Model Checking Java Programs using Structural Heuristics

Alex Groce
School of Computer Science, Carnegie Mellon
University

agroce@cs.cmu.edu

Keywords

model checking, testing, heuristics, coverage metrics

ABSTRACT

We describe work introducing heuristic search into the Java
PathFinder model checker, which targets Java bytecode’.
Rather than focusing on heuristics aimed at a particular
kind of error (such as deadlocks) we describe heuristics based
on a modification of traditional branch coverage metrics and
other structural measures, such as thread inter-dependency.
We present experimental results showing the utility of these
heuristics, and argue for the usefulness of structural heuris-
tics as a class.

1. INTRODUCTION

There has been recent interest in model checking software
written in real programming languages [3, 10, 15, 24, 25, 33]
and in using heuristics to direct exploration in explicit-state
model checkers [12, 35]. Because heuristic-guided search is
clearly directed at finding errors rather than verifying the
complete correctness of software, the connections between
model checking and testing are made particularly clear when
these ideas are combined. In this paper we present one fruit-
ful product of the intersection of these fields and show how
to apply it to finding errors in programs.

The primary challenge in software model checking, as in
all model checking, is the state space explosion problem:
exploring all of the behaviors of a system is, to say the least,
difficult when the number of behaviors is exponential in the
possible inputs, contents of data structures, or number of
threads in a program. A vast array of techniques have been
applied to this problem [8], first in hardware verification, and
now, increasingly, in software verification [3, 10, 21]. Many
of these techniques require considerable non-automatic work

!We present the basic heuristic framework and discuss the
creation of user defined heuristics in a tool paper else-
where [18].

Willem Visser
RIACS/NASA Ames Research Center

wvisser@riacs.edu

by experts or do not apply as well to software as to hardware.
Most of these techniques are aimed at reducing the size of
the total state space that must be explored, or representing
it symbolically so as to reduce the memory and time needed
for the exploration.

An alternative approach is to concentrate not on verifying
the correctness of programs but on dealing with the state
space explosion when attempting to find errors. Rather than
reducing the overall size of the state space, we can attempt
to find a counterexample before the state explosion exhausts
memory. Heuristic model checking usually aims at generat-
ing counterexamples by searching the bug-containing part of
the state space first. Obviously we do not know, in general,
what part of a program’s state space is going to contain
an error, or even if there is an error present. However, by
using measurements of the exploration of a program’s struc-
ture (in particular, its branching structure or thread inter-
dependency structure), we believe a model checker can of-
ten improve its ability to find errors in programs. Although
one of the strongest advantages of model checking is the
generation of counterexamples when verification fails, tradi-
tional depth-first search algorithms tend to return very long
counterexamples; heuristic search, when it succeeds, almost
always produces much more succinct counterexamples.

In this paper we explore heuristic model checking of software
written in the Java programming language and use heuris-
tics based on coverage measurements derived from the world
of software testing. We introduce the notion of structural
heuristics to the classification of heuristics used in model
checking, and present (and describe our motivations in de-
veloping) successful and novel heuristics from this class.

The paper is organized as follows. Section 2 describes heuris-
tic model checking, examines related work, and introduces
the various search algorithms we will be using. Section 3
briefly presents the Java PathFinder model checker and the
implementation of heuristic search. The new heuristics are
defined and described in detail in section 4, which also in-
cludes experimental results. We present conclusions and
consider future work in a final section.

2. HEURISTIC MODEL CHECKING

In heuristic or directed model checking, a state space is ex-
plored in an order dependent on an evaluation function for
states. This function (the heuristic) is usually intended to
guide the model checker more quickly to an error state. Any

priority queue @ = {initial state}
while (Q) not empty)
S = state in @ with best f
remove S from Q
for each successor state S’ of S
if S’ not already visited
if S’ is the goal then terminate
f=h(s")
store (S', f) in Q

Figure 1: Algorithm for best-first search.

resulting counterexamples will often be shorter than ones
produced by the depth-first search based algorithms tradi-
tionally used in explicit-state model checkers.

The growing body of literature on model checking using
heuristics largely concentrates on heuristics tailored to find
a certain kind of error [12, 16, 22, 26, 35]. Common heuris-
tics include measuring the lengths of queues, giving prefer-
ence to blocking operations [12, 26], and using a Hamming
distance to a goal state [14, 35]. Godefroid and Khurshid
apply genetic algorithm techniques rather than the more ba-
sic heuristic searches, using heuristics measuring outgoing
transitions from a state (similar to our most-blocked heuris-
tic — see Table 1), rewarding evaluations of assertions, and
measuring messages exchanged in a security protocol [16].
Heuristics can also be used in symbolic model checking to
reduce the bottlenecks of image computation, without nec-
essarily attempting to zero in on errors; Bloem, Ravi and
Somenzi thus draw a distinction between property-dependent
and system-dependent heuristics [5]. They note that only
property-dependent heuristics can be applied to explicit-
state model checking, in the sense that exploring the state
space in a different order will not remove bottlenecks in the
event that the entire space must be explored. However, we
suggest a further classification of property-dependent heuris-
tics into property-specific heuristics that rely on features of
a particular property (queue sizes or blocking statements
for deadlock, distance in control or data flow to false valu-
ations for assertions) and structural heuristics that attempt
to explore the structure of a program in a way conducive to
finding more general errors. The heuristic used in FLAVERS
would be an example of the latter [9]. We concentrate pri-
marily on structural heuristics, and will further refine this
notion after we have examined some of our heuristics.

