesis is therefore that better ordering of the test
cases used as symbolic seeds can improve the efficiency of
symbolic execution as well. Because symbolic exploration is
much more demanding than simple replay of regression tests,
some prioritizations that are not obviously useful for tradi-
tional regression testing (in that they do not aim for high
code coverage) are considered. The KATCH tool [24] uses
a novel prioritization for seeded exploration based on both
CFG distance and weakest preconditions to target changed
code in patches; our aim is similar, but intended for the gen-
eral case of increasing overall coverage over an existing test
suite base.

The basic workflow for seeded symbolic execution pro-
posed in this paper is therefore (as Figure 1 illustrates):

1. Generate a suite of seed test cases (T1, T2, . . . , Tn) by
either a cheap automated method or manual testing.

2. Apply delta-debugging with code coverage as a re-
duction criteria to produce a new set of test cases

(T ′

1, T
′

2, . . . , T
′

n) with reduced size and execution time
but with equivalent code coverage to the original suite.

3. Prioritize (T ′

1, T
′

2, . . . , T
′

n) and in rank order for each
test case T ′

i (or for multiple T ′

i at once, in parallel to
the extent of available computational resources) per-
form symbolic exploration on T ′

i . Symbolic exploration
consists of two steps:

(a) Execute T ′

i and collect all possible coverage diver-
gence points (untaken branches).

(b) Apply a symbolic execution search strategy based
on these divergence points using T ′

i as a seed.

This paper focuses on examining how steps 2 and 3 of
this process impact the effectiveness of the symbolic exe-
cution effort, measured in terms of improved incremental
branch coverage for a time budget and the rate of coverage
improvement. The primary contributions of this paper are
(1) introducing methods for reducing and prioritizing test
cases for seeded symbolic execution and (2) experimentally
demonstrating that these methods are effective in improving
the efficiency of symbolic execution for 6 real C programs of
moderate to large size. A secondary contribution is the pro-
posal that in general a two-stage framework may address
some of the difficulties with scaling symbolic execution.

2. TEST CASE REDUCTION
The goal in our framework of using symbolic execution

based on test cases is to improve the total program cover-
age. Seeded symbolic execution takes a test case and at-
tempts to cover new program behavior based on it; for ex-
ample, if a conditional is false in the original test case, and
the symbolic engine finds the true branch to be feasible, it
explores to find a test case covering the true branch. The
essential quality of the seed test suite is therefore its code
coverage. In general, given two test cases similar other than
in length, symbolic execution has more difficulty with the
longer test case, due to path explosion and increasingly com-
plex constraints as the program executes. Therefore, given
two test cases with the same code coverage, it seems likely
that symbolic exploration based on the “smaller” test case
will be more effective, though it is possible that the change
could reduce the value of the seed test case (for example con-
straints may change and branch feasibility in context may
change). Cause reduction allows us, given a test case T

to use delta-debugging [16] to produce a new test case T ′

such that T and T ′ have the same code coverage, and re-
moving any component of T ′ will result in lower code cover-
age [12]. Cause reduction uses the usual ddmin algorithm of
delta debugging, but replaces the check that reduced tests
fail with a check that a reduced test covers at least all state-
ments covered by the original test case. In experiments with
the SpiderMonkey JavaScript engine, a suite of tests where



each test was reduced while preserving statement coverage
surprisingly showed better fault detection than the original
suite, and statement coverage-based reduction was shown to
preserve other important properties well (test case failure,
branch coverage, and mutation kills) [12].

Our test case reduction experiments apply cause reduc-
tion to an initial seed test suite (T1, T2, . . . , Tn) to produce
(T ′

1, T
′

2, . . . , T
′

n) such that ∀i.SC(Ti) = SC(T ′

i ), where SC

is statement coverage. It is possible for Ti to be equal to
T ′

i , but usually T ′

i is smaller and executes faster than Ti,
as results below show. Cause reduction of a test case often
takes a relatively long time to produce a 1-minimal [16] test
case. Usually the majority of the reduction achieved is ob-
tained early, and the remaining computation produces little
reduction. Unlike traditional delta-debugging, the purpose
is not to remove all redundancy to aid human readers, but
to make testing more efficient, so total minimality is not im-
portant. All experiments therefore use a limited budget for
cause reduction, and return the smallest coverage-equivalent
test discovered before timeout. The details of test case com-
ponents and cause reduction implementation differ from pro-
gram to program. In truth, any mature automated testing
infrastructure should include a delta-debugging module to
enable effective debugging [20], and a delta-debugger is eas-
ily modified to implement statement coverage-based cause
reduction.

