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Abstract—Mutation analysis is considered the best method for
measuring the adequacy of test suites. However, the number of
test runs required for a full mutation analysis grows faster than
project size, which is not feasible for real-world software projects,
which often have more than a million lines of code. It is for
projects of this size, however, that developers most need a method
for evaluating the efficacy of a test suite. Various strategies have
been proposed to deal with the explosion of mutants. However,
these strategies at best reduce the number of mutants required to
a fraction of overall mutants, which still grows with program size.
Running, e.g., 5% of all mutants of a 2MLOC program usually
requires analyzing over 100,000 mutants. Similarly, while various
approaches have been proposed to tackle equivalent mutants,
none completely eliminate the problem, and the fraction of
equivalent mutants remaining is hard to estimate, often requiring
manual analysis of equivalence.

In this paper, we provide both theoretical analysis and
empirical evidence that a small constant sample of mutants yields
statistically similar results to running a full mutation analysis,
regardless of the size of the program or similarity between
mutants. We show that a similar approach, using a constant
sample of inputs can estimate the degree of stubbornness in
mutants remaining to a high degree of statistical confidence,
and provide a mutation analysis framework for Python that
incorporates the analysis of stubbornness of mutants.

I. INTRODUCTION

Traditional mutation analysis [1], [2] involves exhaustive
generation of first order mutants, the detection of which is used
as a measure of test suite effectiveness. Studies by Andrews
et al. [3], [4], and more recently by Just et al. [5] suggest that
mutation analysis is capable of generating faults that resemble
real bugs, the ease of detection for mutants is similar to that
for real faults, and the effectiveness of a test suite in detecting
real faults is reflected in its mutation score.

A barrier to the wider adoption of mutation analysis in
practice is its high computational cost. Performing mutation
analysis on large programs requires analysis of an even larger
number of mutants, requiring multiple runs of a test suite.
Modern software often has a million or more lines of code [6],
and it is impractical to evaluate all mutants when their number
is a multiple of such magnitude.

A major area of research in mutation analysis is therefore
the reduction of computational requirements by reducing the
number of mutants, called the do fewer approach [7]. This
approach is generally divided into selective and sampling
approaches. Selective approaches attempt to avoid low util-
ity mutants (according to various definitions of utility), and
compute the mutation score using only what are deemed to
be high utility mutants [8], [9]. On the other hand, sampling

approaches seek to randomly select a representative set of
mutants, which can then be used to approximate the full
mutation score [10], [11]. Wong et al. [12] used operator based
stratified sampling and found that using as few as 10% of the
total mutants can provide accurate results. Researchers have
recently evaluated the relative merits of pure random sampling
against stratified random sampling based on operators, program
elements, and combinations of operator based and program
element based stratified sampling [13], [14]. They found that
stratified sampling using a combination of different strata
was superior to stratified sampling of strata in isolation, or
to pure random sampling. They also found that sampling
approaches can approximate full mutation score as well as
operator selection methods. A recent promising result was
that the fraction of adequate mutants tends to grow at a rate
O(n0-05--0-25) where n is the size of the program for programs
below 16KLOC [15].

While the suggested methods are effective, the number of
mutants required is still a function of program size, which
is still too large for many modern programs. Our research
answers the following question: does a lower bound for the
sample size of mutants exist that guarantees a reasonable
absolute error! for mutation score, if we use at least that many
mutants (sampled randomly)? If such an absolute lower bound
exists, the cost of mutation analysis can be decoupled from
the size of the project, and analysis can be resolved in a fixed
number of test runs.

Such a lower bound would have practical impact because
it would guarantee a ceiling for the amount of time and effort
practitioners must invest in using mutation analysis to evaluate
the quality of their test suites. Such a guarantee might help
sway testers looking at using such tools for the first time, but
not wanting to over-commit before they see a return on their
time and effort.

We use Tchebysheff’s inequality® to show that such a lower
bound does exist. We find that, theoretically, a sample size as
low as 1,000 mutants can, with a probability of 95%, provide
an approximate mutation score with absolute error as low
as +7%. To validate that finding, we performed an extensive
empirical study on 158 open source Java projects. Surprisingly,
we found that a sampling of just 1,000 mutants results in an
absolute error as low as +2%, much lower than predicted.

A secondary concern in mutation analysis is the preva-
lence of equivalent mutants [17], [18]. These are mutants

'Note that absolute error is the difference of actual parameter and the
estimated one.
2Nearly all values are close to mean [16].



which are semantically identical to the original program, and
in a general sense their identification is undecidable [19].
Since determining mutation adequacy [20] is dependent on
the number of equivalent mutants — in general, one doesn’t
know whether the remaining mutants can be killed by adding
new test cases or if they are equivalent — the utility of
mutation adequacy as a stopping criterion is severely weakened
by this problem. The number of equivalent mutants reported
in the literature varies widely, and is heavily dependent on
the subject program, ranging from 2% [21] up to 50% [22],
[23]. Hence assuming a fixed percentage to be equivalent is
not justifiable in practice. Human evaluation of equivalence
is both exorbitantly expensive [22] and error prone, with
fault rates up to 20% [10]. This has even led researchers to
abandon all attempts at actually evaluating equivalent mutants
in unkilled mutants, and to assume that a given test suite
is mutation adequate [13]-[15], [24]. While there have been
various attempts [18] at providing heuristics for recognition
of some equivalent mutants, none provides a bound on even
the minimum stubbornness® expected of remaining mutants
classified as equivalent, which is important for a practicing
tester who wishes to know whether a test suite satisfies the
required adequacy score.

We propose a simple extension to mutation analysis to
resolve this dilemma: treating the closeness of two functions
as a statistical problem. To identify whether a mutated function
is semantically close to the original (with a given confidence),
generate a fixed number of random inputs from the full input
domain and verify that original and mutant functions behave
equivalently. We show that the sample size suggested by our
statistical framework is also applicable for quantifying mutant
stubbornness, and for a fixed number of random inputs one
can achieve sufficient confidence that two functions are indeed
semantically similar to a given tolerance level.