Heuristics have also been used for generating test cases [29,
32], and, furthermore, a model checker can be used for test
case generation [1, 2]. Our approach is not only applicable
to test case generation, but applies coverage metrics used
in testing to the more usual model checking goal of finding
errors in a program.

2.1 Search Algorithms
A number of different search algorithms can be combined
with heuristics. The simplest of these is a best-first search,
which uses the heuristic function h to compute a fitness f
in a greedy fashion (Figure 1).

The A* algorithm [19] is similar, except that like Dijkstra’s
shortest paths algorithm, it adds the length of the path to
S’ to f. When the heuristic function h is admissible, that
is, when h(S’) is guaranteed to be less than or equal to the

queue @ = {initial state}
while (Q) not empty)
while (Q not empty)
priority queue Q' = 0
remove S from Q
for each successor state S’ of S
if S’ not already visited
if S’ is the goal then terminate
I = (8"
store (S’, f) in Q'
remove all but k best elements from Q'

Q=q

Figure 2: Algorithm for beam search.

length of the shortest path from S’ to a goal state, A* is
guaranteed to find an optimal solution (for our purposes,
the shortest counterexample). A* is a compromise between
the guaranteed optimality of breadth-first search and the
efficiency in returning a solution of best-first search.

Beam-search proceeds even more like a breadth-first search,
but uses the heuristic function to discard all but the k best
candidate states at each depth (Figure 2).

The queue-limiting technique used in beam-search may also
be applied to a best-first or A* search by removing the
worst state from @ (without expanding its children) when-
ever inserting S’ results in) containing more than k states.
This, of course, introduces an incompleteness into the model
checking run: termination without reported errors does not
indicate that no errors exist in the state space. However,
given that the advantage of heuristic search is its ability
to quickly discover fairly short counterexamples, in practice
queue-limiting is a very effective bug-finding tactic.

The experimental results in section 4 show the varying util-
ity of the different search strategies. Because none of the
heuristics we examined are admissible, A* lacks a theoreti-
cal optimality, and is generally less efficient than best-first
search. Our heuristic value is sometimes much larger than
the path length, in which case A* behaves much like a best-
first search.

As far as we are aware, combining a best-first search with
limitations on the size of the queue for storing states pending
is not discussed or given a name in the literature of heuristic
search. A best-first search with queue limiting can find very
deep solutions that might be difficult for a beam-search to
reach unless the queue limit & is very small.

More specifically, the introduction of queue-limiting to heuris-
tic search for model checking appears to be genuinely novel,
and raises the possibility of using other incomplete methods
when the focus of model checking is on discovery of errors
rather than on verification. As an example, partial order
reduction techniques usually require a cycle check that may
be expensive or over-conservative in the context of heuristic
search [13]. However, once queue-limiting is considered, it is
natural to experiment with applying a partial order reduc-
tion without a cycle check. The general approach remains
one of model checking rather than testing because storing of
states already visited is crucial to obtaining good results in
our experience, with one notable exception (see the discus-
sion in sections 4.1.1 and 4.2.1).

3. JAVA PATHFINDER

Java PathFinder (JPF) is an explicit state on-the-fly model
checker that takes compiled Java programs (i.e. bytecode
class-files) and analyzes all paths through the program for
deadlock, assertion violations and linear time temporal logic
(LTL) properties [33]. JPF is unique in that it is built
on a custom-made Java Virtual Machine (JVM) and there-
fore does not require any translation to an existing model
checker’s input notation. The dSPIN model checker [25]
that extends SPIN [23] to handle dynamic memory alloca-
tion and functions is the most closely related system to the
JPF model checker.

Java does not support nondeterminism, but in a model check-
ing context it is often important to analyze the behavior of
a program in an aggressive environment where all possible
actions, in any order, must be considered. For this rea-
son, methods in a special class (called Verify) allow nonde-
terminism to be expressed (for example, Verify.random(2)
will nondeterministically return a value in the range 0-2,
inclusive), which the model checker can then trap during
execution and evaluate with all possible values.

An important feature of the model checker is the flexibility
in choosing the granularity of a transition between states
during the analysis of the bytecode. Since the model checker
executes bytecode instructions, the most fine-grained anal-
ysis supported is at the level of individual bytecodes. Un-
fortunately, for large programs the bytecode-level analysis
does not scale well, and therefore the default mode is to an-
alyze the code on a line-by-line basis. JPF also supports
atomnic constructs (denoted by Verify.beginAtomic() and
Verify.endAtomic() calls) that the model checker can trap
to allow larger code fragments to be grouped into a single
transition.

The model checker consists of two basic components:

State Generator - This includes the JVM, information
about scheduling, and the state storage facilities re-
quired to keep track of what has been executed and
which states have been visited. The default explo-
ration in JPF is to do a depth-first generation of the
state space with an option to limit the search to a max-
imum depth. By changing the scheduling information,
one can change the way the state space is generated
- by default a stack is used to record the states to be
expanded next, hence the default DFS search.

Analysis Algorithms - This includes the algorithms for
checking for deadlocks, assertion violations and viola-
tion of LTL properties. These algorithms work by in-
structing the state generation component to generate
new states, backtrack from old states, and can check
on the state of the JVM by doing API calls (e.g. to
check when a deadlock has been reached).