For example, a test case for the grep utility includes an
input pattern string and an input file:
grep ‘patternstring’ inputfile.inp

To apply cause reduction to grep, our implementation first
holds file1.inp constant, and uses simple character-based
delta-debugging to find a (smaller) patternstring that re-
sults in the same statement coverage. The process is then
repeated, holding patternstring constant and reducing in-

putfile.inp. The pattern string is reduced first because it
is typically shorter and therefore less likely to result in a
timeout. For test cases that are sequences of API calls (e.g.
the YAFFS2 file system or a container class), we can simply
use each API call as a component and run one reduction.
Note that while we count cause reduction against test bud-
gets in our experiments, in practice projects might maintain
cause reduced tests as fast regressions (“quick tests”) [12].
In all cases, we used statement coverage-based reduction,
even though symbolic execution is based on branches. State-
ment coverage-based reduction in practice is much faster
than branch coverage-based reduction, but tends to preserve
branch coverage well in the final result [12].

3. TEST CASE PRIORITIZATION
Test case prioritization orders test cases with the goal

of finding faults in regression testing as quickly as possi-
ble [32]. For seed-based symbolic execution, we can also or-
der the seeds, with the goal of gaining incremental coverage
as quickly as possible. A large body of work exists on pri-
oritization methods for regression testing, and it is not our
purpose to explore all possible strategies. Instead, we aim
to demonstrate first, that ordering is important and second,
that some approaches that might not be obviously useful
in traditional regression testing are effective for seed-based
symbolic execution.

We considered five ranking strategies, some drawn from
the simpler regression approaches and two that were devised
with symbolic execution in mind:

• Random Ordering (Random): Our first prioritiza-
tion is not in fact a proposed solution but a baseline to
measure the importance of ordering. Random ordering
simply chooses a random permutation of test cases.

• Branch Total (BT): Prioritize test cases by their
branch coverage such that the test with the highest
branch coverage is used as a seed first. Ties are broken
randomly.

• Branch Additional (BA): Prioritize by incremental
branch coverage over all tests previously ranked. The
first test chosen is therefore the same as with the BT
method, but further tests are selected by the additional
coverage provided, not absolute coverage.

• Furthest-Point-First (FPF): The first test ranked
is chosen randomly. Future test cases are selected by
computing the minimum distance to all already-ranked
tests, and adding the test case with the largest mini-
mum distance to the ranking. The distance function
in our case is the Hamming distance between the two
test cases’ branch coverage vectors; even if a test does
not produce incremental branch coverage it can there-
fore be ranked highly if it executes a very different set
of branches than any other test.

• Shortest Path (SP): Tests are ranked in order of
increasing path length. The number of branches taken
during execution is counted, and paths that execute
fewer total branches (where the same branch executed
multiple times counts each time) in the source of the
tested program are chosen first.

While BT and BA are selected as examples of simple
coverage-based prioritizations from the regression literature,
FPF and SP require more justification, since in theory they
might well tend to select test cases with poor total or incre-
mental coverage. In fact, SP seems guaranteed to prioritize
test cases that have worse branch coverage, on average!

The motivation for FPF [10] is that while branch coverage
is important to symbolic execution based on a seed test case
(if a branch is not covered, its divergences will obviously
be hard to explore), the context in which branches are exe-
cuted is also important. We would like to explore from tests
that, in some sense, have very different behavior. Unfortu-
nately, defining a generalized, cheap-to-compute, behavioral
distance metric for program executions is difficult [11]. The
hope is that simply executing different branches together
can indicate behavioral difference in test cases well enough
to serve as a useful ordering. The use of the FPF algorithm
is inspired by efforts in fuzzer taming, which seeks to rank a
set of failing test cases such that test cases exposing differ-
ent underlying faults are ranked highly [4]. Basically, FPF
aims to maximize the diversity (as defined by a distance
metric) of test cases for the first N ranked test cases. The
chosen distance metric is different than any used in fuzzer
taming [4] because the aim is general diversity, not focused
on failing test cases (and the inputs do not have such mean-
ingful tokens as program source code). The hypothesis is
that despite not necessarily prioritizing high coverage tests,
FPF will produce good results by somewhat diversifying the
behavior of executions.

The shortest path method is motivated by a simpler con-
cern. Seeded symbolic execution can scale very poorly to



long test cases, in our experience. It may be that simply
choosing short tests, as measured in terms of potential di-
vergence points, is the best possible ordering, since each
symbolic exploration run will have more chance of explor-
ing a large neighborhood of a test case if path explosion is
limited and constraints are simpler.

Obviously, there are a great many plausible ranking strate-
gies; our FPF ranking alone is simply one example from
a vast family of different rankings based on different met-
rics. The purpose of this paper is not to exhaustively ex-
plore the space, but to establish that ranking is useful, even
with possibly sub-optimal ranking techniques, and to show
whether prioritizations that are not similar to ones used (to
our knowledge) in regression prioritization can be useful due
to the nature of symbolic execution.

4. EXPERIMENTAL METHODOLOGY
This paper considers two related research questions. First,

in seed-based symbolic execution, the effectiveness of explo-
ration depends on the seed test case itself, and some com-
plex/large seeds can perform poorly. Second, each explo-
ration takes significant time, and we would like to quickly
improve coverage. The research questions are therefore:

• RQ1: Can test case reduction improve the effective-
ness of seeded symbolic execution?

