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Abstract—Mutation analysis is often used to compare the
effectiveness of different test suites or testing techniques. One of
the main assumptions underlying this technique is the Competent
Programmer Hypothesis, which proposes that programs are very
close to a correct version, or that the difference between current
and correct code for each fault is very small.

Researchers have assumed on the basis of the Competent
Programmer Hypothesis that the faults produced by mutation
analysis are similar to real faults. While there exists some
evidence that supports this assumption, these studies are based
on analysis of a limited and potentially non-representative set
of programs and are hence not conclusive. In this paper, we
separately investigate the characteristics of bug-fixes and other
changes in a very large set of randomly selected projects using
four different programming languages.

Our analysis suggests that a typical fault involves about three
to four tokens, and is seldom equivalent to any traditional
mutation operator. We also find the most frequently occurring
syntactical patterns, and identify the factors that affect the real
bug-fix change distribution. Our analysis suggests that different
languages have different distributions, which in turn suggests
that operators optimal in one language may not be optimal
for others. Moreover, our results suggest that mutation analysis
stands in need of better empirical support of the connection
between mutant detection and detection of actual program faults
in a larger body of real programs.

I. INTRODUCTION

Mutation analysis is a fault injection technique originally

proposed by Lipton [1] and is often used in software testing.

It is used as a means of comparison between different testing

techniques [2], as a means of estimating whether a test

suite has reached adequacy [3], and as a means of emulat-

ing software faults for the purposes of estimating software

reliability [4]. In fact, the validity of mutation analysis is

an assumption underlying considerable work in other suite

evaluation techniques, such as code coverage criteria [5].

Mutation analysis involves systematic transformation of

a program through introduction of first order syntactical

changes, and determines whether tests can distinguish the

mutated code from the original (presumed correct) source

code. A mutation score, which measures how many mutants

were distinguished from the original code by at least one test,

is used as a measure of the effectiveness of the test suite [6]

because it is believed to correlate well with the effectiveness

of the test suite in detecting real faults [7].

Mutation analysis relies on two assumptions: (1) the Com-

petent Programmer Hypothesis and (2) the Coupling Ef-

fect [8]. The Competent Programmer Hypothesis suggests that

the version of program produced by a competent programmer

is close to the final correct version of a program, while the

Coupling Effect claims that a test suite capable of catching

first order mutations will also detect higher order mutations

that contain these first order mutations. In practice, a strong

Competent Programmer Hypothesis (that for programs of any

size the initial version is syntactically close to correct) is fairly

obviously incorrect for large programs. However, mutation

analysis only rests on a weaker version: that the Competent

Programmer Hypothesis holds with respect to each individual

fault.

For mutation analysis to be successful, the mutants it pro-

duces should ideally be similar in character to the faults found

in real software. This property has been used in practice by

many researchers [2], [9]–[11], for generating plausible faults1.

While this has been investigated by a few researchers [7], [12]–

[14], the evidence is largely based on the real faults from a

single program. Further, except for the study by DeMillo et

al. [12], the similarities investigated were constrained to the

error trace produced [13], and the ease of detection [7], [14].

The existing body of work, especially by DeMillo et al.

underscores the necessity of further studies, with a much larger

sample of programs, especially in light of the proliferation of

programming languages and availability of open source soft-

ware. We expand the work by DeMillo et al. — which

investigated 296 bug-fixes from a single program (TeX) —

to faults from 5,000 programs in four different programming

languages (C, Java, Python, and Haskell) — a total of 240,000

bug-fixes.

We also extended our investigation to localized patches

that contain just a single modification in them, which should

contain a simple fault, and hence should be similar to those

produced by mutation operators. The incidence of bug fixes

and localized changes in the overall population is summarized

in Table I. The details of our data collection are summarized

in Section III.

Our analysis, summarized in Section IV, suggests there

is a huge variation in the incidence of different classes of

mutations, which are dependent on the kind of programming

language chosen. Further, there are a significant number of

change patterns which are different from the single token

change captured by standard mutation operators. Hence, using

all mutations equally would not be representative of the real

1These articles do not explicitly call upon the Competent Programmer

Hypothesis, but we believe that their use of mutation analysis-generated faults
instead of a fault seeding approach based on fault distributions is essentially
based on the Competent Programmer assumption.



faults in software, and most real faults do not match any

mutation operator. Further, the choice of mutation operators

also needs to be guided by the programming language used.

We provide a basis for future investigations in this regard.