The heuristics in JPF are implemented in the State Genera-
tor component, since many of the heuristics require informa-
tion from the JVM and a natural way to do the implemen-
tation is to adapt the scheduling of which state to explore
next (e.g. in the trivial case, for a breath-first search one

changes the stack to a queue). Best-first (also used for A*)
and beam-search are straightforward implementations of the
algorithms listed in section 2.1, using priority queues within
the scheduler. The heuristic search capabilities are currently
limited to deadlock and assertion violation checks — none of
the heuristic search algorithms are particularly suited to cy-
cle detection, which is an important part of checking LTL
properties. In addition, the limited experimental data on
improving cycles in counterexamples for liveness properties
is not encouraging [14].

Heuristic search in JPF also provides a number of additional
features, including:

e users can introduce their own heuristics (interfacing
with the JVM through a well-defined API to access
program variables etc.)

e the sum of two heuristics can be used

e the order of analysis of states with the same heuristic
value can be altered

e the number of elements in the priority queue can be
limited

e the search depth can be limited

4. STRUCTURAL HEURISTICS

We consider the following heuristics to be structural heuris-
tics: that is, they are intended to find errors, but are not
targeted specifically at particular assertion statements, in-
variants, or deadlocks. Rather, they explore some struc-
tural aspect of the program (branching structure or thread-
interdependence).

4.1 Code Coverage Heuristics

The code coverage achieved during testing is a measure of
the adequacy of the testing, in other words the quality of
the set of test cases. Although it does not directly address
the correctness of the code under test, having achieved high
code coverage during testing without discovering any errors
does inspire more confidence that the code is correct. A case
in point is the avionics industry where software can only be
certified for flight if 100% structural coverage, specifically
modified condition/decision coverage (MC/DC), is achieved
during testing [30].

In the testing literature there are a vast number of structural
code coverage criteria, from simply covering all statements
in the program to covering all possible execution paths. Here
we will focus on branch coverage, which requires that at ev-
ery branching point in the program all possible branches
be taken at least once. In many industries 100% branch
coverage is considered a minimum requirement for test ade-
quacy [4]. On the face of it, one might wonder why coverage
during model checking is of any worth, since model checkers
typically cover all of the state space of the system under
analysis, hence by definition covering all the structure of
the code. However, when model checking Java programs
the programs are often infinite-state, or have a very large
finite state space, which the model checker cannot cover due

1. States covering a previously untaken branch receive
the best heuristic value.

2. States that are reached by not taking a branch receive
the next best heuristic value.

3. States that cover a branch already taken are ranked
according to how many times that branch has been
taken (worse scores are assigned to more frequently
taken branches).

Figure 3: Our basic branch-coverage heuristic.

to resource limitations (typically memory). Calculating cov-
erage therefore serves the same purpose as during testing:
it shows the adequacy of the (partial) model checking run.

As with test coverage tools, calculating branch coverage dur-
ing model checking only requires us to keep track of whether
at each structural branching point all options were taken.
Since JPF executes bytecode statements, this means simple
extensions need to be introduced whenever IF#* (related to
any if-statement in the code) and TABLESWITCH (related to
case-statements) are executed to keep track of the choices
made. However, unlike with simple branch coverage, we also
keep track of how many times each branch was taken, rather
than just whether it was taken or not, and consider cover-
age separately for each thread created during the execution
of the program. The first benefit of this feature is that the
model checker can now produce detailed coverage informa-
tion when it exhausts memory without finding a counterex-
ample or searching the entire state space. Additionally, if
coverage metrics are a useful measurement of a set of test
cases, it seems plausible that using coverage as a heuristic to
prioritize the exploration of the state space might be useful.

One approach to using coverage metrics in a heuristic would
be to simply use the percentage of branches covered (on a
per-thread or global basis) as the heuristic value (we refer
to this as the %-coverage heuristic). However, this approach
does not work well in practice (see section 4.1.1). Instead,
a slightly more complex heuristic proves successful (Figure
3).

The motivation behind this heuristic is to make use of the
branching structure of a program while avoiding some of the
pitfalls of the more direct heuristic.

The %-coverage heuristic is likely to fall into local minima,
exploring paths that cover a large number of branches but do
not in the future increase coverage. Our heuristic behaves in
an essentially breadth-first manner unless a path is actually
increasing coverage. By default, our system explores states
with the same heuristic value in a FIFO manner, resulting
in a breadth-first exploration of a program with no branch
choices. However, because the frontier is much deeper along
paths which have previously increased coverage, we still ad-
vance exploration of structurally interesting paths.

Our heuristic delays exploration of repetitive portions of the
state space (those that take the same branches repeatedly).
If a nondeterminisic choice determines how many times to

execute a loop, for instance, our heuristic will delay explor-
ing through multiple iterations of the loop along certain
paths until it has searched further along paths that skip
the loop or execute it only once. We thus achieve deeper
coverage of the structure and examine possible behaviors
after termination of the loop. If the paths beyond the loop
continue to be free of branches or involve previously uncov-
ered branches, exploration will continue; however, if one of
these paths leads to a loop, we will return to explore further
iterations of the first loop before executing the latter loop
more than once.

