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ABSTRACT
Swarm testing is a novel and inexpensive way to improve the di-
versity of test cases generated during random testing. Increased
diversity leads to improved coverage and fault detection. In swarm
testing, the usual practice of potentially including all features in
every test case is abandoned. Rather, a large “swarm” of randomly
generated configurations, each of which omits some features, is
used, with configurations receiving equal resources. We have iden-
tified two mechanisms by which feature omission leads to better
exploration of a system’s state space. First, some features actively
prevent the system from executing interesting behaviors; e.g., “pop”
calls may prevent a stack data structure from executing a bug in
its overflow detection logic. Second, even when there is no active
suppression of behaviors, test features compete for space in each
test, limiting the depth to which logic driven by features can be
explored. Experimental results show that swarm testing increases
coverage and can improve fault detection dramatically; for example,
in a week of testing it found 42% more distinct ways to crash a
collection of C compilers than did the heavily hand-tuned default
configuration of a random tester.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Algorithms, Experimentation, Languages, Relia-
bility

Keywords Random testing, configuration diversity

1. INTRODUCTION
This paper focuses on answering a single question: In random
testing, can a diverse set of testing configurations perform better
than a single, possibly “optimal” configuration? An example of a test
configuration would be, for example, a list of API calls that can be
included in test cases. Conventional wisdom in random testing [19]
has assumed a policy of finding a “good” configuration and running
as many tests as possible with that configuration. Considerable
research effort has been devoted to the question of how to tune a
“good configuration,” e.g., how to use genetic algorithms to optimize
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the frequency of various method calls [6], or how to choose a length
for tests [5]. As a rule, the notion that some test configurations
are “good” and that finding a good (if not truly optimal, given the
size of the search space) configuration is important has not been
challenged. Furthermore, in the interests of maximizing coverage
and fault detection, it has been assumed that a good random test
configuration includes as many API calls or other input domain
features as possible, and this has been the guiding principle in large-
scale efforts to test C compilers [36], file systems [17], and utility
libraries [29]. The rare exceptions to this rule have been cases where
a feature makes tests too difficult to evaluate or slow to execute,
or when static analysis or hand inspection can demonstrate that an
API call is unrelated to state [17]. For example, including pointer
assertions may make compiling random C programs too slow with
some compilers.

In general, if a call or feature is omitted from some tests, it
is usually omitted from all tests. This approach seems to make
intuitive sense: omitting features, unless it is necessary, means
giving up on detecting some faults. However, this objection to
feature omission only holds so long as testing is performed using a
single test configuration. Swarm testing, in contrast, uses a diverse
“swarm” of test configurations, each of which deliberately omits
certain API calls or input features. As a result, given a fixed testing
budget, swarm testing tends to test a more diverse set of inputs than
would be tested under a so-called “optimal” configuration (perhaps
better referred to as a default configuration) in which every feature
is available for use by every test.

One can visualize the impact of swarm testing by imagining a
“test space” defined by the contents of tests. As a simple example,
consider testing an implementation of a stack ADT that provides two
operations, push and pop. One can visualize the test space for the
stack ADT using these features as axes: each test is characterized
by the number of times it invokes each operation. Any method for
randomly generating test cases results in a probability distribution
over the test space, with the value at each point (x,y) giving the
probability that a given test will contain exactly x pushes and y pops
(in any order). To make this example more interesting, imagine the
stack implementation has a capacity bug, and will crash whenever
the stack is required to hold more than 32 items.

Figure 1(a) illustrates the situation for testing the stack with a
test generator that chooses pushes and pops with equal probability.
The generator randomly chooses an input length and then decides if
each operation is a push or a pop. The graph shows the distribution
of tests produced by this generator over the test space. The graph
also shows contour lines for significant regions of the test space.
Where Pf ail = 1, a test chosen randomly from that region is certain
to trigger the stack’s capacity bug; where Pf ail = 0, no test can
trigger the bug. As Figure 1(a) shows, this generator only rarely
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(a) Random testing with uniform probabilities
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(b) Swarm testing

Figure 1: Swarm testing changes the distribution of test cases
for a stack. If push and pop operations are selected with equal
probability, about 1 in 370,000 test cases will trigger a bug
in a 32-element stack’s overflow-detection logic. Swarm test-
ing (note the test cases concentrated near the x-axis and y-axis
of Figure 1(b)) triggers this bug in about 1 of every 16 cases.

produces test cases that can trigger the bug.
Now consider a test generator based on swarm testing. This

generator first chooses a non-empty subset of the stack API and
then generates a test case using that subset. Thus, one-third of the
test cases contain both pushes and pops, one-third just pushes, and
one-third just pops. Figure 1(b) shows the distribution of test cases
output by this generator. As is evident from the graph, this generator
often produces test cases that trigger the capacity bug.

Although simple, this example illustrates the dynamics that make
swarm testing work. The low dimensionality of the stack example
is contrived, of course, and we certainly believe that programmers
should make explicit efforts to test boundary conditions. As evi-
denced by the results presented in this paper, however, swarm testing
generalizes to real situations in which there may be dozens of fea-
tures that can be independently turned on or off. It also generalizes
to testing real software in which faults are very well hidden.

Every test generated by any swarm configuration can, in princi-
ple, be generated by a test configuration with all features enabled.
However—as the stack example illustrates—the probability of cov-
ering parts of the state space and detecting certain faults can be
demonstrably higher when a diverse set of configurations is tested.

Swarm testing has several important advantages. First, it is low
cost: in our experience, existing random test case generators already
support or can be easily adapted to support feature omission. Second,
swarm testing reduces the amount of human effort that must be
devoted to tuning the random tester. In our experience, tuning is a
significant ongoing burden. Finally—and most importantly—swarm

testing makes significantly better use of a fixed CPU time budget
than does random testing using a single test configuration, in terms
of both coverage and fault detection. For example, we performed
an experiment where two machines, differing only in that one used
swarm testing and one did not, used Csmith [36] to generate tests for
a collection of production-quality C compiler versions for x86-64.
During one week of testing, the swarm machine found 104 distinct
ways to crash compilers in the test suite whereas the other machine—
running the default Csmith test configuration, which enables all
features—found only 73. An improvement of more than 40% in
terms of number of bugs found, using a random tester that has been
intensively tuned for several years, is surprising and significant.

Even more surprising were some of the details. We found, for
example, a compiler bug that could only be triggered by programs
containing pointers, but which was almost never triggered by inputs
that contained arrays. This is odd because pointer dereferences and
array accesses are very nearly the same thing in C.1 Moreover, we
found another bug in the same compiler that was only triggered by
programs containing arrays, but which was almost never triggered by
inputs containing pointers. Fundamentally, it appears that omitting
features while generating random test cases can lead to improved
test effectiveness.