The data for this study is available at Dataverse [15].

II. RELATED WORK

Our work is an extension of the work done by DeMillo

et al. [12], Daran et al. [13] Andrews et al. [7] and Namin et

al. [14] which attempts to relate the characteristics of mutation

operators to that of real faults. In the remainder of this paper,

we use the term mutation operator to indicate, in context, either

actual mutation operators applied during mutation analysis, or

the actual small changes made to code in bug fixes.

DeMillo et al. [12] were the first researchers to investigate

the representativeness of mutations to real faults empirically.

The investigated the 296 errors in TeX, and found that 21%

were simple faults (single token changes), while the rest were

complex errors.

Daran et al. [13] investigated the representativeness of

mutation operators to real faults empirically. They studied the

12 real faults found in the program developed by a student,

and 24 first order mutants. They found that 85% of the mutants

were similar to the real faults. While this paper highlights the

importance of relating the actual mutations to real faults, they

were constrained by their small sample size, a single program.

More importantly, the conclusions were based on only 12 real

faults.

Another important study by Andrews et al. [7] investigated

the ease of detecting a fault for both real faults and hand

seeded faults, and compared it to the ease of detecting faults

induced by mutation operators. The ease is calculated as the

percentage of test cases that killed each mutant. Their conclu-

sion was that the ease of detection of mutants was similar to

that of real faults. However, they based this conclusion on the

result from a single program, which makes it unconvincing.

Further, their entire test set was eight C programs, which

makes the statistical inference drawn liable to type I errors.

We also observe that the programs and seeded faults were

originally from Hutchins et al. [16] where the programs were

chosen such that they were subject to certain specifications

of understandability, and the seeded faults were selected such

that they were neither too easy nor too difficult to detect. In

fact they eliminated 168 faults for being either too easy or too

hard to detect, ending up with just 130 faults. This is clearly

not an unbiased selection. More seriously, this selection can

not tell us anything about the ease of detection of hand seeded

faults (because the criteria of selection itself is confounding).

These acute problems were highlighted in the work of

Namin et al. [14] who used the same set of C programs,

but combined them with analysis of four more Java classes

from JDK. They used a different set of mutation operators

on the Java programs, and used fault seeding using student

programmers on them. Their analysis concluded that we have

to be careful when using mutation analysis as a stand-in for

real faults. They found that programming language, the kind of

mutation operators used, and even test suite size has an impact

on the relation between mutations introduced by mutation

analysis and real faults. In fact, using a different mutation

operator set, they found that there is only a weak correlation

between real faults and mutations. However, their study was

constrained by the paucity of real faults available for just a

single C program (same as Andrews et al. [7]). Thus they were

unable to judge the ease of detection of real faults in these

Java programs. Moreover, the students who seeded the faults

had knowledge of mutation analysis which may have biased

the seeded faults (thus resulting in high correlation between

seeded faults and mutants). Finally, the manually seeded faults

in C programs, originally from Hutchins et al. [16], were

confounded by their selection criteria which eliminated the

majority of faults as being either too easy or too hard to detect.

These previous efforts prompted us to look at evaluating

mutation analysis from a different direction. We wondered if

the ease of detection was the only relevant criteria when com-

paring mutation operators and real faults. Why not compare

them directly, by comparing the syntactical patterns of both?

Even if it is argued that there may be interdependent changes

that make it difficult to compare, we can still get a reasonable

result by restricting our analysis to small localized changes

that are limited to a single change in a single file.

There has been other research in related fields that takes

a similar approach. Christmansson et al. [17], [18] analyzed

field data to come up with an error model that mimics real

faults, and used these to inject errors to simulate faults. Their

study classified the defects based on their semantics using

Orthogonal Defect Classification [19]. While this research is

useful in its domain, it is inapplicable to mutation analysis,

which is primarily a syntactical technique. We want to easily

generate bugs that look like and feel like real bugs with

relatively little context. We certainly don’t want to understand

the semantic content, e.g. whether a mutation introduces a

functional error, an algorithmic error, or a serialization error

(classifications of ODC).

Duraes et al. [20], [21] analyzed the change patterns in 9

open source C projects, and collected a total of 668 faults.