A number of options can modify the basic strategy:

e Counts may be taken globally (over the entire state
space explored) or only for the path by which a par-
ticular state is reached. This allows us to examine
either combinations of choices along each path or to
try to maximize branch choices over the entire search
when the ordering along paths is less relevant. In prin-
ciple, the path-based approach should be useful when
taking certain branches in a particular combination in
an execution is responsible for errors. Global counts
will be more useful when simply exercising all of the
branches is a better way to find an error. An instance
of the latter would be a program in which one large
nondeterministic choice at the beginning results in dif-
ferent classes of shallow executions, one of which leads
to an error state.

e The branch count may be allowed to persist — if a
state is reached without covering any branches, the
last branch count on the path by which that state was
reached may be used instead of giving the state the
second best heuristic value (see Figure 3). This al-
lows us to increase the tendency to explore paths that
have improved coverage without being quite as prone
to falling into local minima as the %-coverage heuris-
tic.

e The counts over a path can be summed to reduce the
search’s sensitivity to individual branch choices.

e These various methods can also be applied to counts
taken on executions of each individual bytecode in-
struction, rather than only of branches. This is equiv-
alent to the idea of statement coverage in traditional
testing.

The practical effect of this class of heuristic is to increase
exploration of portions of the state space in which non-
deterministic choices or thread interleavings have resulted
in the possibility of previously unexplored or less-explored
branches being taken.

4.1.1 Experimental Results

We will refer to a number of heuristics in our experimental
results (Table 1). In addition to these basic heuristics, we
indicate whether a heuristic is measured over paths or all
states by appending (path) or (global) when that is an op-
tion. Some results are for an A* or beam search, and this is
also noted.

Search/Heuristic | Definition

branch
%-coverage

The basic branch-coverage heuristic.

Measures the percentage of branches covered.
States with higher coverage receive better values.
BFS A breadth-first search

DFS A depth-first search. (depth n) indicates that
stack depth is limited to n.

Measures the number of blocked threads.

More blocked threads result in better values.

most-blocked

interleaving Measures the amount of interleaving of threads.
See section 4.2.
random Uses a randomly assigned heuristic value.

Table 1: Heuristics and search strategies.

The DEQOS real-time operating system developed by Honey-
well enables Integrated Modular Avionics (IMA) and is cur-
rently used within certain small business aircraft to schedule
time-critical software tasks. During its development a rou-
tine code inspection led to the uncovering of a subtle error
in the time-partitioning that could allow tasks to be starved
of CPU time - a sequence of unanticipated API calls made
near time-period boundaries would trigger the error. Inter-
estingly, although avionics software needs to be tested to a
very high degree (100% MC/DC coverage) to be certified for
flight, this error was not uncovered during testing. Model
checking was used to rediscover this error, by using a trans-
lation to PROMELA (the input language of the SPIN model
checker) [28]. Later a Java translation of the original C++
code was used to detect the error. Both versions use an
abstraction to find the error (see the discussion in section
4.3). Our results (Table 2) are from a version of the Java
code that does not abstract away an infinite-state counter —
a more straightforward translation of the original C++ code
into Java.

The %-coverage heuristic does indeed appear to easily be-
come trapped in local minima, and, as it is not admissible,
using an A” search will not necessarily help. For compari-
son to results not using heuristics, here and below we also
give results for breadth-first search (BFS), depth-first search
(DFS) and depth-first searches limited to a certain max-
imum depth. For essentially infinite state systems (such
as this version of DEQS), limiting the depth is the only
practical way to use DFS, but as can be seen, finding the
proper depth can be difficult — and large depths may re-
sult in extremely long counterexamples. Using a purely
random heuristic does, in fact, find a counterexample for
DEOS — however, the counterexample is considerably longer
and takes more time and memory to produce than with the
coverage heuristics.

We also applied our successful heuristics to the DEOS sys-
tem with the storing of visited states turned off (perform-
ing testing or simulation rather than model checking, essen-
tially). Without state storage, these heuristics failed to find
a counterexample before exhausting memory.

4.2 Thread Interleaving Heuristics

A different kind of structural heuristic is based on maxi-
mizing thread interleavings. Testing, in which generally the
scheduler cannot be controlled directly, often misses subtle
race conditions or deadlocks because they rely on unlikely
thread scheduling. One way to expose concurrency errors is

e At each step of execution append the thread just exe-
cuted to a thread history.

e Pass through this history, making the heuristic value
that will be returned worse each time the thread just
executed appears in the history by a value proportional
to:

1. how far back in the history that execution is and

2. the current number of live threads
Figure 4: Our basic interleaving heuristic.

to reward “demonic” scheduling by assigning better heuris-
tic values to states reached by paths involving more switch-
ing of threads. In this case, the structure we attempt to ex-
plore is the dependency of the threads on precise ordering.
If a non-locked variable is accessed in a thread, for instance,
and another thread can also access that variable (leading to
a race condition that can result in a deadlock or assertion
violation), that path will be preferred to one in which the
accessing thread continues onwards, perhaps escaping the ef-
fects of the race condition by reading the just-altered value.
We calculate this heuristic by keeping a (possibly limited in
size) history of the threads scheduled on each path (Figure
4).