The main contributions of this paper are therefore:

e  We describe a statistical framework (Section III) to
find the fixed minimum number of mutant samples
required to achieve a certain absolute accuracy irre-
spective of the total number of mutants.

e  We evaluate this bound using a large number of real-
world Java programs (Section IV) and show that the
lower bound on the sample size needed is not high,
and sample sizes as small as 1,000 can achieve good
accuracy.

e  We make available a new byte-code mutation frame-
work for Python (Section V) that incorporates statis-
tical determination of stubbornness in surviving mu-
tants, and describe preliminary research into analysis
of equivalence using statistical sampling.

II. RELATED WORK

The idea of mutation analysis was first proposed by Lip-
ton [1], and its main concepts were formalized by DeMillo
et al. in the “Hints” [25] paper. The first implementation of
mutation analysis was provided in the PhD thesis of Budd [26]
in 1980.

3 A stubborn mutant is a hard to kill mutant. Stubbornness is the effort
required to kill it.

Previous research in mutation analysis [11], [27], [28] sug-
gests that it subsumes different coverage measures, including
statement, branch, and all-defs dataflow coverage [11], [27],
[28]. There is also some evidence that the faults produced by
mutation analysis are similar to real faults in terms of error
trace produced [29] and the ease of detection [3], [4]. Recent
research by Just et al. [5] using 357 real bugs suggests that the
mutation score increases with test effectiveness for 75% of the
cases, which was better than the 46% reported for structural
coverage.

The validity of mutation analysis rests upon two fundamen-
tal assumptions: “The competent programmer hypothesis” —
which states that programmers tend to make simple mistakes,
and “The coupling effect” — which states that test cases
capable of detecting faults in isolation continue to be effective
even when faults appear in combination with other faults [25].
Evidence of the coupling effect comes from theoretical anal-
ysis by Wah [30], [31] and empirical studies by Offutt [32],
[33].

Researchers have suggested several approaches to reducing
the cost of mutation analysis, categorized as do smarter, do
faster, and do fewer by Offutt et al. [7]. The do smarter
approaches include space-time trade-offs, weak mutation anal-
ysis, and parallelization of mutation analysis. The do faster
approaches include mutant schema generation, code patching,
and other methods to make the mutation analysis faster as
a whole. Finally, the do fewer approaches try to reduce the
number of mutants examined, and include selective mutation
and mutant sampling.

Various studies have tried to tackle the problem of approx-
imating the full mutation score without running a full mutation
analysis. The idea of using only a subset of mutants (do fewer)
was conceived first by Budd [11] and Acree [10] who showed
that using just 10% of the mutants was sufficient to achieve
99% accuracy of prediction for the final mutation score. This
idea was further investigated by Mathur [34], Wong et al. [12],
[35], and Offutt et al. [8] using the Mothra [36] mutation
operators for FORTRAN. Lu Zhang et al. [13] compared
operator-based mutant selection techniques to random mutant
sampling, and found that random sampling performs as well
as the operator selection methods. Lingming Zhang et al. [14]
compared various forms of sampling such as stratified random
sampling based on operator strata, stratified random sampling
based on program element strata, and a combination of the
two. They found that stratified random sampling when strata
were used in conjunction performed best in predicting the final
mutation score, and as few as 5% of mutants were sufficient
sample for a 99% correlation with the actual mutation score.
Hsu et al. [37], [38] used “Binomial Sequential Probability
Ratio Test” as a stopping rule for i.i.d. (independent, identi-
cally distributed) random variables. They found that only 299
mutants needed to be sampled for 1% tolerance within 99%
confidence interval.

A number of studies also measured the redundancy among
mutants. Ammann et al. [39] compared the behavior of each
mutant under all tests and found a large number of redundant
mutants. More recently, Papadakis et al. [40] used the compiled
representation of programs to identify equivalent mutants.
They found that on average 7% of mutants are equivalent while
20% are redundant.



This paper deviates from the above studies in three major
ways. First, while other studies suggest using a fraction of
mutants for testing, in this paper, we study the usefulness of se-
lecting a fixed number of mutants to approximate the mutation
score and the accuracy of the approximation. Second, most of
the above do-fewer approaches (e.g. Lu Zhang et al. [13] and
Lingming Zhang et al. [14]) base their validity on empirical
studies. We offer a statistical foundation for our technique in
addition to empirical validation. Third, our proposed statistical
framework does not require an assumption of independence.
This is important especially since other studies (e.g. Papadakis
et al. [40] and Ammann et al. [39]) indicate that mutants are
rarely independent, and largely similar with each other.

Researchers have also focused on identifying equivalent
mutants, with this work generally divided into the prevention
and detection camps [40]. The prevention camp is concerned
with reducing the incidence of equivalent mutants by iden-
tifying operators that produce a low number of equivalent
mutants, and favoring them [22]. The detection camp tries
to detect equivalent mutants by various static and dynamic
properties of the mutant. These include efforts to identify them
using compiler equivalence [17], [40], [41] dynamic analysis
of constraint violations [42], [43], and coverage [44]. Recent
research by Cai et al. [45] provides a way to represent simple
changes to input values, which can also be used to represent
changes in functions (i.e. mutants), which could also be used
to evaluate semantic impact.

The main difference between these studies and the pro-
cedure of quantifying stubbornness in mutants suggested by
us is that, while previous researchers have suggested many
ways to mitigate the equivalent mutant problem, none have
given procedures to analyze confidence in their classification,
neither for the equivalent mutants identified (except for definite
identification), nor for the remaining live mutants in the code.
Using the procedure we outline, we provide estimates on our
confidence in the stubbornness of remaining mutants.

III. THEORETICAL ANALYSIS

In this section, we explain our statistical framework for
finding a lower bound, n, for mutant sample sizes. The goal
is to approximate the mutation score, m, while ensuring that
absolute error does not exceed e, with a confidence interval of
1 — 6. That is, the probability of the approximated mutation
score being out of the accepted error range is 9.

We also show that a similar analysis can provide a lower
bound for the number of inputs to be examined for providing
a confidence level in classifying equivalent mutants approxi-
mately.

