
Comparing Non-adequate Test Suites using
Coverage Criteria

Milos Gligoric1, Alex Groce2, Chaoqiang Zhang2,
Rohan Sharma1, Mohammad Amin Alipour2, and Darko Marinov1

1 University of Illinois at Urbana-Champaign 2 Oregon State University
Urbana, IL 61801, USA Corvallis, OR 97331, USA

{gliga,sharma27,marinov}@illinois.edu, agroce@gmail.com, {zhangch,alipour}@onid.orst.edu

ABSTRACT

A fundamental question in software testing research is how
to compare test suites, often as a means for comparing test-
generation techniques. Researchers frequently compare test
suites by measuring their coverage. A coverage criterion
C provides a set of test requirements and measures how
many requirements a given suite satisfies. A suite that
satisfies 100% of the (feasible) requirements is C-adequate.
Previous rigorous evaluations of coverage criteria mostly fo-
cused on such adequate test suites: given criteria C and C′,
are C-adequate suites (on average) more effective than C′-
adequate suites? However, in many realistic cases producing
adequate suites is impractical or even impossible.

We present the first extensive study that evaluates cover-
age criteria for the common case of non-adequate test suites:
given criteria C and C′, which one is better to use to com-
pare test suites? Namely, if suites T1, T2 . . . Tn have coverage
values c1, c2 . . . cn for C and c′1, c

′

2 . . . c′n for C′, is it better to
compare suites based on c1, c2 . . . cn or based on c′1, c

′

2 . . . c′n?
We evaluate a large set of plausible criteria, including state-
ment and branch coverage, as well as stronger criteria used
in recent studies. Two criteria perform best: branch cover-
age and an intra-procedural acyclic path coverage.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Experimentation

Keywords: Coverage criteria, non-adequate test suites

1. INTRODUCTION
Software developers run test suites and inspect failures

to identify faults. A fundamental task in software testing
research is evaluating (and improving) test suites. For ex-
ample, evaluating suites is central to the development of
automated test-generation techniques whose goal is to gen-
erate high-quality suites. The primary quality measure for
a suite is the number of real faults it can find in the code
under test.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

To compare suites, researchers typically use real faults,
seeded faults, and/or coverage criteria. For real faults, re-
searchers measure how many faults (previously known or
newly found) the suites find. However, collecting code with
real faults and analyzing failures takes substantial effort.
Thus, experiments often use a relatively small set of real
faults, preventing rigorous statistical analysis [5].

Researchers also use mutation testing [19, 32, 38] to seed
a large number of artificial faults and measure the mutation
score, i.e., how many mutants a suite kills. Several stud-
ies [3,4,58] show that the results obtained on mutants predict
detection of real faults, i.e., suites that kill more mutants are
likely, on average, to find more real faults. While mutation
testing can provide a good basis for statistical analysis [5],
it can also be prohibitively expensive to perform. Even a
small program with only a few hundred lines of code may
have thousands of mutants, and determining killed mutants
may require running a suite on each mutant.

Researchers therefore most often use coverage to com-
pare suites. A traditional coverage criterion provides a fi-
nite set of test requirements for the code under test, and
one measures how many requirements a given suite satisfies.
For example, statement and branch coverage are well-known
structural criteria [2]. A suite that satisfies (close to) 100%
of the (feasible) requirements for a criterion C is called C-
adequate. Measuring test coverage is almost always much
cheaper than performing mutation testing; even if the crite-
rion has a high runtime overhead, it only requires running
tests once per program, not once per mutant. Coverage cri-
teria are widely used in testing research and practice, e.g.,
papers on automated testing techniques often report that
one technique is better than another because it generates,
say, “suites with 10% more branch coverage on average.”

This paper addresses the following question: What cov-
erage criteria should researchers use to evaluate suites? Re-
search comparing1 coverage criteria dates back at least 20
years [21, 22, 36] but has largely focused on adequate test
suites: given two criteria C and C′, do C-adequate suites
(on average) find more faults than C′-adequate suites? How-
ever, testing practice and research widely use non-adequate
test suites because determining which test requirements are
feasible is hard, generating suites for all feasible require-
ments is often impractical, and some recently used crite-
ria [6, 12, 13, 26, 27, 44, 47, 51, 54] even have an infinite (or
astronomically large) set of requirements.

1Note that we use the term “comparison” to refer to both
comparisons of suites and comparisons of coverage criteria,
but the intended use should be clear from the context.

We present the first extensive study that evaluates cov-
erage criteria over non-adequate suites. This paper focuses
on two critical questions. First, are any coverage criteria
able to predict mutation scores for non-adequate suites, and
thus suitable for use in evaluations? Second, given two cri-
teria C and C′, is it better to use C or C′ to compare test
suites? Namely, if suites T1, T2 . . . Tn have coverage values
c1, c2 . . . cn for C and c′1, c

′

2 . . . c′n for C′, is it better to com-
pare suites based on c1, c2 . . . cn or based on c′1, c

′

2 . . . c′n?
To illustrate the key difference in comparisons with ad-

equate and non-adequate suites, consider a comparison of
statement coverage (SC) and branch coverage (BC). For ad-
equate suites, it is well known that BC subsumes SC: a suite
with 100% BC would have 100% SC and should, on average,
be likely to find more faults than another suite with 100%
SC but less than 100% BC. For non-adequate suites, how-
ever, the situation is less clear. For instance, suppose a suite
T1 has 50% BC and 75% SC, and a suite T2 has 60% BC and
65% SC. (Our experiments show that up to 8% of test-suite
pairs have such discordant values for BC and SC.) Should
we use BC and declare T2 better (60%>50%), or should we
use SC and declare T1 better (75%>65%)?

The major contribution of this paper is an evaluation of
multiple criteria, both traditional (statement and branch)
and recently used (based on program paths and predicates).
We evaluated criteria on a large set of Java and C programs
with both manually written and automatically generated
tests. We measured the effectiveness of criteria (using two
statistical correlation coefficients) in terms of how well they
predicted the mutation scores of suites (and thus, arguably,
the real-fault detection of suites [3,4,58]). We designed our
experiments to have a direct application to the evaluation
of suites (and thus testing techniques) in testing research,
and propose that our experimental approach would easily
extend to other criteria and subjects. A minor contribution
of this paper is the first implementation and evaluation of
Ball’s predicate-complete test coverage criterion [6,7].

Our results show that a variety of criteria are able to ef-
fectively predict mutation scores. This provides support for
previous research studies that used these criteria to compare
test suites. Moreover, for future studies, we propose two
guidelines for researchers using coverage criteria to evaluate
suites. First, branch coverage performs as well as or better
than all other criteria studied, in terms of ability to predict
mutation scores, and has a very low measurement overhead
and implementation complexity. However, in some settings,
branch coverage provides values that do not distinguish be-
tween test suites. Second, if researchers want a stronger
criterion that can distinguish more test suites, but comes at
a price in increased measurement overhead and implemen-
tation complexity, our results show that an acyclic intra-
procedural variation of path coverage is about as effective as
branch coverage. Our results also demonstrate that for non-
adequate suites, criteria that are stronger (in terms of sub-
sumption for adequate suites) do not necessarily have better
ability to predict mutation scores. All tools and more results
are available at: http://mir.cs.illinois.edu/coco/.

2. COVERAGE CRITERIA
Our comparison of criteria includes SC and BC, which

are standard, and a set of coverages based on program paths
and predicates, which we define and illustrate in this section
using a simple Java data structure. Figure 1(a) shows the

relevant part of a class implementing the binomial heap data
structure [16,51]. Each BinomialHeap object has a pointer to
the root of the heap (nodes) and the number of nodes in
the heap (size). Every node keeps a value (key) and point-
ers to parent, sibling, and child. The decreaseKey method
decreases the value of a node, which may affect the heap in-
variant that each parent should not have a higher value than
its children, so the value is propagated to ancestors until the
appropriate position is found.

2.1 Intra-Method Path Coverages
We next describe two forms of path-based coverage (IMP

and AIMP) used in our evaluation. Whole-program path
coverage was proposed over 20 years ago [41] to measure
how many different paths tests execute from the beginning
to the end of a program. Even for loop-free programs whole
program paths result in a number of test requirements ex-
ponential in the number of branches in a program, so more
recent work [13, 25, 27, 54] used more scalable intra-method
paths (IMP), where each path is for a single method exe-
cution only (similar to Godefroid’s notion of compositional
path coverage [24]). An intra-method path starts at the
beginning of a method, includes the IDs of the executed ba-
sic blocks, does not include nested method invocations, and
ends when the execution returns from the method. IMP sub-
sumes BC (and thus SC) but faces the problem that loops
introduce an unbounded number of test requirements.