4.2.1 Experimental Results

During May 1999 the Deep-Space 1 spacecraft ran a set of
experiments whereby the spacecraft was under the control
of an Al-based system called the Remote Agent. Unfortu-
nately, during one of these experiments the software went
into a deadlock state, and had to be restarted from earth.
The cause of the error at the time was unknown, but after
some study, in which the most likely components to have
caused the error were identified, the error was found by ap-
plying model checking to a Java version of the code — the
error was due to a missing critical section causing a race
violation to occur under certain thread interleavings intro-
ducing a deadlock [20]. Our results (Table 3) use a version
of the code that is faithful to the original system, as it also
includes parts of the system not involved in the deadlock.

Our experiments (here and in other examples not presented
in the interest of space) indicate that while A* and beam-
search can certainly perform well at times, they generally
do not perform as well as best-first search. Our heuristics
are not admissible, so the optimality advantages of A* do
not come into play. In general, both appear to require more
judicious choice of queue-limits than is necessary with best-
first search.

Finally, for the dining philosophers (Table 4), we show that
our interleaving heuristic can scale to quite large numbers
of threads. While DFS fails to uncover counterexamples
even for small problem sizes, the interleaving heuristic can
produce short counterexamples for up to 64 threads. The
most-blocked heuristic, designed to detect deadlocks, gen-
erally returns larger counterexamples (in the case of size 8
and queue limit 5, larger by a factor of over a thousand)
after a longer time than the interleaving heuristic. Even
more importantly, it does not scale well to larger numbers of

Search/Heuristic Time(s) | Memory(MB) | States Explored | Length | Max Depth
branch (path) 60 92 2,701 136 139
branch (path)(A*) 59 90 2,712 136 139
branch (global) 60 91 2,701 136 139
branch (global)(A*) 59 92 2,712 136 139
%-coverage (path) FAILS - 20,215 - 334
%-coverage (path)(A*) FAILS - 18,141 - 134
%-coverage (global) FAILS - 20,213 - 334
random 162 240 8,057 334 360
BFS FAILS - 18,054 - 135
DFS FAILS - 14,678 - 14,678
DFS (depth 500) 6,782 383 392,479 455 500
DFS (depth 1000) 2,222 196 146,949 987 1,000
DF'S (depth 4000) 171 270 8,481 3,997 4,000
Results with state storage turned off
branch(path) FAILS - 15,964 - 125
branch(path) (4*) FAILS - 15,962 - 125
branch(global) FAILS - 15,964 - 125
branch(global) (A™) FAILS - 15,962 - 125

Table 2: Experimental results for the DEOS system.

All results obtained on a 1.4 GHz Athlon with JPF limited to 512Mb. Time(s) is in seconds and Memory is in megabytes. FAILS indicates
failure due to running out of memory. The Length column reports the length of the counterexample (if one is found). The Max Depth column
reports the length of the longest path explored (the maximum stack depth in the depth-first case).

Search/Heuristic Time(s) | Memory(MB) | States Explored | Length | Max Depth
branch (path) (queue 40) FAILS - 1,765,009 - 12,092
branch (path) (queue 160) FAILS - 1,506,725 - 5,885
branch (path) (queue 1000) 132 290 845,263 136 136
branch (global) (queue 40) FAILS - 1,758,416 - 12,077
branch (global) (queue 160) FAILS - 1,483,827 - 1,409
branch (global) (queue 1000) FAILS - 1,509,810 - 327
random FAILS - 55,940 - 472
BFS FAILS - 623,566 - 60
DFS FAILS - 267,357 - 267,357
DFS (depth 500) 43 54 116,071 500 500
DFS (depth 1000) 44 64 117,235 1000 1000
DFS (depth 4000) 47 72 122,513 4000 4000
interleaving FAILS - 378,068 - 81
interleaving (queue 5) 15 17 38,449 913 913
interleaving (queue 40) 116 184 431,752 869 869
interleaving (queue 160) 908 501 1,287,984 869 870
interleaving (queue 1000) FAILS - 745,788 - 177
interleaving (A*) FAILS - 369,166 - 81
interleaving (queue 5) (A™) 13 19 43,172 912 912
interleaving (queue 40) (A*) 77 129 306,285 865 867
interleaving (queue 160) (A*) FATLS - 1,309,561 - 789
interleaving (queue 1000) (A™) FAILS - 1,836,675 - 273
interleaving (queue 5) (beam) 14 16 35,514 927 927
interleaving (queue 40) (beam) 91 113 238,945 924 924
interleaving (queue 160) (beam) 386 418 1,025,595 898 898
interleaving (queue 1000) (beam) FAILS - 1,604,940 - 365
most-blocked 7 33 7,537 158 169
most-blocked (queue 5) FAILS - 922,433 - 27,628
most-blocked (queue 40) FAILS - 913,946 - 4,923
most-blocked (queue 160) FAILS - 918,575 - 1,177
most-blocked (queue 1000) 6 10 7,537 158 169
most-blocked (A™) FAILS - 631,274 - 61
most-blocked (queue 5) (A*) FAILS - 935,796 - 16,189
most-blocked (queue 40) (A*) FAILS - 960,259 - 1,907
most-blocked (queue 160) (A*) FAILS - 989,513 - 555
most-blocked (queue 1000) (A™) FAILS - 1,138,920 - 165

Table 3: Experimental results for the Remote Agent system.