A. How many mutants should we sample?

Running a test suite on a mutant can have at most two
possible outcomes; either it will be detected, or it won’t be.
Thus the mutation score can be modeled as the mean of a
number of trials of random variables. Since mutation analysis
primarily involves modifying a single token at a time, we
assume that some of the mutants are strongly correlated with
detection of other mutants. In fact, a number of studies [39],
[46] have found that there exist redundant mutants which
are semantic copies of each other, and equivalent mutants,

which are semantic copies of the original version. Similarly,
we assume that few mutants are negatively correlated — that
is, detection of one mutant does not imply that another mutant
will not be detected (or at least this kind of relation is much
rarer than mutants with a positive correlation). Thus the only
assumptions that we need for our analysis are:

Assumptions:

e  Mutant detection is more positively than negatively
correlated.

e  The total number of mutants is large.

Note: Our analysis does not require independence be-
tween detection of different mutants.

Let the random variable D,, denote the number of detected
mutants out of our sample n (to be determined). The estimated
mutation score is given by M,, = %. The random variable D,,
can be modeled as the sum of all random variables representing
mutants Xy ,. That is, D,, = EZL X;. The expected value
E(M,,) is given by 2E(D,,). The mean of the sum of ran-
dom variables does not depend on their independence, hence
E(M,) = m. The variance V(M,) is given by -V (D),
which can be written in terms of component random variables
X1, as:

1 1 n n
—SV(Dn) = — Y V(X)+2) Cov(X;, X))
i i<j
Using our simplifying assumption that some of the mutants
are similar, we can assume that

23 Cov(X;, X;) >=0 1)
1<j

That is, the variance of the mutants V'(M,,) is greater than or
equal to that of a similar distribution of independent random
variables.

Problem statement The following inequality formalizes the
constraints of the problem, which states that the probability of
absolute error exceeding € is lower than 6.

Pr{|M, —m|>¢€ <4¢

We use Tchebysheft’s inequality to draw a lower bound for the
mutant sample that satisfies the above formula. Tchebysheff’s
inequality states that,

\%4
Vk:P(|x—u|2k)§ﬁ
where p is the mean, V' the variance of the distribution, and
k > 0. Replacing variables in Tchebysheff’s inequality, we
have
V(M,)

Pr{|M,, —m| > ¢ < 5

€
We want to ensure that Pr[|M,, — m| > € is lower than 0,
so we restrict the bound from Tchebysheff’s inequality to be
lesser than or equal to 4.
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Remember that we are looking for the minimum number
of samples that will give us the required accuracy. That is,
overestimating this minimum number (i.e. n) only improves
the accuracy of the estimate. Hence we look for a conservative
estimate of n that satisfies Equation (2). Notice that n is in
the denominator, and hence a lower value of the term Vn(zlz ”;)
corresponds to a higher value of n. So consider the solution
for n in Equation (2). If V(D,,) was underestimated, then a
solution of n from that equation would result in a larger n
than that which corresponds to the correct V' (D,,).

By replacing M,, with we have,

<9 2

We have seen previously from Equation (1) that covariance
of mutant detection is greater than or equal to that of a similar
distribution of independent random variables. So if we assume
independence for D,,, the term V(D,,) would be smaller than
actual, and hence the value of n would be larger than actual.

So, we will now solve Equation (2) under the assumption
that mutants are independent, since this will provide the
maximum sample size required. D,, is considered binomially-
distributed because of the (conservative) independence as-
sumption.

Now consider D,,. If we consider the set of mutants that we
are sampling, each of them could be either detected or not by
the given test suite. That is, if % is the set of mutants that were
detected from the complete population of N mutants, then you
have % = m chance of picking a mutant that will be detected
by the given test suite. Note that it is easy to fall into the trap
of thinking that some mutants are easy to detect, and hence
they should have a different probability. The thing to note is
that, this intuition is based on assuming a random test suite.
That is, different mutants have different probabilities of being
detected by a random test suite. However, once the test suite
is fixed — as it is when we try to estimate the mutation score
for a suite — the mutants will be either detected or not by
the fixed suite, and the probability of detection of any single
mutant by that test suite is the ratio of detected mutants to the
total population, m.

D,, is the binomial distribution; replacing V' (D,,) with the
variance of the binomial(n,m) distribution we get:

m(l —m)

V(Dyp)=nxm(l—m)=mn> 25

Notice that the sample size n will be largest when m = 1

5
So in the worst case, this formula can be rewritten as

1
TLZ@ 3

Inequality (3) can be used to find the lower bound. That is,
given a certain sample size n, and a confidence interval 1 — 4,
we can compute the tolerance e. For example, for n = 1000,
and § = 0.05, we have ¢ = 0.07. Note that this bound is a
pessimistic lower bound.

However, since we have shown that detection of mutants
is bounded by the binomial distribution for a given test suite,

we can rely on stronger tools than Tchebysheff’s inequality,
if we are willing to allow approximation of the distribution.
For a large enough n, a binomial distribution approximates a
normal distribution [47]*. For a normal distribution, € is given
b
Y o
€= ——= X 2Z_s
4 /N 2
where z; _ s is the normal score, the probability that the mean

lies within the constraint 4. That is, given that o2 < m(l —
m) < 0.25
2

z
! % 0.25

_3
N> |22
€

For ¢ = 0.01 and 6 = 0.05, N > 9,604, which is smaller
sample size than that predicted using Tchebysheff’s inequality
(50, 000). This means that for programs where the number of
mutants is larger than 9,604, we can guarantee that a sample
size of 9,604 will approximate the real mutation score with
99% accuracy for 95% of the samples.

An important aspect of this analysis is that our results hold
even if the mutants are not independent. In fact, the more
similar to each other the mutants are, the smaller the number
of samples needed to estimate the true mutation score. Assume
that we have 10 mutants which are copies of each other. In
this case, choosing a sample of just one mutant is sufficient
to tell us whether the entire set of mutants can be detected,
when compared to a set of 10 dissimilar mutants. In fact, our
empirical analysis suggests that a much smaller sample size
than predicted by our theory is sufficient to estimate mutation
score to a high degree of accuracy. We validate our lower
bound empirically in Section IV.

@ummary: Since mutants are similar to each other, the )
distribution of detected mutants has positive covariance.
Thus the number of samples required is strictly smaller
than for a binomial distribution. Note that mutants are
similar both due to construction, and empirically [39],
[46]. Hence the binomial distribution provides an upper
bound on required sample size (similarity of mutants
\works in our favor). Y,

B. How many inputs should we sample for confidence in
equivalence classification?

For analysis of equivalent mutants, consider a program P
with a single input and its mutant QQ°. Our goal is to evaluate
whether the mutant is equivalent to the program.