They adapted Orthogonal Defect Classification to provide a

finer classification of errors into missing, wrong, and extra-

neous language constructs. They find 64% of the faults were

due to missing constructs, 33% due to changes, and only 2.7%

were due to extraneous constructs. While this study is the

closest to our approach, they are also limited by concentration

on a single language (C), and a comparatively small number

of faults (532 faults) to ours. Further, while the classification

they provide is finer grained than ODC, it is still at a higher

level than the typical mutation operator implementations. In

comparison, our analysis of a larger set of data indicates that

addition and deletion were relatively similar in prevalence,

while changes dominated in all the languages we analyzed.

A larger study of similar nature by Pan et al. [22] extracted

27 bug fix patterns from the revision history of 7 projects,

which cover up to 63.3% of the total changes, and computed

the most frequent patterns. Their study, like the previous one



1

2 class MyClass {

3 int loop(int counter) {

4 int i = 0;

5 while(i < counter) {

6 * <count = count +1 | i++ >;

7 }

8 * return <count | i>;

9 }

10 }

Fig 1: An example patch

by Duraes analyzed the patterns from a higher level than

typical mutation operators, and hence is not directly applicable

to mutation analysis. Further, their analysis is restricted to Java

programs which, along with the limited number of projects

reduces their applicability.

Our research uses machine learning techniques to automat-

ically classify patches as bug-fix or non bug-fix based on an

initial set of changes that we manually classified. Mokus et

al. [23] first used a classifying approach that relied on the

presence of keywords. They classified changes into categories

of fixes, refactoring and features.

Another related study is by Purushotam et al. [24] who

analyzed the change history of a large software project,

specifically focusing on small (one line) changes. They were

interested in finding the patterns of changes that can induce an

error with high probability in software. The study is interesting

for the distribution they found for small changes, which we

also consider. They found that 10% of the total changes

involved a single line of code, and 50% were below 10 lines,

dropping to 5% for those above 50 lines. They also suggest that

most changes involved inserting new lines of code. Our study

found that small (localized) changes can range from 26.2% in

C to 62.7% in Haskell (see Table I).2

C Java Python Haskell

Localized changes 26.241 27.278 43.770 62.685
Bug-fixes 44.314 29.612 34.395 31.009

Localized bug-fixes 10.464 9.053 16.541 16.486

TABLE I: Localized changes and bug-fixes prevalance in %

III. METHODOLOGY

We were primarily interested in finding answers to the

following questions.

Q Can we find empirical evidence for or against the

Competent Programmer Hypothesis? Can we find any

support for the assumption that real faults look like those

produced by typical mutation operators? Can we do this

by analysis of patches (whether it be the complete set

of changes or a subset that is identified as bug-fixes or

2The percentages given in Table I are overlapping. The set of changes is
divided into bug-fixes and feature updates, and orthogonal to that, as localized
(single line), and non-localized (mult-line) changes

localized small bug-fixes that should be fixes for simple

faults)?

Q How much of an effect does programming language have

on the distribution of change patterns? Can we extend

the results from the distribution of syntactical changes or

fault patterns in one language to another? We especially

want to make sure that we compare apples to apples here

and look at a common set of mutation operators across

different languages.

Q What are the most common mutation operators? Are

they different from the traditional mutation operators

that are commonly used? Can we provide any guidance

to future implementors of mutation tools so that muta-

tion operators produced look similar to real faults?

We wanted our results to be applicable to a wide variety

of languages and ensure that our analysis did not suffer from

bias for a particular language group. We chose four languages,

each representative of an important kind of development. We

chose C as the dominant systems programming language,

widely used in the most critical systems for testing. Java was

chosen as a popular programming language used in enterprise

applications. The choice of Python was driven by its status

as one of most popular languages in the dynamically typed

community, and its use in many domains including statistics,

mathematics, and web development. Finally Haskell, while

less popular than the other three, is a popular strongly typed

functional language preferred in academic research.

To ensure that we had a relatively unbiased population from

each language, we searched for projects in Github [25] with

criteria stars :>= 0 and filtered by the language side bar.

We used this criteria since this is a nil-filter—the stars start

from ‘0’—and hence no project was excluded. This search

resulted in 1850 projects for C, 1128 for Java, 1000 for Python,

and 1393 for Haskell.