Search /Heuristic Size | Time(s) | Memory(MB) | States Explored | Length | Max Depth
branch (path) 8 | FAILS - 374,152 - a1
random 8 FAILS - 218,500 - 86
BFS 8 FAILS - 436,068 - 13
DFS 8 FAILS - 398,906 - 384,286
DFS (depth 100) 8 FAILS - 1,357,596 - 100
DFS (depth 500) 8 FAILS - 1,354,747 - 500
DFS (depth 1000) 8 | FAILS - 1,345,289 - 1,000
DFS (depth 4000) 8 | FAILS . 1,348,398 - 4,000
most-blocked 8 FAILS - 310,317 - 285
most-blocked (queue 5) 8 17,259 378 891,177 78,353 78,353
most-blocked (queue 40) 8 10 7 13,767 273 273
most-blocked (queue 160) 8 10 12 25,023 172 172
most-blocked (queue 1000) 8 46 59 123,640 254 278
interleaving 8 FAILS - 487,942 - 16
interleaving (queue 5) 8 2 1 1,719 66 66
interleaving (queue 40) 8 5 5 16,569 66 66
interleaving (queue 160) 8 12 27 62,616 66 66
interleaving (queue 1000) 8 60 137 354,552 67 67
most-blocked (queue 5) 16 FAILS - 802,526 - 36,443
most-blocked (queue 40) 16 38 69 101,576 1,008 1,008
most-blocked (queue 160) 16 FAILS - 799,453 - 2,071
most-blocked (queue 1000) 16 FAILS - 791,073 - 702
interleaving (queue 5) 16 4 5 6,703 129 129
interleaving (queue 40) 16 16 45 69,987 131 131
interleaving (queue 160) 16 60 207 290,637 131 132
interleaving (queue 1000) 16 FAILS - 858,818 - 41
most-blocked (queue 40) 32 FAILS - 463,414 - 2,251
interleaving (queue 5) 32 11 32 25,344 257 257
interleaving (queue 40) 32 FAILS - 472,022 - 775
interleaving (queue 160) 32 FAILS - 494,043 - 86
interleaving (queue 5) 64 59 206 101,196 514 514

Table 4: Experimental results for dining philosophers.

threads. We have only reported, for each number of philoso-
pher threads, the results for those searches that were suc-
cessful in the next smaller version of the problem. Results
not shown indicate that, in fact, failed searches do not tend
to succeed for larger sizes.

The key difference in approach between using a property-
specific heuristic and a structural heuristic can be seen in
the dining philosophers example where we search for the
well-known deadlock scenario. When increasing the number
of philosophers high enough (for example to 16) it becomes
impossible for an explicit-state model checker to try all the
possible combinations of actions to get to the deadlock and
heuristics (or luck) are required. A property-specific heuris-
tic applicable here is to try and maximize the number of
blocked threads (most-blocked heuristic from Table 1), since
if all threads are blocked we have a deadlock in a Java pro-
gram. Whereas a structural heuristic may be to observe
that we are dealing here with a highly concurrent program
— hence it may be argued that any error in it may well be
related to an unexpected interleaving — hence we use the
heuristic to favor increased interleaving during the search
(interleaving heuristic from Table 1). Although the results
are by no means conclusive, it is still worth noting that for
this specific example the structural heuristic performs much
better than the property-specific heuristic.

For the dining philosophers and Remote Agent example we
also performed the experiment of turning off state storage.
For the interleaving heuristic, results were essentially un-
changed (minor variations in the length of counterexamples
and number of states searched). We believe that this is be-
cause to return to a previously visited state in each case
requires an action sequence that will not be given a good

heuristic value by the interleaving heuristic (for example in
the dining philosophers, alternating picking up and drop-
ping of forks by the same threads). For the most-blocked
heuristic, however, successful searches become unsuccessful
— removal of state storage introduces the possibility of non-
termination into the search. For example, the most-blocked
heuristic without state storage may not even terminate, in
some cases.

Godefroid and Khurshid apply their genetic algorithm tech-

niques to a very similar implementation of the dining philoso-
phers (written in C rather than Java) [16]. They seed their

genetic search randomly on a version with 17 running threads,
reporting a 50% success rate and average search time of 177

seconds (on a slower machine than we used). Our results

suggest that the differences may be as much a result of the

heuristics used (something like most-blocked vs. our inter-

leaving heuristic) as the genetic search itself. Application of
our heuristics in different search frameworks is an interesting

avenue for future study.

4.3 The Choose-free Heuristic

Abstraction based on over-approximations of the system
behavior is a popular technique for reducing the size of
the state space of a system to allow more efficient model
checking [7, 11, 17, 34]. JPF supports two forms of over-
approximation: predicate abstraction [34] and type-based
abstractions (via the BANDERA tool) [11]. However, over-
approximation is not well suited for error-detection, since
the additional behaviors introduced by the abstraction can
lead to spurious errors that are not present in the origi-
nal. Eliminating spurious errors is an active area of research
within the model checking community [3, 6, 21, 27, 31].