Let n be the input domain®. Consider a function F that
takes no input, but compares the functions P and () for some

value given by
F=P(i) == Q1)

4 Berry-Esseen theorem suggests that error in normal approximation is

2 2
bounded by%, where C' < 0.7655 and ¢ = 1 — p. It can be bounded

by % for p > 50%. That is, for 1,000 mutants with a mutation score
of 90%, the maximum error of normal approximation is 0.007655

SA function with any number of inputs can be transformed to a function
that takes a single input by wrapping the input in a tuple.

SPractically, the input domain is limited by the underlying language, system
capacity etc. even for seemingly infinite types such as integers, lists, and
recursive data structures, and our analysis does not rely on the size of n.
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Fig. 1. The distribution of size of project in LOC and mutation score. It

shows that we have a representative sample of projects and mutation scores.

where ¢ € n. We can now mutate this function to F’ by
changing the value of i to 7’

F' = P(i) == Q({)

We can see that the total number of mutants thus produced
would be |n|. We can use the same statistical approach we
outlined earlier to approximate how close P is to @, in a
constant number of mutants of F', as we do not violate either of
the requirements of our statistical framework: a large number
of mutants, and a positive correlation between detectability
of mutants. From the analysis in the previous section, 50, 000
input samples is sufficient for a 95% confidence that the mutant
and original differ by less than 1% of the possible input values
(or 9,604 using normal approximation). This means that if a
function and its mutant differ on at least 1% of input values, a
sample of 9, 604 input values will identify it 95% of the time.

The point to note here is that we estimate not the equiv-
alence of the mutants, but the degree of stubbornness at
the function level, which is an upper bound on probability
of detecting that mutant for tests targeting that function.
Empirically mutants that are resistant towards detection at the
function level tend to be equivalent. It may be objected here
that there are mutants that are killed by a single test case,
and the procedure given is not applicable to such mutants
(our statistical guarantee is that if the ratio of distinguishing
inputs to non-distinguishing inputs exceeds a certain threshold,
we have a high probability of finding them). However, while
there exist mutants killed only by a single input, large input
domain fault patterns, with a fixed ratio between distinguishing
and non-distinguishing inputs (and hence amenable to our
statistical analysis) are likely more common [48].

IV. EVALUATION OF MUTATION SAMPLING
A. Methodology

For our empirical evaluation, we tried to ensure that the
programs chosen offered a reasonably unbiased representation
of modern software. We also attempted to reduce the num-
ber of variables that can contribute to random noise during
evaluation. Keeping these goals in mind, we chose a sample’

7Github allows us to access only a subset of projects using their search APL
We believe that the results returned by Github search would not be dependent
on their test suites, and hence should not confound our results.
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Fig. 2. The distribution of mean mutation score when sample size is 1,000
for Apache commons-math. The central blue line shows true mean at 74.03,
and the red lines mark 95% confidence intervals. Similarly the gray lines
show the theoretical bounds for 95% confidence intervals. This shows that the
sample variation is well within theoretical bounds.

of Java projects from Github [49] and similarly from the
Apache Software Foundation [50]. All projects selected used
the popular maven [51] build system. This gave us 1,800
projects. From these, we eliminated aggregate projects that
were difficult to analyze, resulting in 1, 321 projects, of which
only 796 had test suites. Out of these, 326 remained after
eliminating projects that did not compile (for reasons such as
unavailable dependencies, or compilation errors due to syntax
or bad configurations). Next, the projects that did not pass
their test suites were eliminated as mutation analysis requires
a passing test suite. Finally, we only chose projects that were
non-trivial; i.e. had at least 1,000 mutants®. This follows the
methodology we used in our previous work [52], and resulted
in 158 projects selected. The project size and mutation score
distribution is given in Figure 1, which shows that we have a
reasonably non-biased distribution in terms of detection.

Note that we have a much larger set of large sized projects
(158 projects with mean 7061 LOC) than previous studies such
as Namin et al. [24] (7 projects with mean 312 LOC), Zhang
et al. [13] (7 projects with mean 312 LOC), Zhang et al. [14]
(7 projects with mean 15083 LOC), and Zhang et al. [15] (12
projects with mean 6209 LOC). Similarly, our test subjects
have large test suites (441.766 sd 920.385) in comparison to
previous studies — Namin et al. [24] (mean 3115.286, sd
1572.038), Zhang et al. [13] (mean 3115.286, sd 1572.038),
Zhang et al. [14] (mean 3115.286, sd 1572.038), and Zhang
et al. [15] (mean 81, sd 29.061).

Our subjects had 90 test suites with more than 100 tests
(for comparison, other studies for e.g. Zhang et al. [15] have
only three test suites with more than 100 test cases)

Similarly, the mutation scores of our subjects (mean 0.311
sd 0.275), and Apache commons-math in the second part with
mutation score 0.74, are also comparable to previous studies
such as Namin et al. [24] (mean 0.322, sd 0.318), Zhang et
al. [13] (mean 0.831, sd 0.055), Zhang et al. [14] (mean 0.831,
sd 0.055), and Zhang et al. [15] (mean 0.529, sd 0.256).

8Some of the projects had 0 mutation score, which we opted to keep for
the representativeness of the sample, but the results remain same even if they
are removed. Without considering the zero mutation score projects, the mean
was 34.103% (standard deviation 26.967).



In summary, our set of projects is fairly large, has large
test suites, and has comparable mutation scores to suites in
previous studies that handled similar sized projects. Other
studies of similar nature had either smaller test suites, smaller
sized subjects, and/or a much smaller number of subjects.
Further, our study includes both low and high mutation scores
as required to demonstrate the effectiveness of our technique’.

We used PIT [54] for mutation analysis (used in multiple
studies [52], [55]-[57]), extended to provide the full matrix
of test failures over mutants and test cases.

B. Analysis

Our empirical analysis was done in two parts. First we
looked in detail at a moderately large project with 90%
statement coverage, to see if our predictions held true for a
large number of repeated samplings. In the second part, we
looked at the validity of our predictions across a diverse set
of projects.

For the first part, we chose Apache commons-math, which
is a medium large open source project, to evaluate the bounds.
This is a 95KLOC project, with 122,484 mutants and a true
mutation score of 74.03% detection.