Our contributions are as follows. First, we characterize swarm
testing, a pragmatic variant of random testing that increases the
diversity of generated test cases with little implementation effort.
The swarm approach to diversity differs from previous methods
in that it focuses solely on feature omission diversity: variance in
which possible input features are not present in test cases. Second,
we show that—in three case studies—swarm testing offers improved
coverage and bug-finding power. Third, we offer some explanations
as to why swarm testing works.

2. SWARM TESTING
Swarm testing uses test configurations that correspond to sets of
features of test cases. A feature is an attribute of generated test
inputs that the generator can directly control, in a computationally
efficient way. For example, an API-based test generator might define
features corresponding to inclusion of API functions (e.g., push and
pop); a C program generator might define features corresponding
to the use of language constructs (e.g., arrays and pointers); and
a media-player tester might define features over the properties of
media files, e.g., whether or not the tester will generate files with
corrupt headers. In our work, a feature determines a configuration
of test generation, not the System Under Test (SUT)—in this work
we use the same build of the SUT for all testing. In particular, we
are configuring which aspects of the SUT will be tested (and not
tested) only by controlling the test cases output. Features can be
thought of simply as constraints on test cases, in particular those
the test case generator lets us control.

Assume that a test configuration C is a set of features, f1 . . . fn. C
is used as the input to a random testing function [8, 19] gen(C,s),
which given configuration C and seed s generates a test case for the
SUT containing only features in C. We may ignore the details of
how the exact test case is built. The values f1 . . . fn determine which
features are allowed to appear in the test case. For example, if we are
testing a simple file system, the set of all features might be:

{
read ,

write , open , close , unlink , sync , mkdir , rmdir , unmount ,
mount

}
. A typical default C would then be

{
read , write , open ,

close , unlink , sync , mkdir , rmdir
}

, which omits mount and
unmount in order to avoid wasting test time on operations while the
file system is unmounted.

1In C/C++, a[i] is syntactic sugar for *(a+i).
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Assume that a test engineer has two CPUs available and 24 hours
to test a file system. The conventional strategy would be to choose a
“good” test case length, divide the set of random-number-generator
seeds into two sets, and simply generate, execute, and evaluate as
many tests as possible on each CPU, with a single C.

In contrast, a swarm approach to testing the same system, under
the same assumptions, would use a “swarm”—a set {C1,C2, . . .Cn}.
A fixed set could be chosen in advance, or a fresh Ci could be
generated for each test. In most of our experimental results, we use
large but fixed-size sets, generated randomly. That is, we “toss a fair
coin” to determine feature presence or absence in C. In Section 3.1.3
we discuss other methods for generating each C. With a fixed swarm
set, we divide the total time budget on each CPU such that each Ci
receives equal testing time, likely generating multiple tests for the
each Ci. For testing without a fixed swarm set, we would simply
keep generating a Ci and running a test until time is up. For the file
system example, where there are nine features and thus 29 (512)
possible configurations, a fixed set might consist of 64 C, each of
which would receive a test budget of 45 minutes (48 CPU-hours
divided by 64)—a large number of tests would be generated for each
Ci. The default approach is equivalent to swarm testing if we use a
singleton set {CD}, where CD includes all features we are interested
in testing. Some Ci (those omitting features that slow down the
SUT) may generate tests that are quicker to execute than CD; others
may produce tests that execute slower due to a high concentration of
expensive features. On average, the total number of tests executed
will be similar to the standard approach, though perhaps with a
greater variance. The distribution of calls made, over all tests, will
also be similar to that found using just CD: each call will be absent
in roughly half of configurations, but will be called more frequently
in other configurations. Why, then, might results from swarms differ
from those with the default approach?

2.1 Advantages of Configuration Diversity
The key insight motivating this paper is that the possibility of a
test being produced is not the same as the probability that it will
be produced. In particular, consider a fault that relies on making
64 calls to open, without any calls to close, at which point the
file descriptor table overflows and the file system crashes. If the
test length in both the default and swarm settings is fixed at 512
operations, we know that testing with CD is highly unlikely to expose
the fault: the rate is much less than 1 in 100,000 tests. With swarm,
on the other hand, many Ci (16 on average) will produce tests
containing calls to open but no calls to close. Furthermore, some
of these Ci will also disable other calls, increasing the proportion
of open calls made. For Ci such that open ∈Ci but without close
and at least one other feature, the probability of detecting the fault
improves from close to 0% to over 80%. If 48 hours of testing
produces approximately 100,000 tests, it is almost certain that using
CD will fail to detect the fault, and at the same time almost certain
that any swarm set of size 64 will detect it. The same argument
holds even if we improve the chances of CD by assuming that close
calls do not decrement the file descriptor count: swarm is still much
more likely to produce any failure that requires many open calls.

While such resource-exhaustion faults may seem to be a rare
special case, the concept can be generalized. Obviously, many data
structures, as in the stack example, may have overflow or underflow
problems where one or more API calls moves the system away from
exhibiting failure. In the file system setting, it seems likely that
many faults related to buffering will be masked by calls to sync.
In a compiler, many potentially faulty optimizations will never be
applied to code that contains pointer accesses, because of failed
safety checks based on aliasing. In other words, including a feature

in a test does not always improve the ability of the test to cover
behavior and expose faults: some features can actively suppress
the exhibition of some behaviors. Formally, we say that a feature
suppresses a behavior in a given tester if, over the set of all test
cases the tester in question can produce, test cases containing the
suppressing feature are less likely to display the behavior than those
without the suppressing feature.

Furthermore, if we assume that some aspects of system state are
affected more by some features than others, and assume that test
cases are limited in size, then by shifting the distribution of calls
within each test case (though not over all test cases), swarm testing
results in a much higher probability of exploring “deep” values of
state variables. Consider adding a top call that simply returns the
top value of the stack to the ADT above. For every call to top in
a finite test case, the number of push calls possible is reduced by
one. Only if all features equally affect all state variables are swarm
and using just CD equally likely to explore “deep” states. Given
that real systems exhibit a strong degree of modularity and that API
calls and input features are typically designed to have predictable,
localized effects on system state or behavior, this seems extremely
unlikely. Many fault-detection or property-proof techniques, from
abstraction to compositional verification to k-wise combinatorial
testing, take this modularity of interaction for granted. We therefore
hypothesize that many features “passively” suppress some behaviors
by “crowding out” relevant features in finite test cases.

Active and passive suppression mean that we may need tests that
exhibit a high degree of feature omission diversity, since we do not
know which features will suppress which behaviors, and features
are almost certain both to suppress some behaviors and be required
or at least helpful for producing others!