Our second variant of path coverage, acyclic intra-method
paths (AIMP), retains subsumption of BC but bounds the
total number of requirements by considering only acyclic
paths in intra-method control-flow graphs [8]. The number
of AIMP paths is therefore bounded by m · 2k where m is
the number of methods in a program and k is the maxi-
mum number of branches in a single method. The paths to
be covered have no repeated IDs, i.e., AIMP modifies IMP
such that a repeated basic block ID ends the current path
and starts a new path2. Ball and Larus present an efficient
approach to compute AIMP coverage [8].

Figure 1(b) shows an instrumented version of decreaseKey

that can be used to collect IMP and AIMP coverages. (The
p$ methods will be discussed in the next section.) Cover-

age.beginMethod and Coverage.endMethod are invoked at the
beginning and end of the method, respectively, and they are
used to begin and end a path. Coverage.cover is invoked
at each basic block and is used to collect the block IDs in
a path. In addition, for AIMP, the Coverage.cover method
may end the current path and start a new path if the block
ID is repeated on the current path. For example, consider
the following instance of BinomialHeap:

j j

j j

3 5

7 9

parent

parent

parent

�

H
H

HHY

�

Invoking decreaseKey on that heap with arguments (9, 8)

executes the IMP 0 → 2 → 4 and covers the same path for
AIMP. (Note that 0, 2, and 4 refer to ids of basic blocks).
Invoking decreaseKey on that heap with (9, 2) instead exe-
cutes the IMP 0 → 2 → 3 → 3 → 4 but covers two paths for
AIMP: 0 → 2 → 3 and 3 → 4. Note that IMP and AIMP

2Our AIMP uses the notion of simple path common in graph
theory, where no vertex is repeated, rather than definition
of prime path found in some testing literature [2].

http://mir.cs.illinois.edu/coco/

1 // pub l i c c l a s s BinomialHeap { . . .
2 static class Node {
3 int key ;
4 Node parent ;
5 // . . .
6 }
7 Node nodes ;
8 int s i z e ;
9

10 void decreaseKey (int oldValue , int newValue) {
11 Node tmp = nodes . findANodeWithKey(oldValue) ;
12 i f (tmp == null) return ;
13 tmp . key = newValue ;
14 Node tmpParent = tmp . parent ;
15 while ((tmpParent != null)
16 && (tmp . key < tmpParent . key)) {
17 int z = tmp . key ;
18 tmp . key = tmpParent . key ;
19 tmpParent . key = z ;
20 tmp = tmpParent ;
21 tmpParent = tmpParent . parent ;
22 }
23 }

(a) Code snippet from BinomialHeap [51]

1 void decreaseKey (int oldValue , int newValue) {
2 try {
3 Coverage . beginMethod (0) ;
4 Node tmp = nodes . findANodeWithKey(oldValue) ;
5 i f (tmp == null) {
6 Coverage . cover (1 , p$10 (nodes) , p$20 (tmp)) ;
7 return ;
8 }
9 Coverage . cover (2 , p$10 (nodes) , p$20 (tmp)) ;

10

11 tmp . key = newValue ;
12 Node tmpParent = tmp . parent ;
13 while ((tmpParent != null)
14 && (tmp . key < tmpParent . key)) {
15 Coverage . cover (3 , p$10 (nodes) , p$20 (tmp) ,
16 p$21 (tmpParent) , p$49 (tmp , tmpParent)) ;
17 int z = tmp . key ;
18 tmp . key = tmpParent . key ;
19 tmpParent . key = z ;
20 tmp = tmpParent ;
21 tmpParent = tmpParent . parent ;
22 }
23 Coverage . cover (4 , p$10 (nodes) , p$20 (tmp) ,
24 p$21 (tmpParent) , p$49 (tmp , tmpParent)) ;
25 } catch (Exception e) {
26 Coverage . endMethod () ;
27 }
28 }

(b) Instrumented method under test

1 // tmp . key < tmpParent . key
2 boolean p$49 (Node tmp , Node tmpParent) {
3 try {
4 i f (PCT. te stAndSet InPred icate ()) return fa l se ;
5 i f (tmpParent == null) return fa l se ;
6 i f (tmp == null) return fa l se ;
7 return tmp . key < tmpParent . key ;
8 } catch (Exception) { return fa l se ;
9 } f ina l ly { PCT. r e s e t I nP r e d i c a t e () ; }

10 }

(c) An example method for predicate

Figure 1: BinomialHeap as running example

collect paths for every method run: e.g., each invocation of
decreaseKey calls findANodeWithKey (which may invoke other
methods), so for each invocation, IMP has one path (and
AIMP at least one path) for both methods.

2.2 Predicate-Complete Test Coverage (PCT)
Predicate-complete test coverage (PCT) [6, 7] was intro-

duced by Ball as a finite-state alternative to path coverage,

inspired by predicate abstraction in model checking [9]. Like
path coverage, PCT subsumes both BC and SC, but un-
like some versions of path coverage, PCT does not face the
problem that loops introduce an unbounded number of test
requirements. PCT is incomparable to (i.e., neither sub-
sumes nor is subsumed by) path coverages such as IMP and
AIMP, even for loop-free programs. Several research stud-
ies [26, 27, 44, 47, 51] compared test suites using PCT, but
with code hand-instrumented for measuring PCT; we refer
to this version as PCT(MS).

PCT defines coverage using Boolean predicates extracted
from the program source, in particular from branch condi-
tions, implicit run-time checks, and assertions. These pred-
icates are evaluated at many program points, e.g., at all
statements or all starts of basic blocks, potentially far from
where the predicates appear in the program source. In fact,
evaluating predicates both near and far from where they
appear is what makes PCT even stronger than MC/DC
or other related criteria sometimes called “predicate cover-
age” [2] that evaluate predicates only near where they ap-
pear. The test requirements for PCT are to cover all (fea-
sible) combinations of predicate values at all the points. In
the limit, for n predicates at p points, there are p ·2n combi-
nations (many often infeasible, and not every point has all n
predicates). The PCT coverage for a test suite is measured
as the number of combinations of predicate values obtained
during the execution of the test suite.

We next illustrate PCT using the BinomialHeap example.
The first step is to extract a set of Boolean predicates from
the code under test. Our example code has two condi-
tional statements at lines 12 and 15 (Figure 1(a)), which
lead to three predicates: tmp == null, tmpParent != null,
and tmp.key < tmpParent.key. Note that we take as a predi-
cate each atomic condition rather than the complex expres-
sion. The implicit run-time checks in our example guard
against dereferencing null: nodes != null, tmp != null, and
tmpParent != null. A key goal for PCT is to extract all pred-
icates, as otherwise PCT may not subsume BC or MC/DC.

The second step is to insert evaluation of predicates at
all appropriate program points. Our tool first generates
a method for evaluating each predicate and then inserts
calls to these methods. Note that one cannot simply eval-
uate the predicate as it could lead to problems, e.g., raise
an exception if certain variables are null. The method for
each predicate performs the necessary checks. Figure 1(c)
shows the method for tmp.key < tmpParent.key. The Cov-

erage.testAndSetInPredicate and Coverage.resetInPredicate

guard against infinite recursion. The catch clause handles
exceptions in predicate evaluations.

For program points, our PCT tools for Java and C allow
instrumenting all statements, PCT(ST), or all beginnings of
basic blocks, PCT(BB). Figure 1(b) shows an example in-
strumentation at the basic-block level. Each Coverage.cover

call informs the tool that a certain program point (identi-
fied with an integer ID) is being executed with a specific
combination of predicate values. Note that predicates can-
not be evaluated at points where their variables are not in
scope, e.g., the predicates for tmpParent cannot be evaluated
before line 12. Our tools insert evaluation for all predicates
that can be evaluated. Some predicates can be evaluated far
from where they are extracted, e.g., nodes != null is evalu-
ated on line 15 (Figure 1(b)), although it is extracted based
on line 4 (Figure 1(b)). Some predicates (on instance fields,

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
K

ill
e
d
 M

u
ta

n
ts

(a) SC
0.0 0.2 0.4 0.6 0.8 1.0

(b) BC
0.0 0.2 0.4 0.6 0.8 1.0

(c) AIMP

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
K

ill
e
d
 M

u
ta

n
ts

(d) PCT(MS)
0.0 0.2 0.4 0.6 0.8 1.0

(e) PCT(BB)
0.0 0.2 0.4 0.6 0.8 1.0

(f) PCT(ST)

Figure 2: Coverage criteria values and mutation scores correlation for BinomialHeap

rather than on method local variables) can even be extracted
in one method and evaluated in another method.