For this project, we sampled 1,000 mutants for each run,
and computed the sample’s mutation score. This was repeated
100, 000 times, and the resulting mean distribution is plotted
in Figure 2. The central blue line indicates the true mean
of the project at 74.03%. For our experiment, the mean was
found to be 74.04%. We also estimated the 2.5% and 97.5%
quantiles (95% of values lie between these quantiles). These
were found to be 71.3%, and 76.7% respectively, plotted as
the red lines in the figure. As we expected from our theory,
and expected dependence between mutants, this is well within
our theoretical prediction (43.1% using normal approximation,
and +7% using no approximation) for 1,000 samples. The
approximation lines for 74.03+7% at 67% and 81% are plotted
as gray lines in the figure.

For the second part we compared the mutation scores
reported by sampling 158 projects with both 100 randomly
sampled mutants, and 1,000 sampled mutants. The results are
shown in Figure 3. We found the mean absolute difference'’
from the true mutation scores when we used a sample size of
100 was 2.56%, and when the sample size was increased to
1,000, it was reduced to 0.62%.

Next, we considered the quantiles at 2.5% and 97.5%.
For the sample size of 100, they were found to be —7.216%
and 7.206% respectively. That is, even if we sample just 100
mutants, we observe an error in approximation of at most
7.2% with 95% probability (we expected less than 9.8% from
normal approximation and 22.3% with no approximation). The
same quantiles on sample size of 1,000 yielded —2.146% and
1.454% respectively. We note that this is a smaller range than
what is predicted by our statistical analysis (which suggests
that a sample of 1,000 mutants results in only +7% tolerance).

9 Please see [53] for detailed information on the projects and their test
suites.

10By absolute difference, we mean the sign of difference was ignored. If we
include the sign of difference, the mean differences were —0.08 and —0.03
respectively for size 100 and 1,000 samples

This smaller bound is due to the fact that we assumed no
dependence when calculating the bound, and secondly, the
theoretical bound was predicted by assuming that the mutation
score would result in the maximum variation at m = 0.5.

0.0 0.1 ) 0.2 0.3
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Fig. 4. This graph shows the progressive improvement of accuracy (x)
as sample sizes increase as powers of 2 (2¥) for 158 projects. The boxes
in boxplots represent 0.25 and 0.75 quantiles, and the ends of black lines
represent quantiles at 0.025 and 0.975 respectively. This figure shows how
precision improves as sample size increases.

In order to visualize how the tolerances change when
sample size is increased, we plotted the summary of variation
of 100 repetitions for each of the 158 projects, with mutant
sample sizes corresponding to (23,2%...216) (Figure 4). In the
boxplots, the boxes represent the 25% and 75% quantiles,
while the ends of the lines represent the 2.5% and 97.5%
quantiles respectively. This figure suggests that as the sample
sizes grow, accuracy also improves as expected.

To understand the impact of stratification and x% sampling
in different strata, we plotted the full number of mutants vs
an x% mutant sample where the x% was given by decreasing
fractions of 27* — ie. (3,1...4;) — for each of the strat-
ification strategies, including operator stratification, element
based stratification (for line, method and class), and combined
stratification for line and operator. This was done for all 158
projects, and each measurement was repeated 100 times, with
the mean plotted. Finally, we looked at the difference between
the original mutation score and the sample mutation score,
and marked all the observations that were more than 1% off
as bad (red). This is following the limit of 99% frequently
used by researchers [14] as sufficient to consider a subset to
be representative of the full set of mutants. Results are shown
in Figure 5. For clarity, we have chosen to restrict the figure
to less than 12,000 mutants, and we have only plotted 1, 000
points from the complete set. The six distinct lines in the
graph represent fractions of powers of two in decreasing power
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The figure suggests that above a certain constant threshold
number of mutants, the accuracy is always better than 1%.

Moreover, the accuracy does not depend on the total number
of mutants.

V. EVALUATION OF STUBBORN MUTANTS

As we show in Section III-B, our statistical framework is
applicable to the problem of stubborn and equivalent mutants
also. For our evaluation of the mutant sample size required for
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full

This graph plots the full mutation score against the sample sizes suggested by different stratified sampling strategies (We show only the combinations

of line and operator strata. Combinations of method and class with operator are similar). The red color (solid) indicates places where measured mean mutation
score (from 100 repetitions) was different from the true mutation score by at least 1%. Notice how all red points are below 1000 irrespective of the strategy or
sampling fractions. The distinct linear patterns that can be observed are due to the decreasing fractions of powers of two that we sampled. The plot is a random
sample of 1,000 points out of 566,400 for clarity. This graph suggests that the sample size required for a reasonable accuracy is a constant.

stubborn mutants, we could not find a large enough sample of
programs with known equivalent mutants. Further, none of the
mutation analysis tools that we evaluated had any interface for
incorporating automatic equivalent mutant analysis. This led us
to develop our own mutation analysis tool and framework for
evaluating stubbornness in live mutants.

A. Mutation Framework

Python [58] is a language frequently used by developers,
which we chose as the platform for our experiment. Since
Python is not statically typed, source modification of Python
programs can lead to invalid programs. Recent results suggest
a large number of source modifications result in expressions
which can result in identically compiled code. While there
exist mutation analysis programs for Python [59], they were

either source or AST based, for Python 3 (which excluded
well tested applications in Python 2), or they were abandoned
prototypes [60], [61].

To avoid equivalence of compiled expressions and issues
with invalid mutants, we started by extending mutant [61], a
byte-code mutation analysis tool. We implemented traditional
operators [9], [62] such as modify numerical constants, negate
Jjumps, replace arithmetic and binary operators. We also made
use of optimization techniques such as parallel execution of
mutants and filtering by coverage to ensure that only relevant
mutants were generated.

For the evaluation of stubborn mutants, we require that a
function be annotated with the domain of its input parameters.
Given the domain of the parameters, the framework can



generate random samples for any of the Python primitive types,
non-recursive user defined types, and homogeneous containers.

However, generating random samples of the extremely
large domains of containers such as lists is hard!!. Further, the
confidence we have in the equivalency result is only as good
as the input we sampled it with. That is, if we consider binary
search, where one expects a sorted list as input, the assurance
that 99% of the input values do not result in a different output
has very different meaning based on whether we are specifying
the inputs to be sorted lists or just all possible lists. Since the
validity of inputs is impossible to guess at, we allow functions
to specify their own generators of all possible inputs.