2.2 Disadvantages of Configuration Diversity
An immediate objection to swarm testing is that it may significantly
reduce the probability of detecting certain faults. Consider a file
system bug that can only be exposed by a combination of calls to
read, write, open, mkdir, rmdir, unlink, and sync. Because
there is only a 1/128 chance that a given Ci will enable all of these,
it is likely that a swarm set of size 64 cannot find this fault. At
first examination, it seems that the swarm approach to testing will
expose fewer faults and result in worse coverage than using a single
inclusive C. Furthermore, recalling that any test possible with any
Ci in a swarm set is also possible under CD, but that some tests
produced by the CD may be impossible to produce for almost all Ci,
it may be hard to imagine how swarm can compensate.

This apparent disadvantage of swarm—that feature subsetting
will necessarily miss some bugs—in fact has rather limited impact.
First, when features appear together only infrequently over Ci, this
may lower the probability of finding the “right” test for a particular
bug, but does not preclude it. Second, since other features will
almost certainly be omitted from the few Ci that do contain the
right combination, the features may interact more than in CD—thus
increasing the likelihood of finding the bug (Section 2.1) in each
test.

For bugs that can be discovered only when many features are
enabled, the relevant question is this: how likely is it that swarm test-
ing will not include any Ci with all the needed features? Using the
simplest form of coin-toss generation for swarm sets, the chance of
a given set of k features never appearing together in any of C1 . . .Cn
is (1−0.5k)n. Even a very small swarm set of 100 configurations
is 95% likely to contain at least one Ci for any given choice of five
features. If a tester uses a swarm set size of 1,000 (as we do in
Section 3.2) there is a 95% chance of covering any given set of eight
features, and a 60% chance with ten. If a tester believes that even
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these probabilities are unsatisfying, a simple mitigation strategy is
to include CD in every swarm set. We chose not to do this in our
experiments in order to heighten the value of our comparison with
the default, all-inclusive configuration strategy.

2.3 An Empirical Question
In general, all that can be said is that what we call CD may be opti-
mal for some hypothetical set of coverage targets and faults, while
a swarm set {C1 . . .Cn} will contain some Ci that are optimal for
different coverage targets and faults, but will perform less testing
under each Ci than the conventional approach will perform under CD.
Our hypothesis is that for many real-world programs, the conven-
tional “CD approach” to testing will expose the same faults and cover
the same behaviors many times, while swarm testing may expose
more faults and cover more targets, but might well produce fewer
failing tests for each fault and execute fewer tests that cover each
branch/statement/path/etc. Given that the precise distribution of
faults and coverage targets in the state space of any realistic system
is complex and not amenable to a priori analysis, only experimental
investigation of how the two random testing approaches compare
on real systems can give us practical insight into what strategies
might be best for large-scale, random testing of critical systems. The
remainder of this paper shows how conventional, single-C testing
and swarm testing compare for coverage and fault detection on the
software in three case studies: (1) a widely used open-source flash
file system, (2) seventeen versions of five widely used C compilers,
and (3) a container in the widely used Sglib library.

The thesis of this paper is that turning features off during test
case generation can lead to more effective random testing. Thus,
one of our evaluation criteria is that swarm should find more defects
and lead to improved code coverage, when compared to the default
configuration of a random tester, with other factors being equal.

In the context of any individual bug, it is possible to evaluate
swarm in a more detailed fashion by analyzing the features found
and not found in test cases that trigger the bug. We say that a test
case feature is significant with respect to some bug if its presence
or absence affects the likelihood that the bug will be found. For
example, push operations are obviously a significant feature with
respect to the example in Section 1 because a call to push causes
the bug to manifest. But this is banal: it has long been known that
effective random testing requires “featureful” test inputs. The power
of swarm is illustrated when the absence of one or more features
is statistically significant in triggering a bug. Section 3 shows that
such (suppressing) features for bugs are commonplace, providing
strong support for our claim that swarm testing is beneficial.

3. CASE STUDIES
We evaluated swarm testing using three case studies in which we
tested software systems of varying size and complexity. The first
study was based on YAFFS2, a flash file system; the second (and
largest) used seventeen versions of five production-quality C com-
pilers; and the third, a “mini-study,” focused on a red-black tree
implementation. The file system and red-black tree were small
enough (15 KLOC and 476 LOC, respectively) to be subjected to
mutation testing. The compilers, on the other hand, were not conve-
niently sized for mutation testing, but provided something better: a
large set of real faults that caused crashes or other abnormal exits.

In all case studies, we used relatively small (n≤ 1,000) swarm
sets, to show that swarm testing improves over using CD even with
relatively small sets, which may be necessary if there are complex
or expensive-to-check constraints on valid Ci. In practice, all of
our case studies would support a much simpler approach of simply

using any random C for each test, and we believe this may be the
best practice when it is possible.

3.1 Case Study: YAFFS Flash File System
YAFFS2 [35] is a popular open-source NAND flash file system for
embedded use; it is the default image format for the Android operat-
ing system. Our test generator for YAFFS2 produces random tests
of any desired length and executes the tests using the RAM flash
emulation mode. By default, tests can include or not include any of
23 core API calls, as specified by a command line argument to the
test generator: these command line arguments are the Ci, and calls
are features. Our tester generates a test case by randomly choosing
an API from the feature set, and calling the API with random pa-
rameters (not influenced by our test configuration). This is repeated
n times to produce a length n test case, consisting of the API calls
and parameter choices. Feedback [17, 29] is used in the YAFFS2
tester to ensure that calls such as close and readdir occur only
in states where valid inputs are available. We ran one experiment
with 100 test configurations and another with 500 configurations,
all including API calls with 50% probability. Both sets were large
enough compared to the number of tests run to make unusual effec-
tiveness or poor performance due to a small set of especially good
or bad Ci highly unlikely. Both experiments compared 72 hours of
swarm testing to 72 hours of testing with CD only, evaluating test
effectiveness based on block, branch, du-path, prime path, path, and
mutation coverage [3]. For prime and du-paths, we limited lengths
to a maximum of ten. Path coverage was measured at the function
level (that is, a path is the path taken from entry to exit of a single
function).

Both experiments used 532 mutants, randomly sampled from the
space of all 12,424 valid YAFFS2 mutants, using the C program
mutation approach (and software) shown to provide a good proxy for
fault detection by Andrews et al. [4]. Unfortunately, evaluation on all
possible mutants would require prohibitive computational resources:
evaluation on 532 mutants required over 11 days of compute time.
Random sampling of mutants has been shown to provide useful
results in cases where full evaluation is not feasible [38]. Our
sampled mutants were not guaranteed to be killable by the API calls
and emulation mode tested. We expect that considerably more than
half of these mutants lie in code that cannot execute due to our using
YAFFS2’s RAM emulation in place of actual flash hardware, or due
to the set of YAFFS2 API calls that we test. Some unknown portion
of the remainder are semantically equivalent mutants. Unfortunately,
excluding mutants for these three cases statically is very difficult,
and we do not want to prune out all hard-to-kill mutants—those
are precisely the mutants we want to keep! The only difference
between experiments, other than the number of configurations, was
that in the first experiment mutation coverage was computed online,
and was included in the test budget for each approach. The second
experiment did not count mutation coverage computations as part of
the test budgets, but executed all mutation tests offline, in order to
show how results changed with increased number of tests.