A. Classifying patches

Each project from Github came with its entire revision

history, which is accessible as a set of patches. To answer

our research questions we had to differentiate between bug-

fixes—where some pre-existing fault was fixed—and patches

that were not bug-fixes. Since we lacked resources to man-

ually classify our entire dataset, we made use of machine

learning techniques. We manually classified 1200 patches as

bugs or non-bugs for each of the languages. Out of these

4800 classified patches, we used 4000 to train our classifiers,

and used 800 (200 from each) to cross validate our trained

classifiers. We achieved an accuracy of 78.87% using CRM114

classifier [26] which gave us the highest accuracy out of

Bayesian, Bishop, LSI, and SVM classifiers. The acceptance

accuracy for bugs was 73.19%, while the rejection accuracy

was 81.24%. We got overall better results by combining

training examples from all the languages than by training

on each in isolation. For example, using individual training,

accuracy obtained for Java was 76.5% (acceptance: 64.4%,

rejection 81.5%), 77% (acceptance: 76.8%, rejection: 77.1%)

for Python, 71% (acceptance: 69.7%, rejection: 71.8%) for C,



0 2 4 6 8 10

0
2

4
6

8
1

0

(a) C

Added tokens

R
e

m
o
ve

d
 t

o
k
e

n
s

0 2 4 6 8 10

0
2

4
6

8
1

0

(b) Java

Added tokens

R
e

m
o
ve

d
 t

o
k
e

n
s

0 2 4 6 8 10

0
2

4
6

8
1

0

(c) Python

Added tokens

R
e

m
o
ve

d
 t

o
k
e

n
s

0 2 4 6 8 10

0
2

4
6

8
1

0

(d) Haskell

Added tokens

R
e

m
o
ve

d
 t

o
k
e

n
s

Fig. 2: Density plot of added vs removed number of tokens in replacement changes for full distribution

and 76% (acceptance: 70.9%, rejection: 76.9%) for Haskell.

This rate is close to the rate obtained by leading research [27]

in classification of bugs and non-bugs, which obtained an

accuracy between 77% to 82% using change tracking logs.

After classification, we found that 44.31% of commits in

C were bug fixes, 29.6% for Java, 34.39% for Python and

31.01% for Haskell. The distribution is given in Table I.

B. Generating normalized patches

Next, we wanted to collect the patches in each project,

after discounting for the differences due to whitespace and

formating changes. To accomplish this, for each project, the

following procedure was applied to collect normalized patches

for each projects.

First, the individual revisions of files were extracted, and

they were cleaned up by stripping comments, joining multi-

line statements, and hashing string literals. These were then

re-formated by passing through a pretty-printer. This removed

the differences due to addition or removal of comments or due

to formating changes. Next, successive revisions were diffed

against each other using a token-based diffing algorithm, and

the patches thus produced were collected.

C. Sampling

We were interested in finding the distribution of token

changes, unbiased by effects of project size, developer or

project maturity, or other unforeseen factors. For statistical

inference to be valid to a given population, the observations

from which the inference is drawn should be randomly sam-

pled from the targeted population. For this purpose, we decided

to generate random samples of patches from the projects we

had.

We generated 10 random samples, with each containing

1,000 patches for combinations of the following sets—whether

they are bugs or not (bug, nonbug, all), whether the bug fix was

localized or otherwise (small, all), and each of the languages



(a) C

Average length

D
e

n
s
it
y

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Java

Average length

D
e

n
s
it
y

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

All

Bugfix

Localized bugfix

(c) Python

Average length

D
e

n
s
it
y

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Haskell

Average length

D
e

n
s
it
y

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 3: Average length of added vs removed tokens

(C, Java, Python, Haskell). This generated 3×2×4×10 = 240
samples (240,000 patches, but some may be repeated in

multiple samples).

D. Collecting chunks

Each patch is composed of multiple segments in the file

where some text was removed, or added, or some text was

replaced (remove + add). An example patch is given in

Figure 1. This patch contains two chunks. The first chunk

is in line 6 and involves removal of 5 tokens, and addition of

two tokens. The second one is in line 8, and involves removal

of a single token and addition of another. These chunks were

extracted and processed further by eliminating syntactic sugar

elements such as parenthesis3, commas, etc. and collapsing

strings to their checksums for easier processing. The tokens

3We may therefore miss some changes that involved semantically mean-
ingful parenthesis additions, but this is also not a standard mutation operator.

thus identified were then passed through a lexical identifier

which replaced each lexical element by its class. We use chunk

and change interchangeably in this paper.

E. Identifying mutation operators

For ease of comparison between different languages, we

chose to use a single set of mutation operators applicable

across different programming languages. We started with the

original 77 operators proposed for the C programming lan-

guage by Agrawal et al. [28]. We then removed operators that

could not be matched from the context of changes. The muta-

tion operator variants that were mirror images were collected

under a single name. Further, a few mutation operators were

discarded because they were inapplicable in other languages.