Another issue is the problem of random sampling. We
require access to all possible inputs in order to randomly select
from them. However, it is infeasible to keep all possible input
values in memory. To overcome this, we make use of the
reservoir sampling algorithm [63] which allows us to ensure
that we need to keep only the sample size number of input
items in memory.

However, reservoir sampling trades space requirements for
runtime, and this makes the runtime for sampling containers
such as lists exorbitant if we attempt pure random sampling
over the entire domain. One way to deal with this is to provide
an estimate for a reduced domain — that is choose a subset of
practical relevance or where we expect most bugs to hide based
on an analysis of the function at hand'?.

Very preliminary research using our framework, XMu-
tant [65] (which is available as an open source project,
along with our evaluated programs) suggests that even under
these constraints, random sampling is able to evaluate and
distinguish trivial and stubborn mutants. Applying XMutant
to binary search resulted in three mutants tagged as stubborn
by 1,000-sampling, which were also found to be equivalent
by human analysis. Figure 6 shows the reduction of estimated
probable equivalent mutants as the sample size increases for
timsort using lists of size up to 7.

A few notes on our strategy are in order: if we are
using mutation analysis to evaluate adequate unit tests, then
mutants that are trivially detected during the sampling process
show serious inadequacy in tests. Similarly, for evaluating
adequacy of unit tests, while mutants that escape detection
during sampling cannot be thrown out completely, they may
be excluded from computing the mutation score with given
confidence, as they are genuinely hard to kill and not just the
sign of a very weak test suite.

If tests target the whole program, mutants we show are easy
to kill at function level deserve considerable attention. They are
either equivalent for subtle inter-procedural reasons (such as a
function that will never get called with distinguishing inputs
irrespective of program inputs), or show test suite deficiencies.
In that case, very stubborn mutants may be excluded with some
statistical guarantee that they are hard to kill.

"THere we assume that the domain of such functions is bounded by what
can be supported by the underlying system. For example, Python supports less
than sys.maxint items in a single array.

1ZNote that this can be optimized much further; for instance, using incre-
mental computation [64], it is possible to reuse the computation done for one
sample on others with little effort, and hence extend the range much further.
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Fig. 6. The reduction in undetected mutants for timsort as sample size

increases. Y axis represents the sample size and X axis the ratio of undetected
mutants found. Experiments were repeated 100 times for each sample size.

What our strategy in essence achieves for whole program
tests is to prioritize mutants for examination. Those mutants
that look very easy to kill by sampling but are alive should be
given priority in the order of sample size.

We also note that our algorithm for sampling of stubborn
mutants can be improved further. For example, incremental
computation [64] fits naturally into our scheme, and enables a
higher number of samples to be drawn.

Notice that we are not claiming that random sampling is
the best way to identify equivalence. For example, any patterns
in input such as one would expect from the “Small Scope
Hypothesis” [66] or geometric patterns in failure causing
inputs [67] can aid detection. Rather, we are asking researchers
to quantify the efforts made to eliminate equivalent mutants in
the language of statistics so that it may be replicated. Adopting
this recommendation also provides a sanity check against test
suites that are coverage adequate, but are inadequate or have
incorrect assertions, as was found in 65% of unit tests [68].

VI. DISCUSSION

In this section, we discuss the results of the empirical
validation of the statistical framework presented in Section III.
Our statistical framework suggested that the absolute error for
1,000 mutant samples is less than 7%. We describe the actual
absolute error that we observed in our programs and their test
suites.

A. Case Study: Apache Commons Math

Figure 2, again, shows the histogram of mutation score for
100, 000 repetitions of 1,000-sampling for Apache commons-
math, a nearly 100KLOC program with over 120, 000 mutants
(100-sampling is also given for comparison). It shows that the
largest absolute error for estimated mutation score is slightly
more than 5% while absolute error in 95% of instances is lower
than 2.7%.

Observation 1: 95% samples of size 1,000 provide an
absolute error less than 2.7%.

B. 1,000-sampling at large

While our statistical framework suggests a pessimistic
expected error rate of +7%, empirical data, shown in Figure 3,



suggest that in practice, the absolute error is much lower
(0.62% on average). Figure 3 also shows that absolute error
of 1,000-sampling in very few projects exceeds 2.5%. This
observation can be summarized as the following observation.

Observation 2: 1,000-sampling approximates mutation
score with high accuracy, 0.62% on average.

The implications of Observation 2 are twofold. First, it
suggests that the number of required mutants to accurately
approximate the mutation score for a test suite is not a function
of the total number of mutants (and therefore not tied to
program size). Second, it suggests that a relatively small
sample (as small as 1,000 mutants) is sufficient for estimating
the mutation score with considerable accuracy.

In studies related to % sampling, the actual sample size
of mutants is often overlooked. Thus, in another part of our
empirical evaluation, we performed x% element-strata based
mutation sampling, suggested by [14], where x = 2% for
1 < k < 6. Figure 5 summarizes the result of evaluations
of 158 projects. Black symbols in this scatter plot denote
estimated mutation scores with an absolute error smaller than
1% and the red symbols show the absolute error larger than
1%. This figure shows that all element strata based samples of
sizes 1,000 could achieve an accuracy of 1%. But for sample
sizes smaller than 1, 000, the error is higher in many instances.
This suggests a limitation to the applicability of element strata
based sampling of mutations. That is, the accuracy of sampling
drops if the number of mutants is below a certain threshold.
This can be demonstrated by considering 10% sampling on a
trivial 10 mutant population with 1 detected mutant. In such a
population, 10% sampling is not sufficient, since there is only
5 probability of getting it right.

C. Practical implications

With mutation sampling, it becomes difficult to identify
the components in larger systems that are in need of par-
ticular additional testing, especially when the larger systems
(such as the ones that sampling seeks to address) are often
composed of more than 1,000 interacting components (plainly,
1,000 sampling will not be of much help in identifying such
components).

However, all is not lost. We have shown in our previous
research that structural coverage techniques such as statement
coverage [52], branch coverage [69], and path coverage [70]
can provide sufficient information to isolate under-tested por-
tions of code. We especially recommend simple statement
coverage for this purpose, as it was shown to predict [52]
mutation score with 94% accuracy (98% accuracy at branch
coverage levels above 80%) for manual test suites.