3.1.1 Results—Coverage and Mutants Killed
Table 1 shows how swarm configuration affects testing of YAFFS2.
For each experiment, the first column of results shows how CD
performed, the second column shows the coverage for swarm testing,
and the last column shows the coverage for combining the two
test suites. Each individual test case contained 200 file system
operations: the swarm test suite in the second experiment executed
a total of 1.17 million operations, and testing all mutants required
an additional 626 million YAFFS2 calls.

The first experiment (columns 2–4 of Table 1) shows that, despite
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Table 1: YAFFS2 coverage results
# = number of tests; coverage: bl = blocks; br = branches; du = du-paths;
pr = prime paths; pa = paths; mu = mutants killed

swarm 100, mutants online swarm 500, offline
CD Swarm Both CD Swarm Both

# 1,747 1,593 3,340 5,665 5,888 11,553
bl 1,161 1,168 1,173 1,173 1,172 1,178
br 1,247 1,253 1,261 1,261 1,259 1,268
du 2,487 2,507 2,525 2,525 2,538 2,552
pr 2,834 2,872 2,964 2,907 2,967 3,018
pa 14,153 25,484 35,478 35,432 64,845 91,280
mu 94 97 97 95 97 97

executing 154 fewer tests, swarm testing improved on the default
configuration in all coverage measures—the difference is particu-
larly remarkable for path coverage, where swarm testing explored
over 10,000 more paths. The combined test suite results show that
default and swarm testing overlapped in most forms of coverage, but
that CD did explore some blocks, branches, and paths that swarm did
not. For pure path coverage, the two types of testing produced much
more disjoint coverage. Surprisingly, swarm was strictly superior in
terms of mutation kills: swarm killed three mutants that CD did not,
and killed every mutant killed by CD. On average, CD killed each
mutant 1,173 times. Swarm only killed each mutant (counting only
those killed by both test suites, to avoid any effect from swarm also
killing particularly hard-to-kill mutants) an average of 725 times.
An improvement of three mutants out of 94 may seem small, but a
better measure of fault detection capabilities may be kill rates for
nontrivially detectable mutants. It seems reasonable to consider any
mutant killed by more than 10% of random tests (each with only
200 operations) to be uninteresting. Even quite desultory random
testing will catch such faults. Of the 97 mutants killed by CD, only
14 were killed by < 10% of tests, making swarm’s 17 nontrivial
kills an improvement of over 20%.

In the second experiment (columns 5–7 of Table 1), test through-
put was about 3× greater due to offline computation of mutation
coverage. Here CD covered slightly more blocks and branches than
the swarm tests. However, of the six blocks and nine branches cov-
ered only by CD, all but four (two of each) were low-probability
behaviors of the rename operation. In file system development and
testing at NASA’s Jet Propulsion Laboratory, rename was by far the
most complex and faulty operation, and we expect that this is true
for many file systems [17]. Discussion with the primary author of
YAFFS has confirmed that he also believes rename to be the most
complex function we tested. This result suggests a vulnerability (or
intelligent use requirement) for swarm: if a single feature is expected
to account for a large portion of the behavioral complexity and po-
tential faults in a system, it may well be best to set the probability
of that feature to more than 50%. Nonetheless, swarm managed
to produce better coverage for all other metrics, executing almost
30,000 more paths than testing under CD only, and still killed all of
the mutants killed by CD, plus two additional mutants. The swarm
advantage in nontrivial mutant kills was reduced to 13% (15 vs. 17
kills). In fact, the additional 4,295 tests (with a different, larger, set
of Ci) did not add mutants to the set killed by swarm, suggesting
good fault detection ability for swarm on YAFFS2, even with a small
test budget. Using CD once more tended towards “overkill,” with an
average of 3,756 killing tests per mutant. Swarm only killed each
mutant an average of 2,669 times.

fd0 = yaffs_open("/ram2k/umtpaybhue",O_APPEND|O_EXCL
|O_TRUNC|O_RDWR|O_CREAT,S_IREAD);

yaffs_write(fd0, rwbuf, 9243);
fd2 = yaffs_open("/ram2k/iri",O_WRONLY|O_RDONLY|O_CREAT,

S_IWRITE);
fd3 = yaffs_open("/ram2k/iri",O_WRONLY|O_TRUNC|O_RDONLY

|O_APPEND,S_IWRITE);
yaffs_write(fd3, rwbuf, 5884);
yaffs_write(fd3, rwbuf, 903);
fd6 = yaffs_open("/ram2k/wz",O_WRONLY|O_CREAT,S_IWRITE);
yaffs_write(fd2, rwbuf, 3437);
yaffs_write(fd6, rwbuf, 8957);
yaffs_write(fd3, rwbuf, 2883);
yaffs_write(fd3, rwbuf, 4181);
yaffs_read(fd2, rwbuf, 8405);
fd12 = yaffs_open("/ram2k/gddlktnkd",

O_TRUNC|O_RDWR|O_WRONLY|O_APPEND|O_CREAT, S_IREAD);
yaffs_write(fd0, rwbuf, 3387);
yaffs_write(fd12, rwbuf, 2901);
yaffs_write(fd12, rwbuf, 9831);
yaffs_freespace("/ram2k/wz");

Figure 2: Operations in a minimized test case for killing
YAFFS2 mutant #62. The mutant returns an incorrect amount
of remaining free space.
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Figure 3: 95% confidence intervals for the percentage of test
cases killing YAFFS2 mutant #62 containing each call

3.1.2 Results—Significant Features
Figure 2 shows a delta-debugged [37] version of one of the swarm
tests that killed mutant #62. Using CD never killed this mutant. The
original line of code at line 2 of yaffs_UseChunkCache is:

if (dev->srLastUse < 0 || dev->srLastUse > 100000000)

The mutant changes < 0 to > 0. The minimized test requires no
operations other than yaffs_open, yaffs_write, yaffs_read
and yaffs_freespace. The five tests killing this mutant in the
first experiment were all produced by two Ci, both of which disabled
close, lseek, symlink, link, readdir, and truncate. The uni-
versal omission of close, in particular, probably indicates that this
API call actively interferes with triggering this fault: it is difficult to
perform the necessary write operations to expose the bug if files can
be closed at any point in the test. The other missing features may
all indicate passive interference: without omitting a large number
of features it is difficult to explore the space of combinations of
open and write, and observe the incorrect free space, in the 200
operations performed in each test.