While PCT(BB) maintains the key subsumption proper-
ties of PCT over BC, it is only an approximation of PCT(ST)
because statements within a block can change predicate val-
ues. The example shows that this is not unusual: tmp.key,
tmpParent.key, and tmp are all modified inside the block be-
ginning at line 13 (Figure 1(b)) in ways that may introduce
combinations of predicate values that will never be seen at
basic block entries.

3. EXPERIMENTAL METHODOLOGY
To compare coverage criteria, we examine how well the

coverage values predict test suite quality in terms of mu-
tation scores, and we also consider the cost of measuring
coverage. We compare two traditional criteria (SC and BC)
and two sets of recently used criteria based on paths (IMP
and AIMP) and predicates (various PCT coverages).

Specifically we examine the ability of coverage values to
predict (the relative ordering or absolute values of) muta-
tion scores. To visualize this concept, Figure 2 shows six
plots (for six coverage criteria) that relate coverage values
and mutation scores for BinomialHeap. Each point repre-
sents one of 300 suites (selected as explained in Section 3.2).
The X-axis shows coverage, normalized between 0.0 and 1.0,
and the Y-axis shows mutation score3. It is clear in all six
plots that if a suite A has a higher coverage than a suite B,
then the suite A also likely has a higher mutation score than
the suite B. The purpose of our statistical evaluation is to
quantify the degree to which this relationship holds for each
criterion, and thus to compare criteria. We apply two dif-
ferent standard statistical tools, Kendall τb rank correlation
and the R2 coefficient of determination for linear regression,
discussed in detail in Section 3.3. Intuitively, Kendall τb

measures how well coverage values predict the relative or-
dering of mutation scores, and R2 correlates coverage values
with mutation scores using a linear model.

3The mutation score is not normalized, but dividing by a
constant never changes values for our two correlations.

3.1 Experimental Subjects
Programs: Table 1 summarizes the programs used in our

experiments, showing the name and number of NBNC (non-
blank, non-comment) lines of code (measured by CLOC [15])
for each program. We used a total of 26 programs, 15 Java
programs and 11 C programs. All Java programs but two are
implementations of data structures that have been used in
numerous previous studies, primarily on comparing different
testing techniques [23,26,27,47,48,51]. JFreeChart [37] is an
open-source library for both interactive and non-interactive
manipulation of charts; JodaTime [39] is an open-source li-
brary for manipulating date and time. For C, seven pro-
grams are from the Siemens suite from the SIR repository [20,
36], Space [20,53] is a bigger program from the same repos-
itory, SglibRbtree [52] is the red-black tree implementation
from the Sglib library, YAFFS2 [57] is a widely used open-
source flash file system for embedded devices (the default
image format for older versions of Android), and SQLite [50]
is a widely deployed database engine.

Tests: Table 1 also shows the total number of tests in
the test pools from which various test suites are composed.
For Java data structures, we use test pools automatically
generated in previous studies [26, 27, 47] using three test-
generation techniques: random (Random), shape abstrac-
tion (ShapeAbs) [51], and adaptation-based programming
(ABP) [26,27]. Table 1 shows the total number of tests gen-
erated by all three techniques. For JFreeChart and JodaTime,
we use the large, publicly available pool of manually writ-
ten JUnit tests. For C programs, we use the Siemens/SIR
test pools for the programs from SIR. For SglibRbtree and
YAFFS2, we generated random tests (feedback-directed [28]
for YAFFS2). For SQLite we use manually written tests avail-
able from the SQLite repository [50].

Mutants: Table 1 also tabulates for each program the
number of mutants created and the total number of mutants
killed by the entire test pool (while different suites selected
from the pool kill different number of mutants). The per-
centage of killed mutants is low because we mutated all the
methods in the code but automatically generated tests exe-

Table 1: Subject programs used in the evaluation

Subject NBNC
Size of
test
pool

Mutation BC PCT

killed/mutants
branches predicates points states
exe/static MS BB,ST MS BB ST BB ST

language: Java

AvlTree 344 11,041 51/335 20/104 4 87 104 189 167 153 156
BinomialHeap 264 8,423 37/205 60/60 9 49 60 109 150 335 419
BinTree 100 13,825 16/55 32/32 7 26 32 51 54 224 228
FibHeap 264 12,842 38/186 44/60 14 67 56 98 160 132 228
FibonacciHeap 397 4,478 74/295 45/66 14 58 62 100 156 139 252
HeapArray 98 4,064 61/122 30/32 3 19 32 50 60 205 235
IntAVLTreeMap 213 17,072 38/199 47/56 4 52 56 100 112 242 277
IntRedBlackTree 296 20,419 210/279 83/90 6 76 90 149 177 479 534

JFreeChart1.0.14 72,490 2,217 14,932/45,409 12,083/17,866 - 13,536 - 32,907 42,372 34,899 45,406

JodaTime2.0.0 27,472 3,828 16,478/24,956 6,364/7,357 - 2,913 - 9,476 10,570 16,673 18,723
LinkedList 245 1,307 5/167 8/36 4 40 36 78 107 34 53
NodeCachLList 234 1,776 16/159 14/34 4 34 34 68 103 82 129
SinglyLList 98 1,762 10/57 20/26 3 22 26 39 55 67 95
TreeMap 449 14,076 106/463 101/147 6 102 119 239 280 749 837
TreeSet 323 17,400 82/360 83/93 6 69 94 150 183 462 521

language: C

Printtokens 479 4,130 442/536 63/66 - 70 - 73 265 292 1,050
Printtokens2 401 4,115 343/343 159/162 - 108 - 133 282 908 2,339
Replace 512 5,542 530/613 169/180 - 190 - 177 345 1,041 1,968
Schedule 292 2,650 125/140 55/58 - 52 - 64 176 545 1,554
Schedule2 297 2,710 251/300 83/88 - 54 - 75 190 705 1,751
SglibRbtree 476 5,000 193/443 238/378 - 426 - 350 720 3,794 9,841
Space 6,200 1,350 753/1,142 1,014/1,190 - 1,552 - 884 3,927 5,708 25,100

SQLite3.7.13 81,934 117,240 19,294/52,367 15,676/17,304 - 21,285 - 13,786 37,313 529,272 1,432,590
Totinfo 340 917 511/511 79/88 - 55 - 76 238 977 3,109
Tcas 135 1,608 311/311 61/66 - 45 - 72 133 1,311 2,603
YAFFS2 11,760 5,000 4,186/10,674 1,852/4,274 - 4,149 - 3,520 8,273 27,501 755,42

cute only some core methods for the smaller subjects [47].
Low absolute mutation scores are suitable for our purpose
of examining non-adequate suites, the typical case for suites
for large programs. Non-adequate suites will seldom attain
extremely high mutation scores. Additionally, we did not
investigate which mutants are equivalent, as this does not
affect our analysis (because compensating for equivalent mu-
tants is equivalent to dividing mutation score by a constant,
which does not affect τb or R2).

For Java programs, we used Javalanche [46] to create mu-
tants. Because the number of mutants may be lower than
one would expect, it should be noted that Javalanche uses se-
lective mutation [43] to reduce the cost of mutation testing.
Selective mutation applies only a subset of mutation opera-
tors that are empirically shown to approximate the results
that would be achieved if all operators were used. In partic-
ular, Javalanche uses only the following operators: replace
numerical constants, negate jump condition, replace arith-
metic operator, replace method calls, and remove method
calls. Still, Javalanche created over 45K and 24K mutants
for JFreeChart and JodaTime, respectively.

For C programs, we created mutants using the tool im-
plemented by Andrews et al. [3], which produces mutants
based on a set of operators selected through an empirical
study on selective mutation [49].

Branch Coverage Information: The BC column in
Table 1 provides information for branch coverage: “static”
shows the number of branches in the code, and “exe” shows
the number of branches executed by at least one test.

PCT Information: Table 1 also provides PCT-specific
information, i.e., the total number of predicates used in the
instrumentation, the number of program points at which

these predicates are inserted, and the number of executed
states (i.e., encountered states during the execution) by all
tests. MS (“Manually Selected”) denotes a set of predicates
and points that were first selected for four data structures
by Visser et al. [51] and then similarly selected for the re-
maining structures by Sharma et al. [47]. These programs,
manually instrumented for PCT coverage are publicly avail-
able [18]. BB (“Basic Blocks”) and ST (“Statements”) de-
note the results of automatic instrumentation by our PCT
coverage tools. Recall that our tools select (almost) all pred-
icates from the code and insert each predicate at all program
points where the variables from the predicate are in scope.
Due to lack of space, we do not show here the detailed num-
bers for statements, IMP, and AIMP, but these numbers can
be found at http://mir.cs.illinois.edu/coco.