We recommend the following procedure to identify under
tested portions of code when 1,000-sampling is used. Use
at least 1,000-sampling (we do not propose an upper limit)
to evaluate whether the test suite of the complete system is
sufficiently robust. For those mutants that are left alive from
a 1,0004-sample, use our stubborn mutant evaluation from
Section III-B to identify mutants that are possibly equivalent
with desired confidence. The mutation score is computed
as the ratio between killed mutants in the sample, and the
total number of mutants except those that were identified as

probably equivalent ( ST lj\f’““’edb —). This should be used

in conjunction with statement coverage to ensure that there
are no obvious blind spots due to random sampling and to
identify any components with unusually low mutations scores
or coverage. Once the test suites are enhanced further to
address such problems, a new random sample should be used
to judge whether the test suite as a whole has desired quality.

VII. THREATS TO VALIDITY

While we have taken every care to ensure that our results
are unbiased, and have tried to eliminate the effects of random
noise, our results are subject to the following threats to validity.

A. Threats to Theoretical Analysis

Our analysis relies on two assumptions, that the number of
mutants involved is sufficiently large, necessitating a reduction
by sampling, and secondly that either the detection of mutants
is non-correlated, or they are largely positively correlated.
While these assumptions seem to be in line with recent
empirical results including the finding that there exist a number
of equivalent mutants, and a number of redundant mutants
(detection of which are positively correlated with each other),
and the fact that the nature of mutation analysis is to make
small changes that lends itself to mutants with similar behavior,
there exists a possibility that this assumption may not be
warranted even though current research strongly suggests that
the assumption is true.

B. Threats to Empirical Analysis

Threats due to sampling bias: To ensure that our results were
representative of real world programs, we opted to sample
Java projects from the Github repository using the Maven
build system. We used all projects that we could retrieve given
the Github API, and constraints of building and testing. This
however, implies that our sample of programs could be biased
by any factor that skews the projects returned by Github.

Projects of small size and low coverage: Since we used
real world projects with real test suites from Github, the size,
coverage, and hence the mutation scores are representative of
real world projects. Unfortunately given that a large majority of
these projects are in the process of development, with many
small (in LOC) personal projects, some of them have zero
mutation score (even with a test suite), and in general, low
statement coverage and mutation score, with very few adequate
test sets. However, the accuracy of estimation remains within
the predicted region even when we consider only the subset of
projects which have high mutation coverage, which we show
by the analysis of the Apache-commons math project, a large
project of 94 KLOC with 90% statement coverage and 73.20%
mutation score.

Bias due to tool used: Finally, we had to rely on the PIT
mutation testing tool (since the other bytecode mutation tool,
Javalanche was hard to get working for all programs in our
repository, we opted for the tool that gave us the ability to
analyze the largest number of programs), and had to extend
its capabilities to some extent for our purposes. While PIT is
a popular mutation analysis tool, it does have some drawbacks
such as an incomplete repertoire of mutation operators and a
smaller set of mutants produced per token. However, since



our research does not depend on any property of mutants
produced per se (the evaluation could have been conducted on
any random subset of mutants from a more traditional mutation
system), we believe that our results are not affected by this
decision. However, software bugs are a fact of life. While every
care has been taken to avoid them, there is still some possibility
of some bugs having escaped us. We also relied extensively
on the R statistical platform for our analysis. Any bugs in the
implementation of statistical tools that we used in IR can have
an impact on the accuracy of our results.

While these threats may cause our estimates to be inaccu-
rate, our central message — to use a constant sized sample to
approximate the full mutation score rather than an x% sample
— is backed by statistical theory, and remains valid even if the
threats we outlined have an impact on our estimates minimal
sample size.

Finally, while our empirical analysis of stubborn mutants
is very preliminary, we believe that the statistical analysis
is sound, and the conclusion — that we should attempt to
distinguish stubborn (and hence possibly equivalent) mutants
from trivial ones before assuming blanket equivalence, and
reporting mutation score, along with the statistical significance
used for evaluation — is not affected.

VIII. CONCLUSION

This paper used Tchebysheff’s inequality to find a theoret-
ical lower bound for the number of randomly sampled mutants
needed to achieve a given accuracy in predicting the full
mutation score. The paper also shows that the same framework
can be used to provide a theoretical lower bound for the
number of inputs to be sampled for predicting the equivalence
of a mutant with a certain accuracy. Using this framework, we
observe that mutation score can be approximated with high
accuracy (£7%) for sample sizes as low as 1,000 mutants.
Empirical evaluations on a set of 158 Java projects with
different sizes validate the result of our statistical analysis.

The relatively small sample sizes suggested by our statisti-
cal framework can assure practitioners that they can effectively
approximate mutation score with only a constant amount of
computation (for fixed test suite size) for even extremely large
projects, a fundamental improvement over the monotonically
increasing number of mutants needed by previous approaches.

Our findings have a few consequences worth exploring
further. One promising avenue of recent research has been
analysis of higher order mutants [71], [72], where multiple
mutations are combined into a single mutant. Higher order
mutation brings with it many benefits such as increasingly
subtle faults, and reduced number of equivalent mutants [71],
[73]. However, as Jia [71] explains, it has not been popular
due to the combinatorial explosion making even second order
mutants out of reach due to combinatorial explosion. Our
results show that this combinatorial explosion can be resolved
through constant sampling. Irrespective of the population size
resulting from higher order mutation, sampling about 9, 604
mutants can provide a theoretical guarantee of 1% accuracy
(in fact much better than 1% in practice).

Our results also suggest a simple way to evaluate nth
order mutation. Assume that our mutation tool provides p first

order one-to-one operators for mutation, and we would like to
evaluate nth order mutation on a program of size N. This can
produce T' = N x (Z ) ordered n-tuples of mutants. We simply
generate 9,604 random numbers in the range (1...7), and
pick the corresponding n-tuples as the nth order mutants to be
evaluated, which can provide an accurate value of the mutation
score for evaluating all of 7'. This also opens up opportunities
for further validations of the coupling effect, which has only
been investigated up to the second order [32], [33] empirically.