Figure 3 shows which YAFFS2 test features were significant in
killing mutant #62. The 95% confidence intervals (computed using
the Wilson score for a binomial proportion) are somewhat wide
because this mutant was killed only 10 times in the second experi-
ment. Calls to freespace, open, and write are clearly “triggers”
(and almost certainly necessary) for this bug, while close is, as
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Figure 4: 95% confidence intervals for the percentage of test
cases killing mutant #400 containing each YAFFS2 API call

expected, an active suppressor. Calls to mkdir and rmdir are prob-
ably passive suppressors (we have not discovered any mechanism
for active suppression, at least); we know that in model checking
[16], omitting directory operations can give much better coverage
of operations such as write and read.

Figure 4 shows 95% confidence intervals for each feature in the
137 test cases (from the second experiment, again) killing another
mutant that was only killed by swarm testing. This mutant negates a
condition in the code for marking chunks dirty: bi->pagesInUse
== 0 becomes bi->pagesInUse != 0. Here, freespace is again
required, but only chmod acts as a major trigger. This mutant affects
a deeper level of block management, so either a file or directory
can expose the fault: thus mkdir is a moderate trigger and open
is possibly a marginal trigger but neither is required, as either call
will set up conditions for exposure. A typical delta-debugged test
case killing this mutant includes 15 calls to chmod, but chmod is not
required to expose the fault—it is simply a very effective way to re-
peatedly force any directory entry to be rewritten to flash. Moreover,
rmdir completely suppresses the fault—presumably by deleting
directories before the chmod-induced problems can exhibit. It is
possible to imagine hand-tuning of the YAFFS2 call mix helping
to detect a fault like mutant #62. It is very hard to imagine a file
system expert, one not already aware of the exact fault, tuning a
tester to expose a bug like mutant #400.

As a side note, we suspect that these kinds of confidence interval
graphs, which appear as a natural byproduct of swarm testing, may
be quite helpful as aids to fault localization, debugging, and program
understanding. In principle such graphs may also be produced from
CD, but with random testing and realistic test case sizes, the chance
of a feature not appearing in a test case is close to zero; even if
measuring feature frequency provides useful information, which
seems unlikely, this complicates producing useful graphs.

Table 2 shows which YAFFS2 features contributed to mutant
killing and which features suppressed mutant killing. Percentages
represent the fraction of killed mutants for which the feature’s pres-
ence or absence was statistically significant. While mutants are not
necessarily good representatives of real faults (we show how swarm
performs for real faults below), the particular features that trigger
and suppress the most bugs are quite surprising. For example, it is at
first puzzling why fchmod is such a helpful feature. We believe this
to be a result of the power of fchmod and chmod to “burn” through
flash pages quickly by forcing rewrites of directory entries for either
a file or a directory. The most likely explanation for fchmod’s value
over chmod lies in feedback’s ability to always select a valid file
descriptor, giving a rewrite of an open file; we know that open files
are more likely to be involved in file system faults. Table 2 also

Table 2: Top trigger and suppressor features for YAFFS2

Triggers
fchmod 66%
lseek 65%
read 62%
write 61%
open 58%
close 57%
fstat 56%
symlink 41%
closedir 35%
opendir 35%
truncate 34%
rmdir 32%
chmod 32%
readdir 31%
mkdir 30%
freespace 28%
link 26%
stat 25%
readlink 18%
unlink 16%
lstat 14%
rename 11%
rewinddir 10%

Suppressors
rename 29%
unlink 26%
link 24%
rewinddir 22%
closedir 12%
lstat 12%
opendir 12%
stat 11%
mkdir 11%
readdir 9%
close 9%
symlink 8%
truncate 8%
rmdir 5%
chmod 5%
fstat 4%
lseek 4%
readlink 4%
open 4%
freespace 4%
read 3%
write 3%
fchmod 3%

Values in the table show the percentage of YAFFS2 mutants that were statis-
tically likely to be triggered (killed) or suppressed by test cases containing
the listed API calls.

shows that picking any single C is likely to weaken testing. The
three features that suppress the most faults are, respectively, also
triggers for 11%, 16%, and 26% of mutants killed. The obvious
active suppressors close and closedir are triggers for 57% and
35% of mutants killed, respectively.

3.1.3 Other Configuration Possibilities
Random generation with 50% probability per feature of omission
(“coin tossing”) is not the only way to build a set {C1 . . .Cn}. Al-
though we did not explore this space in depth, we did perform some
limited comparisons of the coin-toss approach with using 5-way
covering arrays from NIST [27] to produce Ci. A 5-way covering
array guarantees that all 32 possible combinations for each set of 5
features are covered in the set; we used 5-way coverage because we
speculate that very few YAFFS2 bugs require more than 5 features to
expose. For the 23 YAFFS2 test features, a 5-way covering requires
n = 167. Each Ci≤n has some features specified as “on,” some as
“off,” and others as “don’t care.” The “don’t care” features can be
included or excluded as desired.

We compared coverage results for covering-array-based swarm
sets with “don’t care” set two ways—first to inclusion, then to
exclusion—with a swarm set using our coin-toss approach and with
the {CD} only. Both non-random 5-way covering sets and random
swarm performed much better than CD for path coverage. The non-
random 5-way covering sets slightly improved on coin tossing if
“don’t care” features were included, but gave lower path coverage
when they were omitted. Coin-toss swarm always performed best
(by at least six blocks and seven branches) for block and branch
coverage—both non-random 5-way covering sets performed slightly
worse than CD for block and branch coverage.

These results at minimum suggest that random generation of Ci is
not obviously worse than some combinatorics-based approaches. As
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Table 3: YAFFS2 37 API results

Method bl br pa pr mu rt
Swarm 1,459 1,641 112,944 61,864 123 136
CD 1,446 1,626 70,587 61,380 113 158

we would expect, comparison of coin-toss swarm with 5-way cov-
ering sets with all “don’t care” values picked via coin toss showed
very little difference in performance, with pure coin-toss slightly
better by some measures and the covering-array sets slightly better
by other measures. Any set of unbiased random Ci of size 120 or
greater is 99% likely to be 3-way covering, and 750 Ci are 99%
likely to be 5-way covering [25]. Sets the size of those used in our
primary YAFFS2 experiments are very likely 3-way covering, and
quite possibly approximately 5-way covering.

Finally, we investigated the simplest approach to swarm: using a
new random Ci for each test. Table 3 compares 5,000 tests with CD
and 5,000 tests with random Ci. For these results, we were able to
use a new, much faster, version of our YAFFS2 tester, supporting 14
more features (calls) and computing a version of Ball’s predicate-
complete test (PCT) coverage (pr) [9]. Since this result was based on
equal tests, not equal time, we also show total test runtime in seconds
(rt), not counting mutant analysis or coverage computations, which
required an additional 21-27 hours. If Ci generation is inexpensive,
choosing a random Ci for each test simplifies swarm and produces
very good results, at least for YAFFS2: a set of tests based on full
random swarm takes less time to run than a CD based suite and
produces universally better coverage, including an additional 10
mutant kills.