• RQ2: Given a fixed search time for each seed test case,
can ranking seed tests improve the efficiency of sym-
bolic execution?

Because measuring actual faults detected is highly sensi-
tive to the set of faults used, and makes it difficult to obtain
statistical significance for results [1], our basic measure is
incremental gain in branch coverage over an initial suite, for
a fixed testing budget. There is considerable evidence that
when branch coverage for two test suites differs by a signifi-
cant amount, the suite with higher coverage is usually better
at fault detection as well [8]. This approach combines both
effectiveness (since the absolute coverage numbers can be
compared given the fixed computation effort) and efficiency
(in that results are for a given time), and matches the prac-
tical needs of testing, where budgets are not infinite and
finding bugs sooner rather than later is critical. For prior-
itization, we follow previous practice and modify this basic
evaluation measure to examine the average incremental cov-
erage, thus capturing the climb of the discovery curve for
new branches produced by a prioritization strategy (since
once all tests have been completed, all prioritizations have
the same final coverage results). In all of the experiments,
the computation time required for evaluated approaches is
counted against the total budget for testing; e.g., if a test
case is minimized, the time to minimize is taken away from
the time spent in symbolic execution. Because of the large
number of test cases involved in each experiment (100) and
the large number of experimental treatments run, we limited
our time budgets to 10 and 20 minutes per test case (and
used a large compute cluster to run symbolic execution in-
stances in parallel).

All experiments are based on the zesti version of KLEE,
which can combine seeded symbolic execution with KLEE
search strategies. For a given test input, this approach exe-
cutes the test case concretely and symbolically, and for each
branch determines feasibility of the negated branch in the

Table 1: Subject programs used in the evaluation

Subject NBNC
LLVM

# test cases
instructions

Sed 13,359 48,684 370
Space 6,200 24,843 500
Grep 10,056 43,325 469
Gzip 5,677 21,307 214
Vim 107,926 339,292 1,950
YAFFS2 10,357 30,319 500

symbolic execution. Feasible branches are recorded along
with their path constraints for a second-stage pure symbolic
search using a chosen search strategy. Because the effec-
tiveness of symbolic execution can vary depending on the
search strategy, four KLEE-supported strategies are used in
all experiments [3,21]. These are:

• Depth-First Search (DFS): DFS always continues
from the latest execution state when possible. DFS,
as in model checking, has the advantage of very low
overhead in state selection but can become trapped in
parts of the state space, e.g., when there are loops with
few statements but that may execute many times.

• Random State Search (RSS): as the name sug-
gests, RSS selects a random state for exploration. The
advantages are uniform exploration and avoiding the
traps of DFS; however, RSS can repeatedly generate
test cases similar to those already produced.

• Random Path Selection (RPS): RPS uses a binary
execution tree (where nodes are fork points and leaves
are current states) to record explored parts of a pro-
gram. RPS randomly traverses this structure, which
advantages leaves high in the tree, motivated by the
probability that these have fewer constraints and may
be more likely to hit uncovered behavior. RPS can,
like RSS, produce many similar test cases.

• Minimum Distance to Uncovered (MD2U): This
approach uses heuristics to prioritize states that are
“likely” to cover new code soon, based using on factors
including minimum distance to an uncovered instruc-
tion and query cost to produce a weight for each state.
MD2U may not perform well for every program, like
any heuristic strategy.

4.1 Subject Programs
Programs: Table 1 summarizes the programs used in our

experiments, showing the name and number of NBNC (non-
blank, non-comment) lines of code (measured by CLOC [5])
for each program. We used a total of six C programs, five
of which are taken from the SIR repository [6]. The other
subject, YAFFS2 [31], is a widely used open-source flash file
system for embedded devices (the default image format for
earlier versions of Android). In addition to CLOC, we also
show the number of LLVM instructions for each subject pro-
gram.

Tests Cases: Table 1 also shows the total number of test
cases in the test pools from which various test suites are
composed. We use the SIR pools for the programs from SIR.



For YAFFS2, we generated random tests using feedback [14].
We did not use swarm testing [15] (our usual approach) due
to concern swarming would make tests too easy to reduce
and diversify, and thus unfairly advantage our methods. For
YAFFS2, we first generated 500 random API-call sequences of
length 50, then changed all input parameters into symbolic
ones. In our initial experiments, we found that KLEE can
finish the seeding stage only for 48 or 55 out of these 500
test cases (for 10 or 20 minutes search respectively). This
means that KLEE could not perform its regular search for
most of the test cases. We limited the maximum seeding
duration for YAFFS2 to half of the total symbolic execution
time. For the remainder of the programs, seeding time was
unlimited (up to the total symbolic execution budget).