JPF uses a novel technique for the elimination of spurious
errors called choose-free search [27]. This technique is based
on the fact that all over-approximations introduce nonde-
terministic choices in the abstract program that were not
present in the original. Therefore, a choose-free search first
searches the part of the state space that doesn’t contain any
nondeterministic choices due to abstraction. If an error is
found in this so-called choose-free portion of the state space
then it is also an error in the original program. Although this
technique may seem almost naive, it has been shown to work
remarkably well in practice [11, 27]. The first implementa-
tion of this technique was by only searching the choose-free
state space, but the current implementation uses a heuristic
that gives the best heuristic values to the states with the
fewest nondeterministic choice statements enabled, i.e. al-
lowing the choose-free state space to be searched first but
continuing to the rest of the state space otherwise (this also
allows choose-free to be combined with other heuristics).

The DEOS example can be abstracted by using both pred-
icate abstraction [34] and type-based abstraction [11]. The
predicate abstraction of DEOS is a precise abstraction, i.e.
it does not introduce any new behaviors not present in the
original, hence we focus here on the type-based abstraction
— specifically we use a Range abstraction (allowing the val-
ues 0 and 1 to be concrete and all values 2 and above to
be represented by one abstract value) to the appropriate
variable [11]. When using the choose-free heuristic it is dis-
covered that for this Range abstraction the heuristic search
reports a choose-free error of length 26 in 20 seconds.

These heuristics for finding feasible counterexamples during
abstraction can be seen as an on-the-fly under-approximation
of an over-approximation (from the abstraction) of the sys-
tem behavior. The only other heuristic that we are aware
of that falls into a similar category is the one for reducing
infeasible execution sequences in the FLAVERS tool [9].

5. CONCLUSIONS AND FUTURE WORK

Heuristic search techniques are traditionally used to solve
problems where the goal is known and a well-defined mea-
sure exists of how close one is to this goal. The aim of
the heuristic search is to guide the search, using the mea-
sure, to achieve the goal as quickly (fewest steps) as possible.
This has also been the traditional use of heuristic search in
model checking: the heuristics are defined with regards to
the property being checked. Here we advocate a comple-
mentary approach where the focus of the heuristic search
is more on the structure of the state space being searched,
in our case the Java program from which the state space is
generated.

We do not believe that structural heuristics should replace
property-specific heuristics, but rather propose that they
be used as a complementary approach. Furthermore, since
the testing domain has long used the notion of structural
code coverage, it seems appropriate to investigate similar
ideas in the context of structural heuristics during model
checking. Here we have shown that for a realistic example
(DEOS) a heuristic based on branch coverage (a relatively
weak structural coverage measure) gives encouraging results.
It is worth noting that a much stronger coverage measure
(MC/DC) did not “help” in uncovering the same error dur-

ing testing (i.e. 100% coverage was achieved but the bug
was not found). We conjecture that the use of code cover-
age during heuristic model checking can lead to classes of
errors being found that the same coverage measures during
testing will not uncover. For example, branch coverage is
typically of little use in uncovering concurrency errors, but
using it as a heuristic in model checking will allow the model
checker to evaluate more interleavings which might lead to
an error (branch coverage found the deadlock in the Remote
Agent example, whereas traditional testing failed?).

There are a number of possible avenues for future work. As
our experimental results make clear, a rather daunting array
of parameters is available when using heuristic search — at
the very least, a heuristic, search algorithm, and queue size
must be selected. We hope to explore the practicalities of
selecting these options, gathering more experimental data
to determine if, for instance, as it appears, proper queue
size limits are essential in checking programs with a large
number of threads. A further possibility would be to at-
tempt to apply algorithmic learning techniques to finding
good parameters for heuristic model checking.

The development of more structural heuristics and the re-
finement of those we have presented here is also an open
problem. For instance, are there analogous structures to be
explored in the data structures of a program to the control
structures explored by our branch-coverage heuristics? We
imagine that these other heuristics might relate to partic-
ular kinds of errors as the interleaving heuristic relates to
concurrency errors.

6. REFERENCES
[1] P. Ammann, P. Black, and W. Majurski. Using model
checking to generate tests from specications. In
Proceedings of the 2nd IEEE International Conference
on Formal Engineering Methods, 1998.

[2] P. Ammann and P. Black. Test Generation and
Recognition with Formal Methods. In Proceedings of
the 1st International workshop on Automated Program
Analysis, Testing, and Verication, pages 64—67, 2000.

[3] T. Ball and S. K. Rajamani. Automatically Validating
Temporal Safety Properties of Interfaces. In
Proceedings of the 8th International SPIN Workshop
on Model Checking of Software, pages 103-122, 2001.

[4] B. Beizer. Software Testing Technigues. 2nd ed., Van
Nostrand Reinhold, New York, 1990.

[5] R. Bloem, K. Ravi, and F. Somenzi. Symbolic Guided
Search for CTL Model Checking. In Conference on
Design Automation (DAC), pages 29-34, 2000.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H.
Veith. Counterexample-Guided Abstraction
Refinement. In Proceedings of the 12th Conference on
Computer Aided Verification, pages 154-169, 2000.

2 Although we don’t know whether branch coverage was used
as a measure during the original testing, the structure of the
code indicates that this coverage would have been achieved
with any reasonable test set

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

18]

E. M. Clarke, O. Grumberg, and D. E. Long. Model
Checking and Abstraction. ACM Transactions on

Programming Languages and Systems,
16(5):1512-1542, 1994.

E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. The
Right Algorithm at the Right Time: Comparing Data
Flow Analysis Algorithms for Finite State Verification
In Proceedings of the 23rd International Conference on
Software Engineering, pages 37-46, 2001.