3.2 Case Study: C Compilers
Csmith [36] is a random C program generator; its use has resulted
in more than 400 bugs being reported to commercial and open-
source compiler developers. Most of these reports have led to
compiler defects being fixed. Csmith generates test cases in the
form of random C programs. A Csmith test configuration is a set C
language features that can be included in these generated random
C programs. In most cases the feature is essentially a production
rule in the grammar for C programs. By default, Csmith errs on the
side of expressiveness: CD emits test cases containing all supported
parts of the C language. Command line arguments can prohibit
Csmith from including any of a large variety of features in generated
programs, however. To support swarm testing, we did not have to
modify Csmith in any way: we simply called the Csmith tool with
arguments for our test configuration, and compiled the resulting
random C program with each compiler to be tested. Feature control
had previously been added by the Csmith developers (including
ourselves) to support testing compilers for embedded platforms
that only compile subsets of the C language, and for testing and
debugging Csmith itself.

3.2.1 Methodology
We used Csmith to generate random C programs and fed these
programs to 17 compiler versions targeting the x86-64 architecture;
these compilers are listed in Table 4. While these 17 versions
arise from only 5 different base compilers, in our experience major
releases of the GCC and LLVM compilers are quite different, in
terms of code base as well as, most critically, new bugs introduced
and old bugs fixed. All of these tools are (or have been) in general
use to compile production code. All compilers were run under Linux.
When possible, we used the pre-compiled binaries distributed by the
compilers’ vendors.

Our testing focused on distinct compiler crash errors. This metric

Table 4: Distinct crash bugs found during one week of testing

Compiler CD Swarm Both
LLVM/Clang 2.6 10 12 14
LLVM/Clang 2.7 5 6 7
LLVM/Clang 2.8 1 1 1
LLVM/Clang 2.9 0 1 1
GCC 3.2.0 5 10 11
GCC 3.3.0 3 4 5
GCC 3.4.0 1 2 2
GCC 4.0.0 8 8 10
GCC 4.1.0 7 8 10
GCC 4.2.0 2 5 5
GCC 4.3.0 7 8 9
GCC 4.4.0 2 3 4
GCC 4.5.0 0 1 1
GCC 4.6.0 0 1 1
Open64 4.2.4 13 18 20
Sun CC 5.11 5 14 14
Intel CC 12.0.5 4 2 5
Total 73 104 120

considers two crashes of the same compiler to be distinct if and only
if the compiler tells us that it crashed in two different ways. For
example

internal compiler error: in vect_enhance_data_refs_alignment,
at tree-vect-data-refs.c:1550

and

internal compiler error: in vect_create_epilog_for_reduction,
at tree-vect-loop.c:3725

are two distinct ways that GCC 4.6.0 can crash. We believe that
this metric represents a conservative estimate of the number of true
compiler bugs. Our experience—based on hundreds of bug reports to
real compiler teams—is that it is almost always the case that distinct
error messages correspond to distinct bugs. The converse is not
true: many different bugs may hide behind a generic error message
such as Segmentation fault. Our method for counting crash
errors may over-count in the case where we are studying multiple
versions of the same compiler, and several of these versions contain
the same (unfixed) bug. However, because the symptom of this kind
of bug typically changes across versions (e.g., the line number of an
assertion failure changes due to surrounding code being modified), it
is difficult to reliably avoid double-counting. We did not attempt to
do so. However, as noted below, our results retain their significance
if we simply consider the single buggiest member of each compiler
family.

We tested each compiler using vanilla optimization options rang-
ing from “no optimization” to “maximize speed” and “minimize
size.” For example, GCC and LLVM/Clang were tested using -O0,
-O1, -O2, -Os, and -O3. We did not use any of the architecture or
feature-specific options (e.g., GCC’s -m3dnow or Intel’s -openmp)
options that typically make compilers extremely easy to crash.

We generated 1,000 unique Ci, each of which included some of
the following (with 50% probability for each feature):
• declaration of main() with argc and argv
• the comma operator, as in x = (y, 1);
• compound assignment operators, e.g. x += y;
• embedded assignments, as in x = (y = 1);
• the auto-increment and auto-decrement operators ++ and --
• goto
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Table 5: Compiler code coverage

Compiler Metric CD Swarm Change
(95% conf.)

line 95,021 95,695 446–903
Clang branch 63,285 64,052 619–915

function 43,098 43,213 37–193
line 142,422 144,347 1,547–2,303

GCC branch 114,709 116,664 1,631–2,377
function 9,177 9,263 61–112

• integer division
• integer multiplication
• long long integers
• 64-bit math operations
• structs
• bitfields
• packed structs
• unions
• arrays
• pointers
• const-qualified objects
• volatile-qualified objects
• volatile-qualified pointers

3.2.2 Results—Distinct Bugs Found
The top-level result from this case study is that with all other factors
being equal, a week of swarm testing on a single, reasonably fast
machine found 104 distinct ways to crash our collection of compil-
ers, whereas using CD (the way we have always run Csmith in the
past) found only 73—an improvement of 42%. Table 4 breaks these
results down by compiler. A total of 47,477 random programs were
tested under CD, of which 22,691 crashed at least one compiler.2 A
total of 66,699 random programs were tested by swarm, of which
15,851 crashed at least one compiler. Thus, swarm found 42% more
distinct ways to crash a compiler while finding 30% fewer actual
instances of crashes. Test throughput increased for the swarm case
because simpler test cases (i.e., those lacking some features) are
faster to generate and compile.

To test the statistical significance of our results, we split each
of the two one-week tests into seven independent 24-hour periods
and used the t-test to check if the samples were from different
populations. The resulting p-value for the data is 0.00087, indicating
significance at the 99.9% level. We also normalized for number
of test cases, giving CD a 40% advantage in CPU time. Swarm
remained superior in a statistically significant sense.

Even if we attribute some of this success to over-counting of bugs
across LLVM or GCC versions, we observe that taking only the
most buggy version of each compiler (thus eliminating all double
counting), swarm revealed 56 distinct faults compared to only 37
for CD, which is actually a larger improvement (51%) than in the
full case study. Using CD detected more faults than swarm in only
one compiler version, Intel CC 12.0.5.

3.2.3 Results—Code Coverage
Table 5 shows the effect that swarm testing has on coverage of two
compilers: LLVM/Clang 2.9 and GCC 4.6.0. To compute confidence
2We realize that it may be hard to believe that nearly half of random
test cases would crash some compiler. Nevertheless, this is the case.
The bulk of the “easy” crashes come from Open64 and Sun CC,
which have apparently not been the target of much random testing.
Clang, GCC, and Intel CC are substantially more robust, particularly
in recent versions.