It may be pointed out that as the programs grow large, the
test suites grow large. Since the test suites need to be run as
many times as there are mutants, there is still some growth
in the runtime requirements of mutation testing. However, we
note that the entire test suite does not need to be rerun to
evaluate a single mutant. Rather we only need to pay attention
to those tests that cover the mutant in question. For unit tests,
the incremental costs of mutation analysis in adding new tests
can be very minimal, providing some up-front investment in
determining code coverage. In most cases (for large projects),
we can limit the cost of mutation analysis to far lower than
that of a full test suite run as only the relevant tests need to
be run.

Mutation analysis aims to capture real fault patterns. By
using mechanisms such as selective mutation, one loses out on
capturing fault patterns similar to those in excluded mutants.
Our advice to mutation tool implementers is to be generous in
the operators implemented, and use statistics to your advan-
tage. If systematic defects in a test suite (e.g. low coverage of
a module) contribute strongly to a low mutation score, they
are statistically highly likely to be reproduced in a random
sample as well, because (as we have shown) even a constant
sized random sample predicts overall score well.

Our message to researchers working in this field is to use
the sample size indicated by theory to evaluate techniques
using mutation rather than the full set of mutants (unless there
is sufficient evidence that a smaller sample size suffices for
the particular set of mutants), and to provide the confidence
intervals on both mutants sampled, and also on the probable
equivalence of mutants remaining, so that other researchers can
estimate how much effort was put into eliminating equivalent
mutants.

For practicing testers, we suggest that the empirical bound
of 1,000 for sample size is sufficient for a reliable estimate
of mutation score, within a percentage. For developers looking
for even faster turnaround and practical advice on sampling, in
an extended online version of this paper (available on our web
sites and as a technical report) we discuss statistical techniques,
including Bayesian methods, for reducing sampling require-
ments further.

Our full data set is available for replication [53].
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IX. APPENDIX
A. Help for the tester

In this section, we outline the steps to be followed for
determining test suite quality using mutants. We use the R
statistical environment for our explanations.

For a practicing tester, the first question to be answered
about any new test case is whether it adds value to the existing
set of test cases. A secondary related question is whether
the number of test cases is sufficient. Using the outlined
procedures, answering these questions become a simple matter
of using the statistical test for proportions.

We use the Apache commons-math code base, which has
a true mutation score of 74.03%, to demonstrate the steps
involved. The distribution of mutation scores obtained using a
sample size of 1,000 for this project is visualized in Figure 2.
Say that we would like to know the approximate mutation
score of the project quickly. To do that, we sample 100 mutants
randomly out of the complete set of mutants. Let us assume
that we had a result of 77 detected mutants. We use that in R
to get the confidence intervals:

> prop.test (77, 100)

l-sample Proportions Test with continuity correction
data: 77 out of 100, nil probability 0.5

X-squared = 28.09, df = 1, p-value = 1.158e-07
alternative hypothesis: actual p is not equal to 0.5
95 percent confidence interval: 0.673059 0.845785
sample estimates: p = 0.77

Notice the 95% confidence interval, and the estimate,
which is close to the true mutation score. Suppose we would
like to verify whether we have crossed our target adequacy
level of an 80% mutation score a little more accurately. To do
that, we sample 1,000 mutants, detecting 758 mutants.

> prop.test (758,1000,p=c(0.80)

l-sample Proportions Test with continuity correction
data: 758 out of 1000, nil probability c(0.8)
X-squared = 10.7641, df = 1, p-value = 0.001035
alternative hypothesis: actual p is not equal to 0.8
95 percent confidence interval: 0.7299831 0.7840052
sample estimates: p = 0.758

Notice the tighter confidence intervals, which do not in-
clude the 80% boundary, and also the significant p-value which
suggests that we have not crossed the boundary yet.
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1) Bayesian tools: Bayesian approaches are an alternative
to the frequentist test of proportion above. They can use
existing information regarding the mutation score (such as a
previous run), and hence provide more accurate results.

The mutation score is the result of two random variables,
the total number of mutants, and detected mutants. This can be
modeled as a (§ distribution 5(s+1, f + 1) with the parameter
s representing number of successes, and f representing the
number of failures. For a 95% credible interval'®, we note
that only 5% of values lie outside this interval, of which half
are less than 0.05/2, and the other half are values greater than
1 —0.05/2. We pass in these quantiles, and also the mean
at 0.5 to the gbeta function, which returns the corresponding
values.

> gbeta(c(0.025, 0.5, 0.975), 77 + 1, 23 + 1)
[1] 0.6781545 0.7664411 0.8414316

This suggests that our 95% credible interval for mutation
score is between 67.81% and 84.14%, with predicted mutation
score of 76.64%. As in the previous experiment, we would
like to verify whether we have crossed the required score of
80% for a 1, 000-sample with 758 detection. We use the pbeta
function for that purpose.

> pbeta (0.8, 758 + 1, 242 + 1)
[1] 0.9994616

The relative frequency of detection is less than 0.8 with
probability 0.9995. Let us say we have already tested our
program before new changes were checked in, and we found
that 580 mutants were detected for a sample size of 1,000.
Since we have not modified the program and tests radically,
we have some confidence that our new score will be “close
enough” to the old score to serve as a prior. In order to use this
prior knowledge, we translate this score to a smaller sample
that captures our intuition for how much weight we should
give to the older result. Here, we translate our older score to a
sample size of 100 with 58 mutants detected. We simply use
this number in our formula and increase the samples evaluated.

> gbeta(c(0.025,0.5,0.975),58 + 758 +1, 42 + 242 +1)
[1] 0.7151307 0.7415254 0.7667981

By incorporating prior knowledge, we have improved our
95% credible interval to between 71.51% and 76.67%. This
usage of prior knowledge is visualized in Figure 7.

3Bayesian statistics uses “credible intervals” which are slightly different
from “confidence intervals”. A confidence interval is the likelihood that our
interval contains the correct value (which is a constant), while a credible
interval is the extent of uncertainty we have about the mean value (which
according to Bayesian statistics, is a random variable).

20-
>

Fig. 7. Using prior knowledge to improve prediction. Blue (dashed) graph
shows the prior knowledge, while the red (dotted) shows the result of current
sampling, resulting in our prediction (black). Our uncertainty in prior is
represented by its larger variance, hence lesser effect.
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