J. C. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, H. Zheng. Bandera: Extracting
Finite-state Models from Java Source Code. In
Proceedings of the 22rd International Conference on
Software Engineering, pages 439-448, 2000.

M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Pasareanu, Robby, W. Visser, and H. Zheng.
Tool-supported Program Abstraction for Finite-state
Verification. In Proceedings of the 23rd International
Conference on Software Engineering, pages 177-187,
2001.

S. Edelkamp, A. L. Lafuente, and S. Leue. Directed
explicit model checking with HSF-Spin. In Proceedings
of the 8th International SPIN Workshop on Model
Checking of Software, pages 57-79, 2001.

S. Edelkamp, A. L. Lafuente, and S. Leue. Partial
Order Reduction in Directed Model Checking. In
Proceedings of the 9th International SPIN Workshop
on Model Checking of Software, pages 112-127, 2002.

S. Edelkamp, A. L. Lafuente, and S. Leue.
Trail-Directed Model Checking. In Proceedings of the
Workshop of Software Model Checking, Electrical
Notes in Theoretical Computer Science, Elsevier, July
2001.

P. Godefroid. VeriSoft: A Tool for the Automatic
Analysis of Concurrent Reactive Software. In
Proceedings of the 9th Conference on Computer Aided
Verification, pages 172-186, 1997.

P. Godefroid and S. Khurshid. Exploring Very Large
State Spaces Using Genetic Algorithms. In Tools and

Algorithms for Construction and Analysis of Systems,
pages 266-280, 2002.

S. Graf and H. Saidi. Construction of Abstract State
Graphs with PVS. In Proceedings of the 9th
Conference on Computer Aided Verification, pages
72-83, 1997.

A. Groce and W. Visser. Heuristic Model Checking for
Java Programs. In Proceedings of the 9th International
SPIN Workshop on Model Checking of Software, pages
242-245, 2002.

P. E. Hart, N. J. Nilsson and B. Raphael. A formal
basis for heuristic determination of minimum path
cost. In IEEE Transactions Syst. Science and
Cybernetics, 4(2):100-107, 1968.

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix,
W. Visser and J. White. Formal Analysis of the
Remote Agent Before and After Flight. In Proceedings
of the 5th NASA Langley Formal Methods Workshop,
June 2000, 2000.

T. A. Henzinger, R. Jhala, R. Majumdar and G.
Sutre. Lazy Abstraction. In ACM SIGPLAN-SIGACT
Conference on Principles of Programming Languages,
2002.

G. J. Holzmann. Algorithms for automated protocol
verification. ATHT Technical Journal, 69(2):32—44,
Feb. 1990, pages 32—44. Special Issue on Protocol
Testing, Specification, and Verification.

G. J. Holzmann and Doron Peled. The State of SPIN.
In Proceedings of the 8th Conference on Computer
Aided Verification, pages 385-389, 1996.

G. J. Holzmann and M. H. Smith. Automating
Software Feature Verification. In Bell Labs Technical
Journal, 5(2);72-87 April-June 2000

R. Iosif and R. Sisto. dSPIN: A Dynamic Extension of
SPIN. In Proceedings of the 6th International SPIN
Workshop on Model Checking of Software, pages
261-276, 1999.

F. J. Lin, P. M. Chu, and M. T. Liu. Protocol
Verification Using Reachability Analysis: The State
Space Explosion Problem and Relief Strategies. ACM,
126-135, 1988.

C. S. Pdsareanu, M. B. Dwyer, and W. Visser.
Finding Feasible Counter-examples when Model
Checking Abstracted Java Programs. In Tools and
Algorithms for Construction and Analysis of Systems,
pages 284-298, 2001.

J. Penix, W. Visser, E. Engstrom, A. Larson and N.
Weininger. Verification of Time Partitioning in the
DEOS Scheduler Kernel. In Proceedings of the 22nd
International Conference on Software Engineering,
pages 488-497, 2000.

A. Pretschner. Classical search strategies for test case
generation with Constraint Logic Programming. In
Proceedings of the Workshop on Formal Approaches to
Testing of Software, pages 47-60, 2001.

RTCA Special Committee 167. Software
considerations in airborne systems and equipment
certification. Technical Report DO-178B, RTCA, Inc.,
Dec. 1992.

H. Saidi. Modular and Incremental Analysis of
Concurrent Software Systems. In Proceedings of the
14th IEEE International Conference on Automated
Software Engineering (ASE), pages 92-101, 1999.

N. Tracey, J. Clark, K. Mander, and J. McDermid. An
Automated Framework for Structural Test-Data
Generation. In Proceedings of the 13th IEEE
International Conference on Automated Software
Engineering (ASE), pages 285-288, 1998.

[33] W. Visser, K. Havelund, G. Brat and S. Park. Model

[34]

[35]

Checking Programs. In Proceedings of the 15th IEEE
International Conference on Automated Software
Engineering (ASE), pages 3-11, 2000.

W. Visser, S. Park, and J. Penix. Using Predicate
Abstraction to Reduce Object-Oriented Programs for
Model Checking. In Proceedings of the 3rd ACM
SIGSOFT Workshop on Formal Methods in Software
Practice, 2000.

C. Han Yang, D. L. Dill. Validation with Guided
Search of the State Space. In Conference on Design
Automation (DAC), pages 599-604, 1998.