Table 6: Top trigger and suppressor features for C compilers

Triggers
Pointers 33%
Arrays 31%
Structs 29%
Volatiles 21%
Bitfields 15%
Embedded assignments 15%
Consts 13%
Comma operator 11%
Jumps 11%
Unions 11%
Packed structs 10%
Long long ints 10%
64-bit math 10%
Integer division 8%
Compound assignments 8%
Integer multiplication 6%

Suppressors
Pointers 41%
Embedded assignments 24%
Jumps 21%
Arrays 17%
++ and – 16%
Volatiles 15%
Unions 13%
Comma operator 11%
Long long ints 11%
Compound assignments 11%
Bitfields 10%
Consts 10%
Volatile pointers 10%
64-bit math 8%
Structs 7%
Packed structs 7%

Values in the table show the percentage of compiler crash bugs that were
statistically likely to be triggered or suppressed by test cases containing the
listed C program features.

intervals for the increase in coverage, we ran seven 24-hour tests for
each compiler and for each of swarm and CD. The absolute values
of these results should be taken with a grain of salt: LLVM/Clang
and GCC are both large (2.6 MLOC and 2.3 MLOC, respectively)
and contain much code that is impossible to cover during our tests.
We believe that these incremental coverage values—for example,
around 2,000 additional branches in GCC were covered—support
our claim that swarm testing provides a useful amount of additional
test coverage.

3.2.4 Results—Significant Features
During the week-long swarm test run described in Section 3.2.2,
swarm testing found 104 distinct ways to crash a compiler in our
test set. Of these 104 crash symptoms, 54 occurred enough times
for us to analyze crashing test cases for significant features. (Four
occurrences are required for a feature present in all four test cases to
become recognizable as not including the baseline 50% occurrence
rate for the feature in its 95% confidence interval.) 52 of these 54
crashes had at least one feature whose presence was significant and
42 had at least one feature whose absence was significant.

Table 6 shows which of the C program features that we used in
this swarm test run were statistically likely to trigger or suppress
crash bugs. Some of these results, such as the frequency with which
pointers, arrays, and structs trigger compiler bugs, are unsurprising.
On the other hand, we did not expect pointers, embedded assign-
ments, jumps, arrays, or the auto increment/decrement operators to
figure so highly in the list of bug suppressors.

We take two lessons from the data in Table 6. First, some features
(most notably, pointers) strongly trigger some bugs while strongly
suppressing others. This observation directly motivates swarm test-
ing. Second, our intuitions (built up over the course of reporting 400
compiler bugs) did not serve us well in predicting which features
would most often trigger and suppress bugs.

3.2.5 An Example Bug
A bug we found in Clang 2.6 causes it to crash when compiling—at
any optimization level—the code in Figure 5, with this message:

Assertion ‘NextFieldOffsetInBytes <= FieldOffsetInBytes &&
"Field offset mismatch!"’ failed.
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struct S1 {
int f0;
char f1;

} __attribute__((packed));
struct S2 {

char f0;
struct S1 f1;
int f2;

};
struct S2 g = { 1, { 2, 3 }, 4 };
int foo (void) {

return g.f0;
}

Figure 5: Code triggering a crash bug in Clang 2.6
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Figure 6: 95% confidence intervals for the percentage of test
cases triggering the Clang bug triggered by the code in Figure 5
containing each Csmith program feature

This crash happened 395 times during our test run. Figure 6
shows that packed structs (and therefore, of course, also structs)
are found in 100% of test cases triggering this bug. This is not
surprising since the error is in Clang’s logic for dealing with packed
structs. The only other feature that has a significant effect on the
incidence of this bug is bitfields, which suppresses it. We looked at
the relevant Clang source code and found that the assertion violation
happens in a function that helps build up a struct by adding its next
field. It turns out that this (incorrect) function is not called when a
struct containing bitfield members is being built. This explains why
the presence of bitfields suppress this bug.

3.3 Miniature Case Study: Sglib RBTree
Our primary target for swarm testing is complex systems software
with many features. However, swarm testing can also be applied
to simpler SUTs. To evaluate how swarm performs on smaller
programs, we applied it to the red-black tree implementation in the
widely used Sglib library. The implementation is 476 lines of code
and has seven API calls (the features). A test case, as with YAFFS2,
is a sequence of API calls with parameters. Like the YAFFS2-37
API results, these results include PCT coverage. Test-case execution
time varied only trivially with C, so we were able to simply perform
20,000 tests for each experiment.

Table 7: Sglib red-black tree coverage results

Method bl br pa pr mu
Coin-Toss 10 181 206 169 2,839 190
Coin-Toss 20 157 182 165 2,469 175
2-Way Cover 182 209 219 2,823 188
3-Way Cover 169 209 167 2,518 187
Complete 176 203 192 2,688 190
CD 170 192 149 2,504 187

Table 7 compares coin-toss swarm sets of two sizes (one set of ten
Ci and another of twenty), 2-way and 3-way covering-array swarm
sets, a complete swarm set (all 127 feature combinations), and the
default strategy, all for test cases of length ten. The benefits of
swarm here are limited: with length-10 test cases and only seven
features, each feature already has a 20% chance of being omitted
from any given test. The best value for each coverage type is shown
in bold, and the worst in italics. The swarm sets in this experiment
outperformed CD by a respectable margin for every kind of coverage.
The results for the size-20 coin toss, however, show that where the
benefits of swarm over the default in terms of diversity are marginal,
a bad set can make testing less effective. It is also interesting
to note that even when it is easy to do, complete coverage of all
combinations does not do best in all coverage metrics, and increased
k for covering is also sometimes harmful.

3.4 Threats to Validity
The statistical analysis strongly supports the claim that the swarm
treatment did indeed have positive effects for Csmith, including
increased code coverage for GCC and LLVM. While there is a
threat from multiple counting of bugs across GCC and LLVM ver-
sions, the overall fault-detection advantage of swarm increased if we
considered only the version of each compiler with the most faults.

The YAFFS2 coverage results are more anecdotal and varied. For
the mutation results, the 95% confidence intervals on features show-
ing that some features were included in no killing tests support the
claim that detection of these particular mutants is a result of swarm’s
configuration diversity, as CD is extremely unlikely to produce tests
of the needed form (e.g., without any close/mkdir/rmdir calls).
Sampling more mutants would increase our confidence in these
results, but we believe it is safe to say we found at least 5 mutants
that statistically, CD, will not kill with reasonable-sized test suites;
we found no such mutants swarm is unlikely to kill.

The primary threats come from external validity: use of limited
systems/feature definitions limits generalization. However, file sys-
tems and compilers are good representatives of programs for which
people will devote the effort to build strong random testers.