4.2 Experimental Setup
The program inputs for sed, grep, space, and gzip are

command line parameters. Each parameter is either a com-
mand line option or input file. We use zesti [23] for our
symbolic execution, which can automatically accept com-
mand line parameters as symbolic inputs. The symbolic
input size is decided by the concrete input size. Take grep

as an example:
klee -zest grep.bc ‘patternstring’ file.inp

Given this command, zesti will use one symbolic string
and a symbolic file as program inputs, and use ‘pattern-
string’ and file.inp’s contents as search seeds. With these
original inputs, we use KLEE to do symbolic search around
the seeds with the four search strategies noted above. For
vim seed inputs are 1,950 script files taken from the SIR
repository, called as vim -s scriptfile. We have zesti take
the concrete script files as search seeds.

5. EXPERIMENTALRESULTS: RQ1 (TEST

CASE REDUCTION)

5.1 Test Case Reduction Rate
The first question is whether test cases can be reduced

significantly while preserving coverage; if there is no redun-
dancy with respect to coverage in test paths, it is unlikely
the answer to RQ1 will be affirmative. Previous work on
such reduction used only randomly generated tests, which
are known to be highly redundant, but SIR subjects include
many test cases produced by other methods, including by
human authors. Our subject programs also have various
test case structures, including method call sequences, pat-
tern search strings, text files, etc., while previous work was
essentially based on API call sequences. We use path length
as the measurement of the size of each test case. Table 2
shows path lengths before reduction, after reduction, and re-
duction rates for all the subject programs. We used a 20% of
exploration time timeout (2 minutes for 10 minute budget,
4 minutes for 20) for all subjects. We define

reduction rate =
PL1 − PL2

PL1

.

where PL1 and PL2 denote the path length of test case
before and after reduction, respectively. For each subject
program, we also show the minimum, median, and maxi-
mum path lengths and reduction rates over all test cases.
Clearly, tests can be considerably reduced. Does this reduc-
tion translate into more efficient symbolic exploration?

5.2 Test Case Reduction Effectiveness
Table 3 shows that reduced test cases can in fact improve

symbolic execution efficiency compared to the unreduced
test cases. For each input test case, we asked KLEE to per-
form symbolic search for 10 and 20 minutes. From the test
case pool, we randomly chose 100 test cases as a test suite
150 times, for each subject. For each such suite, C0 is the to-
tal branch coverage of the original 100 test cases. The set of
all branches explored during symbolic execution of the 100
original unreduced test cases is C1, and C1 −C0 denotes the
set difference of C1 and C0 — the new branches discovered
during symbolic exploration. The same approach is applied
to the reduced test cases and the branches hit are referred
to as C2. To see if reduced test cases improve symbolic ex-
ecution, we simply compare |C1 − C0| and |C2 − C0|. In
Table 3, the columns “before” and “after” under each search
strategy are the sizes of C1 − C0 and C2 − C0 respectively.

In addition to examining each search strategy, we also
combined the search results from all the four search strate-
gies. For each test case, we computed the total branch cover-
age acquired from all the four search strategies over original
and reduced test cases. These comparison results are in the
last column of Table 3. In all experiments, the value in the
table is the mean of 150 runs, and p-values are based on a
Wilcox rank sum test. The few cases where p is not well
below 0.00 (rounded) are shown in bold. The best results
are highlighted. It is clear that in general, for 10 minute
and 20 minute test budgets, spending some portion of the
budget reducing test cases usually results in markedly im-
proved incremental branch coverage. The best timeout for
reduction is unclear, but the basic validity of using test case
reduction to improve symbolic exploration is difficult to ig-
nore. In many cases the difference in median incremental
covered branches is also quite large in absolute or relative
terms, 50+ branches or from 40-100% more branches, in ad-
dition to being statistically significant. Figure 2 shows the
improvements (with random ordering of test cases) for sed.

6. EXPERIMENTALRESULTS: RQ2 (TEST

CASE PRIORITIZATION)

6.1 Test Case Prioritization Cost
Table 4 shows the ranking cost for 100 randomly chosen

test cases for all subject programs. The cost consists of two
parts: the first part is from collecting branch coverage in-
formation for each test case. We use gcov to obtain branch
coverage. The second cost is in using the coverage vector
to compute the distance between each pair of test cases and
rank all test cases using relative distances. As Table 4 shows,
ranking test cases is a low cost operation compared to sym-
bolic execution, a neccessary requirement for an affirmative
answer to RQ2.

6.2 Test Case Prioritization Effectiveness
To evaluate if prioritizations perform better than random

ordering, we adapt the Average Percentage Faults Detected
(APFD) [26, 27] measure, which is used extensively in test
case prioritization evaluations. Although we examine branch
coverage rather than fault detection, the same method works

1The reason branch coverage for 10 minutes is higher than
for 20 minutes is that KLEE crashed in some 20 minute
runs, losing some coverage data.