3.2 Test Suites and Metrics
We used two methods for selecting test suites, to see if

results are robust in the face of different suite compositions.
The bounds in our methods (e.g., 100 suites) were chosen be-
fore experimentation, to limit computation time while pro-
viding sufficiently many samples for statistical analysis, or
were chosen to match previous papers.

Coverage Method: For each program, to ensure test
suites of varying coverage and size, we created suites by first
uniformly selecting a coverage level between 1% and 100%
and then randomly selecting tests from the test pool until
they reached the selected level of PCT(BB) coverage. We
picked PCT(BB) as one strong criterion but could have used
any other criterion. For the Java data structures we selected
100 suites from the pool for each of the three techniques
(Random, ShapeAbs, and ABP), giving a total of 300 test

http://mir.cs.illinois.edu/coco

suites. For JFreeChart and JodaTime we used 100 suites.
For all C programs except SQLite we used 300 suites. For
SQLite each “test” in the pool is essentially a large suite of
tests that must run together, so we treated each of the 592
“tests” as a suite.

Size Method: We also followed another suite selection
method, used in previous studies of coverage criteria [34,42].
For each program, we created 100 random suites for each size
(number of tests) between 1 and 50, which gives 5,000 suites
per program, but with less varied coverage than Coverage
Method. Also, this method creates many suites that are
near adequate in at least one criterion and does not include
suites based on different test generation techniques, which
most closely reflect the intended purposes of our evaluation.
SQLite was handled as for the Coverage Method.

We collected several metrics for the selected test suites.
Coverage Criteria: For each suite, we measured sev-

eral coverage values. For Java suites, we measured state-
ment coverage (SC), branch coverage (BC), IMP, AIMP,
PCT(MS) (except for JFreeChart and JodaTime programs),
PCT(BB), PCT(ST), and mutation score. For C suites, we
measured basic block coverage4, BC, IMP, AIMP, PCT(BB),
PCT(ST), and mutation score.

Runtime Overhead: We separately ran each coverage
measurement so that we could measure the runtime over-
head. We performed all Java experiments on a machine
with a 4-core Intel Core i7 2.70GHz processor and 4GB
RAM, running Linux version 3.2.0 and Java OpenJDK 64-
Bit Server VM, version 1.7.0 04. We performed all C experi-
ments on a machine with a 4-core Intel Xeon E5400 2.83GHz
processor and 4GB RAM, running Linux version 2.6.32.

3.3 Correlation Analysis
To evaluate the relationship between coverages and mu-

tation scores, we computed two correlation measures.
Kendall τb: One core question of this paper is whether

(and which) coverage criteria can be used to effectively pre-
dict the rank order of suites’ mutation scores. This is the pri-
mary use of coverage in recent studies; authors have tended
to focus on claiming that some testing technique is “better”,
and relatively small differences in coverage values have been
used to justify a claim of “better” [27,51]. The most robust
and usefully interpreted statistical measure for this question
is the Kendall τ rank correlation coefficient [14,40].

Consider the coverage and mutation score data as a set of
pairs (C,M), where C is the coverage value for a suite and
M is the mutation score for that suite. Two pairs (C1, M1)
and (C2, M2) are called concordant if the ordering of C1

and C2 matches the ordering of M1 and M2, i.e., C1 < C2

and M1 < M2 or C1 > C2 and M1 > M2. The pairs are
called discordant if C1 < C2 and M1 > M2 or C1 > C2 and
M1 < M2. Kendall’s τ is the ratio of the difference between
the number of concordant and discordant pairs and the total
number of pairs. Kendall’s original τ does not handle ties
well, and thus was not suitable for our study, where BC and
SC had 30% or more ties among suites for some subjects.

Kendall τb, used in our study, is a standard adaptation
that adjusts for ties [17]. Using a non-parametric rank cor-
relation allows us to avoid the difficult question of whether
the relationship between any criterion and mutation score is
linear; τb does not make any assumption about the underly-

4We use slightly different criteria in Java (statements) and
C (basic blocks), but the two have highly similar results.

ing functional relationships. A final attractive feature of τb

is that in the absence of ties, the value can be intuitively in-
terpreted: 0.5+ | τ

2
| is the probability of correctly predicting

the ordering of mutation scores using the ordering of cover-
age values [17]. Despite these desirable features of τb, our
study is among the first to use τb in comparison of multiple
criteria5. (A few studies [42, 55, 56] only mention τ or use
it for other purposes.) Values for τb range from -1.0 (which
would indicate that the coverage values are always opposite
of the mutation score) to 1.0 (which would indicate a perfect
predictive power for a criterion); a τb of 0.0 indicates there
is no relationship between the rank ordering by the criterion
and rank ordering by mutation score.

R2: We also formed linear regression models for each
criterion and obtained the R2 coefficient of determination
for the fits of those models to our data. It is well known
that mutation scores do not depend linearly on coverage
values [4, 10, 34, 42], but R2 still gives an indication of cor-
relation. Intuitively, it attempts to answer the question: if
one suite has X% higher coverage value than another suite,
does it have a c∗X% higher mutation score? More precisely,
it shows how well a linear model fits the actual data points,
with 1.0 indicating a perfect fit and 0.0 indicating there is
no relationship between the coverage and mutation score.
Figure 2 shows lines that best fit the observed data.

4. EXPERIMENTAL RESULTS

4.1 Rank Correlation
Table 2 shows Kendall τb correlation values for all subjects

and most criteria we examined, for both methods for test-
suite selection. Each section highlights the best (darker/-
green) and worst (lighter/red) values. Values for PCT(MS)
are missing where manual instrumentation was not used,
and values for SQLite are repeated for both methods. The
first key result is that most criteria had τb values over 0.5,
often over 0.7, for most subjects. Using any of the criteria
studied would correctly predict mutation score rankings for
a large fraction of all suite pairs. Based on the standard
Guilford scale [30], we would say that the mean values often
showed high (> 0.7) or nearly high (> 0.6) correlation, and
almost all correlations were at least moderate (> 0.4). All
values below 0.4, for criteria other than IMP and manual
PCT, came from just 4 simple Java data-structure classes.

The second key result is that the absolute values and rela-
tive effectiveness of criteria vary with subject and test-suite
selection method, in a few cases by a wide range. However,
considering all subjects and both methods, it is clear that
BC coverage performs very well, and AIMP seems to per-
form best of the non-branch criteria (though PCT(BB) and
PCT(ST) have slightly higher means for Coverage Method).
For large subjects, coverage and mutation score ties were
rare enough that the values in the table can be reasonably in-
terpreted as indicating these criteria predict mutation score
rank successfully 80% or more of the time. We addition-
ally note that our results support, to a considerable extent,
previous studies that used newer path and predicate criteria
to evaluate test suites/techniques [6, 12, 13, 26, 27, 44, 47, 51,

5A statistic similar to τ or τb is Spearman ρ; we prefer using
τb to the more frequently used ρ due to interpretive ease
and handling of ties and small sample sizes; the primary
arguments for ρ are tradition and ease of calculation. In
many cases, ρ and τ/τb are very similar in value.

Table 2: τb values for each subject program and criteria

Test-Suite Selection with Coverage Method Test-Suite Selection with Size Method
Subject

SC BC IMP AIMP
PCT

SC BC IMP AIMP
PCT

MS BB ST MS BB ST
language: Java

JFreeChart 0.962 0.966 0.845 0.964 0.951 0.936 0.777 0.818 0.768 0.792 - 0.818 0.776
JodaTime 0.966 0.972 0.965 0.964 - 0.959 0.961 0.808 0.835 0.836 0.840 - 0.826 0.815
AvlTree 0.773 0.774 0.783 0.785 0.756 0.789 0.816 0.301 0.301 0.556 0.492 0.494 0.520 0.530
BinomialHeap 0.617 0.775 0.487 0.585 0.527 0.637 0.631 0.624 0.629 0.367 0.521 0.409 0.467 0.450
BinTree 0.132 0.220 0.341 0.351 0.491 0.417 0.510 0.271 0.510 0.587 0.696 0.564 0.658 0.656
FibHeap 0.759 0.807 0.278 0.395 0.509 0.634 0.515 0.566 0.637 0.475 0.641 0.676 0.622 0.617
FibonacciHeap 0.494 0.512 0.539 0.527 0.497 0.480 0.478 0.409 0.419 0.492 0.487 0.440 0.389 0.395
HeapArray 0.803 0.801 0.761 0.726 0.638 0.771 0.703 0.728 0.723 0.519 0.742 0.646 0.592 0.583
IntAVLTreeMap 0.777 0.770 0.788 0.815 0.786 0.728 0.762 0.684 0.682 0.633 0.677 0.665 0.621 0.617
IntRedBlackTree 0.710 0.741 0.712 0.751 0.697 0.748 0.737 0.671 0.726 0.757 0.803 0.755 0.778 0.758
LinkedList 0.756 0.746 0.713 0.716 0.746 0.705 0.701 0.353 0.849 0.132 0.154 0.849 0.157 0.155
NodeCachLList 0.737 0.724 0.527 0.670 0.693 0.531 0.495 0.404 0.355 0.343 0.393 0.404 0.377 0.380
SinglyLList 0.577 0.586 0.451 0.495 0.492 0.571 0.634 0.494 0.494 0.419 0.824 0.385 0.667 0.699
TreeMap 0.747 0.772 0.690 0.748 0.721 0.743 0.755 0.680 0.700 0.759 0.777 0.746 0.741 0.738
TreeSet 0.755 0.784 0.696 0.770 0.737 0.752 0.772 0.703 0.739 0.736 0.774 0.732 0.764 0.754