4. RELATED WORK
Swarm testing is a low-cost and effective approach to increasing
the diversity of (randomly generated) test cases. It is inspired by
swarm verification [21], which runs a model checker in multiple
search configurations to improve coverage of large state spaces. The
core idea of swarm verification is that given a fixed time/memory
budget, a “swarm” of diverse searches can explore more of the state
space than a single search. Swarm verification is successful in part
because a single “best” search cannot easily exploit parallelism: the
communication overhead for checking whether states have already
been visited by another worker gives a set of independent searches
an advantage. This advantage disappears in random testing: runs
are always completely independent. The benefits of our swarm thus
do not depend on any loss of parallelism inherent in the default test
configuration or on the failure of depth-first search to “escape” a
subtree when exploring a very large state space [14]. Our results
reflect the value of (feature omission) diversity in test configurations.
Swarm verification and swarm testing are orthogonal approaches:
swarm verification could be applied in combination with feature
omission to produce further state-space exploration diversity.

Another related area is configuration testing, which diversifies
the SUT itself (e.g., for programs with many possible builds) [13,
32]. As noted above, we vary the “configuration” of the test gener-
ation system to produce a variety of tests, rather than varying the
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SUT. Configuration testing is thus also orthogonal to our work. In
practice, our test configurations often do not require new builds of
even the test generation system, but only require use of different
command-line arguments to constrain tests. Another approach that
may be conceptually related is the idea of testability transformation
proposed by Korel et al. [23]. While considerably more heavyweight
than swarm, and aimed at improving source-based test data gener-
ation rather than random testing, the idea of “slicing away” some
parts of the program under test is in some ways like configuration
testing, but is directed by picking a class of test cases on which the
slice is based (those hitting a given target).

In partition testing [18] an input space is divided into disjoint par-
titions, and the goal of testing is to sample (cover) at least one input
from each partition. Two underlying assumptions are usually that
(1) the partition forces diversity and (2) inputs from a single partition
are largely interchangeable. Without a sound basis for the partition-
ing scheme (which can be hard to establish), partition testing can
perform worse than pure random testing [18]. Category-partition
testing [28] may improve partition testing, through programmer iden-
tification of functional units and parameters and external conditions
that affect each unit. The kind of thinking used in category-partition
testing could potentially be used in determining features in a ran-
dom tester. Swarm testing differs from partition testing and category
partition testing partly in that it has no partitions which must be
disjoint and cover the space, only a set of features which somehow
constrain generated tests.

Combinatorial testing [24, 26] seeks to test input parameters in
combinations, with the goal of either complete test coverage for
interactions of parameters, as in k-wise testing, or reducing total
testing time while maximizing diversity (in a linear arithmetical
sense) when k-way coverage of combinations is too expensive, as
in orthogonal array testing [30]. Combinatorial techniques can be
used to generate swarm sets (the input parameters are the features).
Combinatorial testing has been shown to be quite effective for testing
appropriate systems, almost as effective as exhaustive testing.

Swarm testing differs from partition testing and combinatorial
testing approaches primarily in the number of tests associated with
a “configuration.” In partition approaches, each partition typically
includes a large number of test cases, but coverage is usually based
on picking one test from each partition. Swarm does not aim at
exhaustively covering a set of partitions (such as the cross-product
of all feature values), but may generate many tests for the same
test configuration. Traditional combinatorial testing is based on
actual input parameter values: each combination in the covering
array will result in one test case. In swarm testing, a combination
of features defines only a constraint on test cases, and thus a very
large or even infinite set of tests. Many tests may be generated from
the set defined by a test configuration. The use of combinatorial
techniques in generating test configurations, rather than actual tests,
merits further study.

Adaptive random testing (ART) [11] modifies random testing by
sampling the space of tests and only executing those most “distant,”
as determined by a distance metric over inputs, from all previ-
ously executed tests. Many variations on this approach have been
proposed. Unlike ART, swarm testing does not require the work—
human effort or computational—of using a distance metric. The kind
of “feature breakdown” that swarm requires is commonly provided
by test generators; in our experience developing over a dozen test
harnesses, we implemented the generator-configuration options long
before we considered utilizing them as part any methodology other
than simply finding a good default configuration; implementing “fea-
tures” where these are API call choices or grammar productions is
usually almost trivial. Swarm testing has been applied to real-world

systems with encouraging results; ART has not always been shown
to be effective for complex real-world programs [7], and has mostly
been applied to numeric input programs.

More generally, structural testing [33], statistical testing [31],
many meta-heuristic testing approaches [1], and even concolic test-
ing [15] can be viewed as aiming at a set of test cases exhibiting
diversity in the targets they cover—e.g., statements, branches, or
paths [10]. Other approaches make diversity explicit—e.g., in look-
ing for operational abstractions [20] or contract violations [34], or in
feedback [29]. Some of these techniques are, given sufficient com-
pute time and appropriate SUT, highly effective. Swarm is a more
lightweight technique than most of these approaches, which often re-
quire symbolic execution, considerable instrumentation, or machine
learning. The most scalable but effective techniques often focus on
a certain kind of application and type of fault. Some approaches
refine their notion of diversity in such a way that future exploration
relies on past results, making them nontrivial to parallelize. Swarm
testing is inherently massively parallel. Finally, swarm testing is
in principle applicable to any software-testing (or model-checking)
approach that can use a test configuration, including many of those
discussed above, whereas, e.g., ART is tied to random testing. We
have performed preliminary experiments in using swarm to improve
the scalability of bounded model checking of C programs [12], with
some success [2].

5. CONCLUSIONS AND FUTURE WORK
Swarm testing relies on the following claim: for realistic systems,
randomly excluding some features from some tests can improve
coverage and fault detection, compared to a test suite that poten-
tially uses every feature in every test. The benefit of using of a
single, inclusive, default configuration—that every test can poten-
tially expose any fault and cover any behavior, heretofore usually
taken for granted in random testing—does not, in practice, make
up for the fact that some features can, statistically, suppress be-
haviors. Effective testing therefore may require feature omission
diversity. We show that this not only holds for simple container-
class examples (e.g., pop operations suppress stack overflow) but
for a widely used flash file system and 14 out of 17 versions of five
production-quality C compilers. For these real-world systems, if we
compare testing with a single inclusive configuration to testing with
a set of 100–1,000 unique configurations, each omitting features
with 50% probability per feature, we have observed (1) significantly
better fault detection, (2) significantly better branch and statement
coverage, and (3) strictly superior mutant detection. Test configura-
tion diversity does indeed produce better testing in many realistic
situations.

Swarm testing was inspired by swarm verification, and we hope
that its ideas can be ported back to model checking. We also plan to
investigate swarm in the context of bounded exhaustive testing and
learning-based testing methods. Finally, we believe there is room to
better understand why swarm provides its benefits, particularly in
the context of large, idiosyncratic SUTs such as compilers, virtual
machines, and OS kernels. More case studies will be needed to
generate data to support this work. We also plan to investigate how
swarm testing’s increased diversity of code coverage in test cases
can benefit fault localization and program understanding algorithms
relying on test cases [22]; traditional random tests are far more
homogeneous than swarm tests.

We have made Python scripts supporting swarm testing avail-
able at http://beaversource.oregonstate.edu/projects/
cswarm/browser/release.
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