Table 2: Reduction rates

Subject
Path length Path length

Reduction rate (%)
before reduction after reduction

Min Median Max Min Median Max Min Median Max

Sed 6 88,723 496,723 6 6,167 80,418 0.00 93.50 98.90
Space 530 4,154 24,147 530 3,798 18,199 0.00 8.18 79.74
Grep 740 103,097 622,223 691 26,466 424,388 0.00 73.57 98.85
Gzip 24 752,257 36,351,281 24 231,629 1,732,247 0.00 59.65 99.99
Vim 201,222 221,219 481,749 201,083 213,957 475,421 0.00 2.43 50.15
YAFFS2 32,632 53,139 91,252 23,719 40,339 71,942 2.00 23.45 50.40

Table 3: Branch coverage increment (mean values over 150 test suites) on 100 random tests with rounded
Wilcoxon p-values (Before: Before test case reduction, After: test case reduction)

Subject Time
DFS Random path Random state MD2U Combined

Before After p Before After p Before After p Before After p Before After p

Sed
10m 150.66 211.73 0.00 265.03 274.46 0.00 213.75 248.56 0.00 211.42 249.59 0.00 279.65 289.00 0.00

20m 163.15 229.53 0.00 298.83 292.77 0.00 229.23 267.65 0.00 239.15 265.14 0.00 311.49 302.33 0.00

Space1
10m 3.21 9.18 0.00 5.00 5.33 0.00 3.58 6.77 0.00 3.58 7.24 0.00 5.00 9.26 0.00

20m 2.24 10.81 0.00 4.23 5.13 0.00 2.75 6.78 0.00 2.75 6.71 0.00 4.23 10.82 0.00

Grep
10m 20.73 160.37 0.00 120.70 139.35 0.00 116.22 183.65 0.00 112.65 189.71 0.00 157.87 212.66 0.00

20m 21.13 185.68 0.00 177.65 201.23 0.00 114.07 205.58 0.00 110.14 209.36 0.00 194.85 232.85 0.00

Gzip
10m 93.35 103.95 0.00 220.55 226.33 0.00 113.10 129.07 0.00 134.71 158.12 0.00 222.59 228.77 0.00

20m 153.66 157.25 0.00 233.47 236.50 0.00 176.10 182.41 0.00 193.81 193.89 0.56 239.44 242.59 0.00

Vim
10m 312.17 310.36 0.39 111.71 116.44 0.00 302.77 308.35 0.00 357.60 365.79 0.00 540.42 542.99 0.93

20m 513.45 558.27 0.00 118.60 123.79 0.00 345.81 358.17 0.00 421.97 442.37 0.00 769.95 821.35 0.00

YAFFS2
10m 78.14 76.28 0.00 98.21 100.18 0.00 93.40 104.80 0.00 93.99 105.27 0.00 115.47 125.35 0.00

20m 78.54 79.51 0.02 99.15 100.47 0.00 94.58 103.89 0.00 95.09 104.33 0.00 117.98 126.39 0.00
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MD2U, unreduced tests

MD2U, REDUCED tests
Combined, unreduced tests

Combined, REDUCED tests

Figure 2: Additional branch coverage on sed pro-
gram during seeded symbolic execution with unre-
duced tests and reduced tests (test cases are in ran-
dom order)

well for comparing two curves to see which one converges
faster. Average Percentage Branches Discovered (APBD),
our measure, is computed as [26]:

Table 4: Ranking cost for 100 test cases for all sub-
ject programs in seconds

Subject
Coverage

FPF SP BA
collection

Sed 17.3 1.3 < 0.1 1.0

Space 12.0 1.1 < 0.1 0.8

Grep 19.5 1.5 < 0.1 1.3

Gzip 43.7 0.7 < 0.1 0.6

Vim 104.8 8.7 < 0.1 7.7

YAFFS2 21.9 1.7 < 0.1 1.5

APBD =

P

n−1

i=1
BCi

nm
+

1

2n
.

Here, n is the number of the test cases, m is the total
newly covered branches from symbolic execution, and BCi

is the number of branches newly covered by symbolic explo-
ration of at least one test case in the first i test cases. Note
that because ABPD compares curve gains rather than ab-
solute values, it is only useful within orderings of the same
total result. For example, the APBD might be better for
a 10 minute symbolic execution time limit than for a 20
minute symbolic execution time limit because while the fi-
nal total branches explored by the 20 minute execution will
almost certainly be higher, the percent gain might be better



Table 5: Average Percentage Branches Discovered (APBD) values with different prioritization methods on
100 random selected test cases (Rnd: Random, FPF: Furthest Point First, SP: Shortest Path, BA: Branch
Additional) (percentage %)

Subject Time
DFS Random path Random state MD2U Combined

Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA

Before reduction

Sed
10m 67.5 80.0 97.0 80.7 94.7 94.2 92.5 94.3 85.8 90.9 91.1 90.3 87.5 91.3 91.3 92.3 94.3 95.5 90.9 95.6

20m 70.5 80.9 97.1 80.5 93.9 94.9 90.3 96.4 86.3 92.1 91.7 90.2 85.8 93.8 90.2 91.9 93.9 95.9 88.9 96.8