language: C

Space 0.930 0.929 0.913 0.929 - 0.917 0.911 0.841 0.858 0.815 0.881 - 0.769 0.759
SQLite 0.904 0.904 0.837 0.909 - 0.906 0.904 0.904 0.904 0.837 0.909 - 0.906 0.904
YAFFS2 0.700 0.702 0.501 0.690 - 0.667 0.680 0.625 0.640 0.466 0.655 - 0.640 0.632
Printtokens 0.797 0.781 0.901 0.916 - 0.794 0.855 0.638 0.627 0.730 0.829 - 0.617 0.688
Printtokens2 0.848 0.845 0.826 0.831 - 0.839 0.844 0.690 0.695 0.548 0.605 - 0.655 0.679
Replace 0.701 0.699 0.691 0.697 - 0.677 0.681 0.498 0.504 0.566 0.539 - 0.485 0.493
Schedule 0.778 0.776 0.747 0.766 - 0.716 0.711 0.753 0.720 0.546 0.653 - 0.731 0.745
Schedule2 0.674 0.767 0.683 0.749 - 0.691 0.751 0.489 0.493 0.588 0.532 - 0.529 0.548
SglibRbtree 0.784 0.793 0.680 0.698 - 0.765 0.762 0.632 0.627 0.581 0.583 - 0.628 0.647
Totinfo 0.721 0.758 0.743 0.748 - 0.671 0.711 0.558 0.554 0.492 0.517 - 0.478 0.478
Tcas 0.779 0.773 0.739 0.739 - 0.766 0.749 0.721 0.720 0.703 0.703 - 0.747 0.729

Standard deviation 0.164 0.147 0.172 0.158 0.116 0.134 0.133 0.166 0.156 0.170 0.172 0.157 0.166 0.163
Geometric mean 0.705 0.735 0.660 0.709 0.627 0.711 0.717 0.583 0.624 0.555 0.624 0.577 0.593 0.595
Arithmetic mean 0.738 0.757 0.686 0.728 0.638 0.724 0.729 0.609 0.645 0.587 0.655 0.597 0.622 0.624
The best results 8 10 1 4 0 0 3 4 4 4 11 3 2 1
The worst results 2 1 11 1 3 4 5 7 1 12 1 1 4 3

54]: while PCT criteria were not our best, the hand-coded
PCT(MS) performed well, and PCT performed better than
IMP, which was used in fewer studies. Our results also indi-
cate the benefit of using multiple criteria to evaluate suites,
as is common practice in studies: while the worst correlation
for some subjects is below 0.5, the best is over 0.5 in all but
two subjects. Agreement between multiple criteria should
increase confidence in a ranking.

4.2 Linear Regression
Table 3 shows R2 values for our subjects and criteria. For

the primary research question of this paper (the validity of
using criteria to predict ranking of mutation scores), R2 is
less relevant than τb, and the validity of relative R2 values
may be compromised by non-linear relationships. However,
the overall picture of the correlation between criteria and
mutation scores changes from τb only in that R2 suggests
that AIMP is often better than BC coverage for quantitative
prediction. This confirms the claim that AIMP is the most
useful non-BC criteria. We also note that in some cases R2

for a coverage criterion is too low to suggest it as a valid
predictor of mutation score, but Kendall τb shows that the
criterion nonetheless manages to have a high probability to
correctly predict rank order of mutation scores.

4.3 Test Suite Size
We also examined the importance of suite size as a cri-

terion, because previous work has considered the possibility
that coverage criteria are primarily valuable because they
force the production of large suites. This is not a major

concern for us, because we minimize size as a confounding
factor by using a wide range of sizes with numerous suites of
each size, and computing τb over all pairs (including many
tied in size). We also note that a trend towards compar-
ing only suites that require the same computational effort
further reduces the importance of size [27, 29, 33]. For our
subjects, using size alone to predict mutation score is an ex-
tremely ineffective predictor, with values of τb and R2 much
worse than for other criteria (typically < 0.25). Further, us-
ing size as an additional variable in regressions [42] did not
change our general results: adding either size or ln(size) to
coverage values improved R2 for PCT criteria most, but BC
and AIMP still had higher correlations overall.

4.4 Combining Criteria
After observing the high effectiveness of BC, we attempted

to exploit it by using BC as a base criterion and breaking
ties with stronger criteria. Specifically, we lexicographically
compared pairs, e.g., 〈BC, AIMP 〉, for each suite such that
BC is the primary criterion to compare suites, and iff two
suites have the same BC, then the second criterion (AIMP
in the example) is used to predict the mutation score rank-
ing. However, the correlations were almost uniformly worse
than for either criterion alone. It is possible that some other
weighting of multiple criteria would perform better than any
of the studied approaches; however, the complexity of devis-
ing such a scheme and measuring multiple criteria does not
make this an immediately attractive approach, given that
studied criteria are already effective.

Table 3: R2 values for each subject program and criteria
Test-Suite Selection with Coverage Method Test-Suite Selection with Size Method

Subject
SC BC IMP AIMP

PCT
SC BC IMP AIMP

PCT
MS BB ST MS BB ST

language: Java

JFreeChart 0.992 0.995 0.836 0.998 - 0.989 0.989 0.875 0.916 0.417 0.892 - 0.900 0.863
JodaTime 0.990 0.994 0.999 0.998 - 0.997 0.998 0.914 0.935 0.934 0.937 - 0.929 0.918
AvlTree 0.801 0.790 0.778 0.753 0.867 0.916 0.927 0.390 0.418 0.575 0.622 0.674 0.627 0.605
BinomialHeap 0.520 0.690 0.520 0.824 0.771 0.875 0.863 0.617 0.766 0.369 0.866 0.782 0.881 0.878
BinTree 0.248 0.271 0.198 0.310 0.454 0.393 0.485 0.172 0.276 0.600 0.667 0.665 0.606 0.700
FibHeap 0.825 0.884 0.124 0.277 0.599 0.713 0.536 0.735 0.805 0.414 0.652 0.703 0.796 0.752
FibonacciHeap 0.473 0.497 0.441 0.517 0.472 0.493 0.478 0.222 0.300 0.377 0.415 0.439 0.396 0.398
HeapArray 0.743 0.870 0.506 0.679 0.581 0.846 0.679 0.834 0.897 0.577 0.862 0.828 0.911 0.846
IntAVLTreeMap 0.888 0.860 0.800 0.896 0.767 0.785 0.827 0.891 0.872 0.793 0.884 0.766 0.863 0.865
IntRedBlackTree 0.637 0.659 0.807 0.834 0.769 0.833 0.813 0.486 0.462 0.817 0.815 0.744 0.793 0.782
LinkedList 0.583 0.757 0.423 0.818 0.757 0.658 0.546 0.751 0.904 0.042 0.463 0.904 0.362 0.373
NodeCachLList 0.492 0.730 0.566 0.694 0.702 0.550 0.440 0.725 0.707 0.122 0.691 0.618 0.357 0.343
SinglyLList 0.325 0.359 0.176 0.304 0.302 0.399 0.468 0.446 0.456 0.484 0.567 0.492 0.607 0.741
TreeMap 0.799 0.829 0.781 0.889 0.875 0.897 0.903 0.686 0.695 0.851 0.895 0.872 0.875 0.873
TreeSet 0.762 0.776 0.777 0.874 0.824 0.827 0.875 0.683 0.662 0.827 0.869 0.824 0.818 0.847

language: C

Space 0.986 0.989 0.839 0.993 - 0.985 0.972 0.954 0.963 0.900 0.974 - 0.899 0.896
SQLite 0.942 0.950 0.051 0.981 - 0.965 0.960 0.942 0.950 0.051 0.981 - 0.965 0.960
YAFFS2 0.802 0.804 0.137 0.802 - 0.770 0.779 0.785 0.798 0.397 0.826 - 0.793 0.775
Printtokens 0.812 0.834 0.745 0.976 - 0.799 0.899 0.798 0.764 0.700 0.969 - 0.740 0.882
Printtokens2 0.852 0.854 0.724 0.827 - 0.856 0.856 0.657 0.653 0.455 0.642 - 0.651 0.639
Replace 0.767 0.771 0.537 0.751 - 0.746 0.749 0.642 0.652 0.560 0.669 - 0.635 0.642
Schedule 0.739 0.813 0.558 0.837 - 0.826 0.821 0.773 0.816 0.494 0.825 - 0.845 0.849
Schedule2 0.702 0.705 0.574 0.732 - 0.735 0.760 0.396 0.434 0.503 0.545 - 0.540 0.739
SglibRbtree 0.867 0.877 0.660 0.773 - 0.842 0.835 0.828 0.834 0.648 0.765 - 0.823 0.827
Totinfo 0.661 0.667 0.610 0.695 - 0.664 0.637 0.666 0.681 0.420 0.691 - 0.694 0.674
Tcas 0.795 0.819 0.790 0.790 - 0.828 0.791 0.751 0.768 0.770 0.770 - 0.803 0.772

Standard deviation 0.160 0.130 0.244 0.149 0.156 0.139 0.151 0.167 0.162 0.253 0.144 0.124 0.163 0.154
Geometric mean 0.746 0.791 0.503 0.782 0.679 0.787 0.775 0.676 0.712 0.430 0.760 0.723 0.725 0.738
Arithmetic mean 0.765 0.804 0.585 0.800 0.701 0.801 0.792 0.698 0.731 0.526 0.774 0.734 0.746 0.758
The best results 0 6 1 10 0 3 7 3 4 1 8 3 4 4
The worst results 4 0 20 2 1 0 1 8 2 14 0 1 0 1

4.5 Cost of Measurement
While our key questions are about the predictive power of

coverage criteria, we are also interested in the cost of mea-
suring coverage. Table 4 (left side) shows the average over-
head of measuring various criteria using our prototype tools.
Our implementation of IMP/AIMP is extremely simple; Ball
and Larus [8] provide a much faster precise approach, and
the hash-based imprecise approach of Hassan and Andrews
would also apply [34]. The key point is that our worst slow-
down was slightly over 108X, and computing mutation score
can take over 1000X. In some cases, the instrumented code
is faster, due to very low overhead and experimental noise.

4.6 Quality of Mutants
Our results depend on the quality of the mutants, i.e.,

the difficulty of killing them. If all the mutants are easy to
kill, a simple coverage criterion may perform unrealistically
well. We therefore compare the percentage of tests that kill
specific mutants to execution rates for branches. Table 4
(middle and right side) shows the results; we can see that
some mutants, especially for large programs, can be killed
by only a small fraction of tests, e.g., only 0.34% of all tests
kill the least killed mutant for JFreeChart. It is clear that on
average mutants are “harder” than branches for most sub-
jects, with a lower minimum and mean kill/execute rate as
well as a higher standard deviation.

5. DISCUSSION
The most surprising result in our study is that BC per-

forms so well. A second somewhat surprising result is that,

of non-BC criteria, AIMP performs best and performs much
better than the more frequently used IMP, despite the fact
that IMP subsumes AIMP. We believe that these two re-
sults are related. The ranking of criteria (to predict mu-
tation scores) does not follow the subsumption hierarchy,
although one might expect stronger criteria to predict mu-
tation scores better than weaker criteria do. In fact, in many
cases, exactly the opposite is true. Our belief is that there
is a fundamental tension between strength and predictive
power. Consider a criterion C that is weaker than another
criterion C′; C′ is most likely a better predictor than C for
C-adequate suites (e.g., if we have many suites with 100%
BC, then we cannot predict varying mutation scores among
those suites using BC itself, but we can still use AIMP), but
C′ is less likely a better predictor than C for C-non-adequate
suites (e.g., IMP is a worse predictor than AIMP, but BC is
a better predictor than SC).

Viewed differently, we can consider the question: how
much information does the coverage value for one criterion
provide about the coverage value for another criterion? We
realize that a subsumed criterion often (but not always) pro-
vides more information about the criterion that subsumes it
than the reverse. For example, if a suite has an absolute BC
value of k (with each test contributing at least one unique
branch), we know that the suite has absolute AIMP, IMP,
and PCT values of at least k. However, if we know that a
suite has absolute AIMP, IMP, or PCT coverage of k, with
each test contributing at least one path or PCT state, the
absolute BC may be arbitrarily lower than k. In a sense,
the weaker criteria in these cases provide “more” informa-

Table 4: (left) Overhead measured as ratio of execution time of all tests on instrumented to original code;
(middle and right) Statistics about percentage of tests that kill a mutant and execute a branch

Subject
Overhead/Slowdown Tests killing mutant [%] Tests executing branch [%]

SC BC IMP
PCT

Min Max Mean SD Min Max Mean SD
MS BB ST

language: Java

JFreeChart 4.21 3.71 3.84 - 4.30 4.79 0.05 26.79 0.34 1.00 0.05 29.72 0.44 1.41
JodaTime 55.38 63.50 92.31 - 67.50 61.88 0.03 75.10 0.61 2.65 0.03 82.42 1.35 5.29
AvlTree 3.73 2.07 39.87 4.14 22.59 21.92 0.01 100.00 41.94 38.69 45.39 100.00 77.05 17.12
BinomialHeap 2.48 2.14 13.01 4.96 11.58 12.27 0.07 98.72 41.86 28.09 2.48 98.72 67.52 24.19
BinTree 2.13 1.63 4.91 2.22 3.65 3.74 1.40 99.23 33.31 32.53 9.77 99.23 74.16 19.13
FibHeap 2.38 1.86 7.65 3.13 5.63 7.54 0.02 100.00 38.45 42.80 2.16 100.00 64.05 39.45
FibonacciHeap 2.05 1.31 5.95 3.00 4.17 5.48 0.02 99.98 32.91 37.54 4.89 99.98 69.60 27.84
HeapArray 1.79 2.00 6.41 2.34 6.62 6.70 1.33 100.00 49.87 37.24 1.48 100.00 59.33 33.26
IntAVLTreeMap 2.29 1.59 15.75 2.48 7.56 7.70 0.04 100.00 61.74 31.46 5.73 100.00 58.89 30.25
IntRedBlackTree 2.13 1.41 10.88 2.65 5.10 6.19 0.00 99.51 17.97 29.87 4.77 99.51 51.75 27.80
LinkedList 1.63 0.94 4.28 1.64 3.15 3.57 69.01 100.00 91.80 13.15 63.43 92.35 76.63 10.49
NodeCachLList 1.56 1.09 6.01 1.74 5.07 5.68 22.52 100.00 69.31 25.38 3.21 94.37 63.14 25.26
SinglyLList 1.97 1.86 5.85 3.22 4.80 5.14 7.15 94.32 41.90 29.95 24.80 94.32 47.70 22.85
TreeMap 2.25 1.62 15.33 3.45 11.41 10.19 0.04 99.29 20.11 26.44 2.29 99.29 40.67 26.34
TreeSet 2.02 1.66 14.11 4.59 10.98 9.24 0.03 99.42 26.96 29.95 3.33 99.42 49.57 27.15

language: C

Space 0.87 0.87 1.33 - 0.86 1.02 0.07 100.00 17.22 27.41 0.07 100.00 24.67 33.16
SQLite 1.40 1.40 31.83 - 15.87 58.43 0.17 100.00 26.85 38.77 0.21 100.00 26.73 37.33
YAFFS2 1.96 1.96 108.25 - 9.82 28.58 0.02 100.00 32.83 42.23 0.02 100.00 77.61 33.90
Printtokens 1.88 1.88 1.85 - 1.75 1.81 0.17 100.00 38.86 34.60 0.29 99.27 57.95 39.36
Printtokens2 2.29 2.29 2.85 - 2.35 2.86 0.73 99.27 39.17 36.89 0.73 98.54 52.55 36.29
Replace 2.30 2.30 2.68 - 2.17 2.59 0.02 89.32 24.09 24.57 0.40 99.60 39.02 31.53
Schedule 1.33 1.33 1.63 - 1.42 1.57 0.04 100.00 45.61 29.06 0.45 98.87 64.28 30.86
Schedule2 1.82 1.82 2.62 - 1.85 1.99 0.04 85.28 60.40 28.82 0.33 98.86 69.92 36.61
SglibRbtree 0.99 0.99 4.71 - 1.98 2.69 0.70 100.00 81.24 32.05 0.02 100.00 62.60 37.91
Totinfo 1.66 1.66 2.13 - 1.77 1.90 9.16 100.00 44.04 30.50 8.29 99.89 61.26 29.63
Tcas 1.99 1.99 2.01 - 2.27 2.65 0.06 100.00 19.35 32.37 1.87 98.13 24.54 20.49