Space
10m 98.2 99.2 96.5 99.2 99.3 99.3 97.7 99.5 98.8 99.2 97.0 99.3 98.8 99.2 97.0 99.3 99.3 99.3 97.7 99.5

20m 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5

Grep
10m 72.1 89.9 91.3 88.0 96.3 97.4 96.1 97.3 91.1 94.7 90.1 93.8 91.5 95.8 93.0 94.6 94.8 96.9 94.9 96.8

20m 73.7 90.6 90.6 88.0 92.0 93.0 93.2 91.8 88.7 93.4 87.6 91.9 89.5 93.4 86.8 94.0 92.6 93.7 93.3 93.1

Gzip
10m 89.9 97.6 93.8 97.9 82.1 95.0 93.6 94.3 87.9 97.2 93.7 97.3 86.7 98.4 93.8 98.1 83.0 95.8 93.7 95.1

20m 81.7 96.3 94.0 96.6 82.4 95.5 93.9 95.2 80.8 97.5 93.8 95.9 80.4 97.4 93.8 95.3 84.2 96.9 94.0 96.5

Vim
10m 72.3 87.7 84.2 83.8 89.7 96.5 86.6 95.4 79.3 90.9 84.4 87.2 78.0 90.6 85.3 85.1 75.5 90.3 86.0 85.9

20m 67.4 86.1 79.7 81.3 90.1 97.0 88.0 96.3 80.4 92.7 85.6 89.7 81.0 91.9 86.1 88.7 74.4 89.2 83.7 85.8

YAFFS2
10m 71.1 65.3 72.0 70.5 88.9 89.5 88.8 90.3 91.4 91.5 90.5 92.0 91.1 91.5 90.6 91.5 87.8 86.4 87.9 88.5

20m 71.5 65.7 74.0 71.3 89.2 89.8 91.0 90.7 91.3 91.5 92.8 92.2 91.2 92.1 92.9 92.2 87.8 86.7 90.1 88.3

After reduction

Sed
10m 76.9 79.1 96.6 90.4 94.8 95.0 93.2 95.5 86.6 88.9 92.8 90.6 86.9 89.8 92.6 91.3 94.5 96.1 91.1 96.6

20m 79.4 86.6 95.7 95.0 94.8 95.7 92.0 96.1 88.1 92.3 93.1 94.1 86.9 92.1 92.9 92.8 94.8 96.4 91.1 96.7

Space
10m 76.6 79.1 89.2 84.6 99.0 99.2 95.3 99.4 85.9 88.1 94.4 88.5 83.1 86.1 91.2 87.2 83.2 81.7 89.2 90.3

20m 70.9 72.3 84.1 82.6 99.5 99.5 99.0 99.5 81.7 85.7 94.8 88.3 80.8 84.5 91.5 87.1 76.2 75.4 84.1 86.7

Grep
10m 68.9 84.4 95.8 86.2 93.9 95.3 97.3 96.0 82.9 89.8 94.8 90.3 82.2 89.7 96.0 91.5 88.3 92.6 96.7 94.1

20m 69.6 85.8 95.2 86.3 86.2 90.4 96.0 91.2 79.3 88.9 94.9 90.5 80.1 89.4 95.6 91.4 86.3 92.7 96.6 93.0

Gzip
10m 89.9 96.8 85.3 97.0 80.3 94.5 73.9 93.7 87.6 96.4 82.5 96.7 87.4 96.9 79.9 97.1 82.1 95.5 74.4 94.7

20m 81.0 96.3 80.1 96.3 78.2 95.0 73.4 94.4 79.4 96.8 76.3 96.7 80.5 97.2 74.9 96.8 80.4 96.4 73.2 96.2

Vim
10m 71.6 88.8 80.5 83.0 88.2 96.5 85.5 95.5 77.9 91.6 82.2 87.4 77.4 91.2 82.1 86.8 76.3 91.1 82.1 86.7

20m 67.4 84.8 77.0 82.5 89.7 96.8 86.8 96.4 82.5 93.4 84.0 90.9 81.2 91.7 84.9 88.7 73.8 88.9 81.6 86.3

YAFFS2
10m 72.7 64.2 79.1 70.2 88.8 89.6 88.5 90.7 87.0 89.6 88.6 88.5 87.3 90.0 89.3 88.1 85.4 85.8 87.7 87.1

20m 72.5 65.1 82.3 71.7 89.9 90.3 90.6 91.3 89.2 90.1 90.3 90.3 89.2 90.9 90.7 90.8 87.2 87.0 89.8 88.1

The best results 1 7 12 3 3 9 4 8 1 10 7 5 1 11 7 4 1 10 5 7

Better than random - 18 19 19 - 16 7 20 - 22 17 22 - 23 18 21 - 17 15 20

Worse than random - 4 2 2 - 0 12 0 - 0 5 0 - 0 5 0 - 2 7 0

for the lower total gain. This is important to keep in mind
when reading results below, as often APBD will be “better”
for some less effective explorations; however our results only
compare prioritizations across the same final total.

For each subject program, we generated 150 test suites,
each including 100 randomly chosen test cases from the pool.
We computed APBD values for each test suite with all rank-
ing techniques and search strategies and averaged the results
(we also performed the same experiment using reduced test
cases). Table 5 shows APBD values for most prioritization
techniques. Values in italics indicate cases where the differ-
ence between a technique and random ordering was not sta-
tistically significant (using the same test as with reduction
results). Because the results for RQ1 show that reduction
is generally a good strategy, the table shows results using
reduced test cases, which are generally better. Assuming re-
duction is desirable, we want to know which prioritizations
work best for reduced test cases. Branch Total (BT) prioriti-
zation generally performed worst in almost all experiments,
and in fact performed worse than random ordering, so is
omitted from the tables. We are unclear why in these exper-
iments and in the cause reduction experiments [12] branch
total ordering performed so poorly, but we do not suggest its
use in prioritization for symbolic execution. The best pri-
oritization varies by subject and strategy, but a few general
points are clear. First, all prioritizations outperform random
ordering in general. Second, the non-traditional prioritiza-
tions are competitive, despite not maximizing branch cover-

age, and work differently than the regression-prioritization
based method. Finally, shortest path (SP) was most effec-
tive in two cases: it benefited DFS searches in general, and
was often the best prioritization for YAFFS2, the most com-
plex and difficult to test of our subjects. We suspect that
SP may prove even more valuable as we attempt to apply
symbolic execution to increasingly complex programs.

To visually compare all prioritization methods, we use
a box plot to show median and mean APBD values for
each prioritization method over all subject programs, search
strategies, search times, and reduced and original test cases.
In Figure 3, the horizontal lines in the boxes denote median
values while the circles are for mean values. “Mix all” is the
result putting all search strategies into one data set. Table
6 summarizes the overall performance of prioritizations for
each search strategy over all subjects. The effectiveness of
SP for DFS searches is clear, as well as the general improve-
ment of all methods on random ordering.

7. OVERALLEFFECTSOFTESTCASERE-

DUCTION AND PRIORITIZATION
Figure 4 graphically shows the contributions of reduc-

tion and prioritization. Each graph shows, for one subject,
(1) the average incremental branch discovery curve for the
search strategy that performs best (as measured by APBD)
for the baseline case of no reduction and random ordering,
(2) the curve for that same strategy with test case reduction
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Figure 3: APBD values by search strategy.

Table 6: Average Percentage Branches Discovered (APBD) values by search strategy over all programs,
search times, and reduced and original test cases (Rnd: Random, FPF: Furthest Point First, SP: Shortest
Path, BA: Branch Additional) (percentage %)

APBD statistics
DFS Random path Random state MD2U Combined

Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA Rnd FPF SP BA

Median 75.0 86.0 90.0 85.6 91.8 95.2 92.6 95.2 86.5 92.8 91.6 91.8 86.2 92.6 91.7 92.0 88.0 93.5 90.8 93.1

Mean 73.9 82.8 86.6 83.8 89.8 93.9 90.4 94.3 84.5 91.8 89.7 90.9 84.2 91.6 89.6 90.8 85.7 91.1 88.5 91.6

Standard deviation 15.3 13.8 11.4 12.3 8.7 5.2 8.2 4.3 10.4 5.9 7.0 5.8 10.7 6.4 7.2 6.1 10.7 7.5 8.6 6.4

and random ordering, (3) the curve for that strategy with
the best prioritization but no reduction, (4) the curve for
that strategy with the best prioritization and with test case
reduction, (5) the best APBD curve for that subject over
all experiments, if this is not already included in 1-4, and
(6) the baseline for 5 if it is not already included. These
graphs show, first, that the value of reduction vs. priori-
tization varies with subject and strategy. Second, in three
cases using reduction and prioritization not only improves a
method, but changes the most effective strategy for search.
The space and grep examples are particularly compelling:
the baselines for DFS and MD2U respectively in these ex-
amples are strikingly different than the curves for the same
search strategy with reduction and prioritization, so much
so that these become the optimal strategies for exploring the
state space by a large margin over the best strategy without
reduction and prioritization. The same thing happens with
YAFFS2, though the difference in baseline and final curves is
less dramatic.

8. THREATS TO VALIDITY

There are two major threats to validity. First, our re-
sults cover only six modest-sized C programs, the largest
of which has only a little over 100KLOC. These programs
may not be representative, though all are frequently studied
subjects in the testing literature. Second, there could be
errors in our implementation and experimental framework.
We have performed a variety of cross-checks to avoid this,
but the possibility for error remains. Because our technique
does not require modification of the symbolic execution en-
gine, there is no possibility of new bugs introduced into the
symbolic execution process, however. We have noted when
differences in techniques are not statistically significant, un-
der a statistical test that does not assume normality (and
generally is harder to pass than a t-test).