Geometric mean 2.20 1.90 6.96 2.88 4.75 5.66

tion about a suite, so we can expect them to better predict
mutation score. For example, a suite may obtain very high
AIMP coverage without executing most code in the pro-
gram, if the suite takes a huge number of paths through a
single loop with many internal branches; similarly, absolute
PCT coverage cannot distinguish between a suite that cov-
ers many (irrelevant) states of a small portion of a program
and a suite that covers fewer states but executes most of the
program. Given the nearly uniform distribution of mutants
across a program, suites that do not execute most of the
code are likely to have poor mutation scores. In contrast, a
high BC value indicates that many easy-to-kill mutants are
almost certainly killed. BC thus “warns” if a suite misses
many “easy” faults; IMP/AIMP and PCT may not “warn”.

The predictive power of BC weakens considerably, how-
ever, as suites approach adequacy, when more ties are seen
in BC, but mutation scores continue to diverge. The best
predictive coverage may be the criterion that minimizes po-
tentially meaningless information without converging too
rapidly on 100% coverage. Among our evaluated criteria,
AIMP seems to balance information content and avoidance
of ties best: it always has a percentage of tied values for
suites that is between the very high percentage of ties for
BC and the very low percentages for PCT and IMP criteria.
IMP had the lowest percentage of ties of all criteria but also
proved the least useful for predicting mutation score.

The usefulness of AIMP is encouraging. Hassan and An-
drews have suggested that one reason def-use and other
dataflow coverages have been little used in practice, despite
encouraging results in some studies, is the difficulty of imple-
menting the required static analyses [34]. AIMP is usually

trivial to add to instrumentation for collecting BC, if a fairly
high overhead is acceptable (as done in this paper), and can
be much more efficient if needed [8]. Moreover, loop-free
paths within a single function are intuitively easy to inter-
pret, and Godefroid’s compositional approach to dynamic
symbolic execution essentially maximizes AIMP [24]. In fu-
ture studies evaluating test suites, our results suggest that
IMP should be replaced with AIMP.

We believe PCT coverage may be less effective than AIMP
because it uses too many predicates. PCT is inspired by ab-
straction in software model checking, which does not use all
in-scope predicates at all points (which leads to a state-space
explosion) but instead only uses those relevant to a specifica-
tion [11,35]. Investigating whether the superior performance
of AIMP truly indicates that path-sensitivity is more impor-
tant than logical-state-space coverage would require a sim-
ilar selectivity. Unfortunately, the methods used in model
checking are impractical for testing large programs.

5.1 Threats to Validity
The primary threat is to external validity: our set of pro-

grams and suites, while fairly large by the standards of pre-
vious literature, may not be representative of general results.
In particular, we examined a larger number of data struc-
tures and a smaller number of real-world programs, and our
examples were chosen in a partly opportunistic, rather than
random, way: we needed subjects with many tests available
or easily produced. Our selection of Java data structures,
however, at minimum sheds light on the validity of several
previous evaluations of testing techniques over these sub-
jects. Construct validity is primarily threatened by ignoring

some predicates for PCT because of technical constraints
(e.g., we were not able to generate predicates in a class where
instrumented methods would exceed the 64KB limit set by
the Java classfile specification).

6. RELATED WORK
Many previous studies have investigated the effectiveness

of coverage criteria. The contribution of this paper is to
perform a large-scale study to address the specific needs of
researchers now investigating automated testing techniques:
given two test suites, likely non-adequate, what criteria are
best for predicting the ability of those suites to kill mutants
(and thus, arguably, detect faults)? Are criteria more re-
cently adopted by researchers effective for this purpose?

Frankl and Weiss [22] performed an experimental com-
parison of branch coverage and def-use coverage, showing
that def-use is more effective than branch coverage and that
there is stronger correlation between def-use and fault de-
tection than branch coverage and fault detection; their pri-
mary conclusions concerned adequate suites, but some ex-
periments included non-adequate suites. Our work targets
similar questions but differs in that we compare SC, BC,
IMP, AIMP, and PCT coverages, use larger applications,
use a much larger set of tests produced by various testing
techniques, use (many) mutants as opposed to (few) real
bugs, and extensively explore non-adequate test suites.

Cai and Lyu [10] also investigated the correlation between
different coverage criteria—branch coverage, decision cover-
age, P-use, and C-use—and fault detection, using a linear
regression model. Their conclusions are drawn based on ex-
periments on one (large) example, with 426 mutants and
1,200 tests. Different test suites were formed: all tests, tests
from a specification, randomly generated tests, tests that
cause exceptions, and tests that do not cause exceptions.
Their results showed that coverage criteria were only a mod-
erate indicator for fault detection, with large variance for
different test suites. Some other studies [21,36] also showed
small or inconsistent correlation between coverage criteria
and fault detection. Namin and Andrews [42] investigated
the correlation between coverage criteria, effectiveness, and
size of a test suite. The study showed that both coverage
and size are non-linearly correlated with effectiveness. An
additional conclusion was that the best result is achieved
if both size and coverage are taken into account. Gupta
and Jalote examined the efficiency of coverage criteria us-
ing minimal adequate test suites for statement, branch, and
predicate coverage (the latter simply being coverage of all
atomic predicates from conditionals measured only at the
conditionals, not to be confused with PCT) [31]. In their
results, while predicate coverage was the most effective (cor-
related to mutation score), branch coverage was the most ef-
ficient when suite size was considered. Others (e.g., [1]) used
smaller programs and suites than the listed studies, and/or
only examined small sets of (seeded) faults.

Studies investigating related questions (e.g., which crite-
ria are best for prioritizing/minimizing regression suites) are
numerous, with results that also vary, though branch cov-
erage has arguably performed fairly well [45]. Harder et
al. examined the power of various adequacy criteria, noting
the possibility of size as a confounding factor [33]. Another
related work is that of Hassan and Andrews [34], which ex-
tends previous work [42] to a comparison of branch cover-
age, def-use coverage, and a novel coverage, called Multi-

point Stride Coverage (MPSC), that has resemblances to
a generalized version of AIMP. Their results showed that
def-use coverage was highly correlated with branch coverage
in practice, branch coverage was more correlated with fault
detection than other criteria, and MPSC was fairly well cor-
related with fault detection. Since some MPSC coverages
subsume AIMP, we would like to compare the two methods
using rank correlation to see if our findings with respect to
strength and predictive power hold here as well. Of all pre-
vious studies, we find that only a few [42, 55, 56] mention
Kendall τ correlation, and those do not provide a compar-
ison of multiple criteria as candidates for use in evaluating
suites. In contrast, we use τb to compare criteria.

Ball [6] introduced the theory behind PCT coverage and
showed that PCT subsumes branch coverage and various
decision coverages, and is incomparable to path coverage.
Although PCT was introduced in 2004 and used to compare
test-generation techniques, it was not extensively evaluated
empirically. Our study is the first that implements PCT and
empirically investigates the PCT criteria.

The second category of related work includes studies that
used some of our criteria for measuring the quality of test
suites, which inspired our efforts. Visser et al. [51] were
the first to instrument code for measuring an approximation
of PCT coverage and compared a number of advanced test
generation techniques against random testing using PCT.
Because of the lack of tools that can perform instrumenta-
tion for PCT, predicates were inserted manually. Pacheco et
al. [44] used the same approach to PCT to demonstrate the
effectiveness of feedback in random test generation. Later,
Sharma et al. [47] compared random testing and shape ab-
straction on the same set of predicates as previous studies,
but predicates were instantiated systematically at all basic
blocks. An extended version of that instrumentation was
used recently [26, 27] to evaluate the effectiveness of a new
test generation technique based on reinforcement learning.

7. CONCLUSIONS
This paper considers these questions: (1) for researchers

wishing to compare test suites but lacking a statistically sig-
nificant number of real faults and lacking the computational
resources to perform mutation testing, is it useful to com-
pare suites using coverage criteria; if so, (2) which criteria
are best at predicting mutation scores? Recent literature
has shown that these are critical questions to answer, be-
cause publications are increasingly using coverage criteria
to compare test suites and techniques. Our results suggest
that due to high effectiveness and low overhead, researchers
should use branch coverage to compare suites whenever pos-
sible, but all evaluated criteria performed well in terms of
predicting mutation score for our subjects. A variation of
intra-procedural acyclic path coverage performed best of all
non-branch coverage criteria, and has desirable simplicity,
ease of implementation, and reasonable overhead.

Acknowledgments. We thank Yu Lin, Qingzhou Luo,
and Shalini Shamasunder for discussions about this work,
Mladen Laudanovic and Douglas Simpson for help with sta-
tistical analysis, Lingming Zhang for help with Javalanche,
Jamie Andrews for valuable comments and providing the C
mutation tool, and Fredrik Kjolstad for help with WALA.
This material is based upon work partially supported by
the National Science Foundation under Grant Nos. CCF-
1054876, CNS-0958199, and CCF-0746856.

8. REFERENCES

[1] M. Adolfsen. Industrial validation of test coverage
quality. Master’s thesis, University of Twente, 2011.

[2] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, 2008.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In International Conference on Software Engineering,
pages 402–411, 2005.

[4] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. Trans. Softw.
Eng., 32:608–624, 2006.

[5] A. Arcuri and L. C. Briand. A practical guide for
using statistical tests to assess randomized algorithms
in software engineering. In International Conference
on Software Engineering, pages 1–10, 2011.

[6] T. Ball. A theory of predicate-complete test coverage
and generation. Technical Report MSR-TR-2004-28,
Microsoft Research, 2004.

[7] T. Ball. A theory of predicate-complete test coverage
and generation. In Formal Methods for Components
and Objects, pages 1–22. 2005.

[8] T. Ball and J. R. Larus. Efficient path profiling. In
International Symposium on Microarchitecture, pages
46–57, 1996.

[9] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. In Workshop
on Model Checking of Software, pages 103–122, 2001.

[10] X. Cai and M. R. Lyu. The effect of code coverage on
fault detection under different testing profiles. In
International Workshop on Advances in Model-Based
Testing, pages 1–7, 2005.

[11] S. Chaki, E. M. Clarke, A. Groce, and O. Strichman.
Predicate abstraction with minimum predicates. In
Correct Hardware Design and Verification Methods,
pages 19–34, 2003.

[12] S. Chaki, A. Groce, and O. Strichman. Explaining
abstract counterexamples. In Symposium on the
Foundations of Software Engineering, pages 73–82,
2004.

[13] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. Holmes: Effective statistical debugging
via efficient path profiling. In International Conference
on Software Engineering, pages 34–44, 2009.

[14] N. Cliff. Ordinal Methods for Behavioral Data
Analysis. Pyschology Press, 1996.

[15] Count lines of code. http://cloc.sourceforge.net/.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 2009.

[17] H. L. Costner. Criteria for measures of association.
American Sociological Review, 3, 1965.

[18] Instrumented container classes - predicate coverage.
http://mir.cs.illinois.edu/coverage/.

[19] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11:34–41, 1978.

[20] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical

Softw. Engg., 10:405–435, 2005.

[21] P. G. Frankl and O. Iakounenko. Further empirical
studies of test effectiveness. In Symposium on the
Foundations of Software Engineering, pages 153–162,
1998.

[22] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of branch testing and
data flow testing. Trans. Software Eng., 19:774–787,
1993.

[23] J. P. Galeotti, N. Rosner, C. G. López Pombo, and
M. F. Frias. Analysis of invariants for efficient
bounded verification. In International Symposium on
Software Testing and Analysis, pages 25–36, 2010.

[24] P. Godefroid. Compositional dynamic test generation.
In Symposium on Principles of Programming
Languages, pages 47–54, 2007.

[25] A. Groce. (Quickly) testing the tester via path
coverage. In Workshop on Dynamic Analysis, pages
22–28, 2009.

[26] A. Groce. Coverage rewarded: Test input generation
via adaptation-based programming. In International
Conference on Automated Software Engineering, pages
380–383, 2011.

[27] A. Groce, A. Fern, J. Pinto, T. Bauer, M. A. Alipour,
M. Erwig, and C. Lopez. Lightweight automated
testing with adaptation-based programming. In
International Symposium on Software Reliability
Engineering, pages 161–170, 2012.

[28] A. Groce, G. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In International Conference on Software Engineering,
pages 621–631, 2007.

[29] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr.
Swarm testing. In International Symposium on
Software Testing and Analysis, pages 78–88, 2012.

[30] J. P. Guilford. Fundamental Statistics in Pyschology
and Education. McGraw-Hill, 1956.

[31] A. Gupta and P. Jalote. An approach for
experimentally evaluating effectiveness and efficiency
of coverage criteria for software testing. Softw. Tools
Technol. Transf., 10:145–160, 2008.

[32] R. G. Hamlet. Testing programs with the aid of a
compiler. Trans. Softw. Eng., 3:279–290, 1977.

[33] M. Harder, J. Mellen, and M. D. Ernst. Improving
test suites via operational abstraction. In
International Conference on Software Engineering,
pages 60–71, 2003.

[34] M. M. Hassan and J. H. Andrews. Comparing
multi-point stride coverage and dataflow coverage. In
International Conference on Software Engineering,
pages 172–181, 2013.

[35] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In Symposium on
Principles of Programming Languages, pages 58–70,
2002.

[36] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In
International Conference on Software Engineering,
pages 191–200, 1994.

[37] JFreeChart Home Page. http://www.jfree.org/

http://cloc.sourceforge.net/
http://mir.cs.illinois.edu/coverage/
http://www.jfree.org/jfreechart/

jfreechart/.

[38] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Trans. Soft. Eng.,
37:649–678, 2011.

[39] JodaTime Home Page. http://joda-time.
sourceforge.net/.

[40] M. Kendall. A new measure of rank correlation.
Biometrika, 1-2:81–89, 1938.

[41] J. R. Larus. Whole program paths. In Programming
Language Design and Implementation, pages 259–269,
1999.

[42] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In
International Symposium on Software Testing and
Analysis, pages 57–68, 2009.

[43] A. J. Offutt, G. Rothermel, and C. Zapf. An
experimental evaluation of selective mutation. In
International Conference on Software Engineering,
pages 100–107, 1993.

[44] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In
International Conference on Software Engineering,
pages 75–84, 2007.

[45] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Test case prioritization. Trans. Softw. Eng.,
27:929–948, 2001.

[46] D. Schuler and A. Zeller. Javalanche: efficient
mutation testing for Java. In Symposium on the
Foundations of Software Engineering, pages 297–298,
2009.

[47] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and
D. Marinov. Testing container classes: Random or
systematic? In Fundamental Approaches to Software
Engineering, pages 262–277, 2011.

[48] R. Sharma, M. Gligoric, V. Jagannath, and
D. Marinov. A comparison of constraint-based and
sequence-based generation of complex input data

structures. In Software Testing, Verification, and
Validation Workshops, pages 337–342, 2010.

[49] A. Siami Namin, J. H. Andrews, and D. J. Murdoch.
Sufficient mutation operators for measuring test
effectiveness. In International Conference on Software
Engineering, pages 351–360, 2008.

[50] SQLite Home Page. http://www.sqlite.org/.

[51] W. Visser, C. S. Pasareanu, and R. Pelánek. Test
input generation for Java containers using state
matching. In International Symposium on Software
Testing and Analysis, pages 37–48, 2006.

[52] M. Vittek, P. Borovansky, and P.-E. Moreau. A simple
generic library for C. In International Conference on
Software Reuse, pages 423–426, 2006.

[53] F. I. Vokolos and P. G. Frankl. Empirical evaluation of
the textual differencing regression testing technique.
In International Conference on Software Maintenance,
pages 44–53, 1998.

[54] T. Wang and A. Roychoudhury. Automated path
generation for software fault localization. In
International Conference on Automated Software
Engineering, pages 347–351, 2005.

[55] W. Wong, J. Horgan, S. London, and A. Mathur.
Effect of test set size and block coverage on the fault

detection effectiveness. In International Symposium on
Software Reliability, pages 230–238, 1994.

[56] W. Wong, J. Horgan, S. London, and A. Mathur.
Effect of test set minimization on fault detection
effectiveness. In International Conference on Software
Engineering, pages 41–50, 1995.

[57] YAFFS: A flash file system for embedded use. http://
www.yaffs.net.

[58] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random
mutant selection? In International Conference on
Software Engineering, pages 435–444, 2010.

http://www.jfree.org/jfreechart/
http://joda-time.sourceforge.net/
http://joda-time.sourceforge.net/
http://www.sqlite.org/
http://www.yaffs.net
http://www.yaffs.net