9. RELATED WORK
Related works can be divided into three basic categories.

Using Existing Test Cases for Seeding Symbolic Ex-
ecution. Seeded dynamic symbolic execution takes an ini-
tial test case and tries to cover a branch that test has not
covered. This initial test case is called the seed. In the lit-
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Figure 4: Ranking methods comparision for all subject programs.



erature, the seed is usually chosen arbitrarily from a pool
of test cases [7, 9, 22, 28]. Some methods choose seeds for
regression purposes [30]. KATCH [24] chooses the test case
closest (by a distance metric based both on static code struc-
ture and weakest preconditions) to a target which is a code
modification in a patch. Our work differs from previous ef-
forts partly in goal but primarily in that we manipulate the
test cases in the pool prior to performing symbolic execution
and use novel prioritization methods.
Test Case Reduction. Large test cases, especially those
generated by random testing, usually include redundant be-
haviors. Understanding such long test cases is difficult for
developers. Delta debugging [16] is a general technique for
reducing the size of a failing test case while holding the fact
that the test case fails constant. Test case reduction has
been traditionally applied only to failing test cases. Re-
cently, we proposed using delta debugging based on preserv-
ing code coverage to reduce both failing and successful test
cases for purposes of building very fast regression suites [12].
This paper adapts the same technique to the problem of im-
proving the scalability of symbolic execution.
Test Case Prioritization. Test case prioritization [32]
ranks test cases such that faults can be discovered earlier in
the testing process. Rothermel et al. [27] have proposed and
experimented with different orderings of test cases based on
statement and branch coverage. Statement (branch) total
prioritization ranks test cases based on their absolute state-
ment (branch) coverage; the higher the statement (branch)
coverage of a test case, the sooner it is executed. Statement
(branch) delta prioritization ranks test cases by the new cov-
erage over all previously ranked test cases. Our work does
not aim to explore the wide variety of sophisticated algo-
rithms for prioritization, a highly active field [34] but only
to establish that prioritization can improve the efficiency
of symbolic execution, in terms of how quickly additional
branches are covered.

10. CONCLUSIONS AND FUTUREWORK
This paper addresses two research questions concerning

improving test case seed based symbolic execution, in the
context of a proposed two-stage framework for testing. The
core idea is that a low-cost testing method can be used to
cover the easily-tested branches of a program, and symbolic
execution can be used to (at high computational cost) cover
additional branches. The hypothesis of this paper is that ap-
plying test case reduction and test case prioritization tech-
niques to the initial set of test cases from which symbolic
execution proceeds can improve the results of symbolic ex-
ecution, both in terms of total additional branches covered
and in terms of how quickly additional branches are covered.

• RQ1: Can test case reduction improve the effective-
ness of seeded symbolic execution?

• RQ2: Given a fixed search time for each seed test case,
can ranking seed tests improve the efficiency of sym-
bolic execution?

Our experimental results over 6 C programs using the pop-
ular zesti version of KLEE demonstrate that not only is
the answer to both questions affirmative, but that for most
of our subjects, for most symbolic execution configurations,
both test case reduction and prioritization can increase the

effectiveness of symbolic execution in a statistically signif-
icant way. In several cases, test reduction leads to an im-
provement in additional branch coverage of 40-100%. The
value of prioritization is a substantial improvement in the
discovery curves for new branches as symbolic execution pro-
ceeds. For three of the six subjects, applying our methods
not only improves the results for the best symbolic search
strategy for the program, it improves a previously inferior
strategy’s results such that it becomes the best way to ex-
plore the program’s behavior. Given that without taking
advantage of parallelism, full symbolic exploration in our 20
minutes-per-test budget experiments requires over 30 hours,
improving the speed with which new branches are discovered
as well as total additional coverage is critical, especially as
in a real two-stage framework test suites will be consider-
ably larger, and test cases likely more varied in quality. In
realistic situations, the full test suite will almost certainly
never be symbolically explored.

This paper does not aim to devise an optimal strategy for
reducing and prioritizing test cases for symbolic execution.
Instead, it serves to demonstrate the value of reduction and
prioritization even with sub-optimal methods. We specu-
late that statement-coverage based reduction is an effective
strategy that could be easily applied to current symbolic ex-
ecution workflows, and may be difficult to improve on, given
the need to balance (1) preserving the value of the existing
test case while (2) obtaining enough reduction to aid sym-
bolic execution. The prioritization strategies, however, are
best seen as a starting point for future research, especially in-
vestigations of which strategies work best when exploration
of all test cases is impossible, and the problem becomes one
of selection rather than mere prioritization. We also expect
that the problem of how to produce test cases from which
to perform symbolic execution deserves further study. In
particular, the best approaches to determining when to stop
automated testing (e.g., detecting coverage saturation) may
be altered in interesting ways if the sequel to automated
testing is not an end to testing, but a beginning to a more
computationally demanding symbolic exploration to fill in
the gaps in a test effort.
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