The mutation operators were further grouped into classes for

analysis. Further, the added, removed and changed patterns

that could not be classified under any existing mutation

operators were grouped in their own categories, resulting in ten



mutation operator categories. A complete listing is provided in

Table VI. The distribution of average token count is provided

in Table XIII where max ǫ is the largest percentage detected

in the remaining token bins.

C Java Py Hs

Add:oth 16.483 17.757 17.082 30.114
Change:oth 32.219 25.115 29.443 32.363

Rem:oth 13.372 14.526 12.215 23.263
Twiddle 0.219 0.057 0.047 0.070

Const 5.425 2.515 6.205 2.270
Var.Const 4.981 2.045 3.372 1.045

Var 26.641 37.744 31.487 10.721
BinaryOp 0.119 0.031 0.033 0.026
Negation 0.428 0.186 0.098 0.102

TABLE II: Summary of mutation operators for all changes

C Java Py Hs

Add:oth 28.781 29.805 22.699 31.607
Change:oth 23.352 21.078 26.439 29.294

Rem:oth 12.877 13.139 11.614 19.742
Twiddle 0.614 0.286 0.094 0.160

Const 12.126 13.086 21.442 8.545
Var.Const 5.533 4.095 4.384 2.240

Var 14.979 17.279 12.881 7.979
BinaryOp 0.453 0.307 0.158 0.054
Negation 0.932 0.728 0.189 0.332

TABLE III: Summary of mutation operators for localized

changes

C Java Py Hs

Add:oth 15.705 19.519 18.714 29.788
Change:oth 32.823 27.470 29.971 33.395

Rem:oth 13.284 15.418 13.529 23.352
Twiddle 0.126 0.049 0.010 0.020

Const 4.242 2.741 7.614 2.101
Var.Const 3.648 2.240 4.808 1.511

Var 29.776 32.314 25.094 9.726
BinaryOp 0.058 0.013 0.019 0.011
Negation 0.296 0.222 0.229 0.086

TABLE IV: Summary of mutation operators for bug-fixes

C Java Py Hs

Add:oth 29.861 33.103 26.629 33.162
Change:oth 21.686 19.032 28.097 28.149

Rem:oth 12.168 13.082 11.308 18.696
Twiddle 0.852 0.392 0.161 0.259

Const 11.899 10.779 14.226 8.060
Var.Const 5.359 3.634 4.461 2.156

Var 15.856 18.366 14.678 8.773
BinaryOp 0.646 0.326 0.163 0.130
Negation 1.198 1.093 0.165 0.490

TABLE V: Summary of mutation operators for localized

bug-fixes

IV. ANALYSIS

According to a naive interpretation of the Competent Pro-

grammer Hypothesis, a majority of changes we see should

be simple and localized and look like traditional mutants.

The traditional mutation operators all operate on changing a

single token. In order to investigate whether this is the case,

we plotted the number of tokens added versus the number

of tokens deleted in each change. The result of this analysis

is shown in Figure 2 for each language. This figure shows

that while there are a significant number of changes that are

one token (ǫ changes), there is a large number of changes that

include more than one token in both added and deleted counts.

We note that these are not captured by the traditional mutants.

A second concern we had was about the difference between

the distributions of bug-fixes and other changes, and the

impact of different languages. We plotted the histograms of

average change lengths (computed as the average of added

and removed tokens per change) for each of the languages.

This is shown in Figure 3. The plot indicates that bug-fixes

do not significantly differ from the main change patterns.

However, the figure indicates a difference in distribution

between different languages.
To confirm our finding, we use statistical methods. Students

two-sample t-test is a statistical test that checks whether two
sets of data differ significantly. We use it to determine whether
essential characteristics of changes differ between bug-fixes
and other commits, and between different languages. We also
provide a comparison with difference in mean between the
two distributions obtained by running Students t-test. These
were significant for p < 0.05 except where indicated. The
difference between the bug-fix changes and others are tabu-
lated in the Table VII. We note that the difference between
bug-fix and others changes is universally very low for all four
programming languages, confirming our initial finding from
Figure 3.

Bug-fix Nonbug *SBug LowCI HighCI MeanD Pval

C 4.19 4.17 3.08 -0.06 0.09 0.02 0.65
Java 4.22 4.18 3.18 -0.07 0.14 0.03 0.53

Python 4.39 4.22 3.91 0.07 0.27 0.17 0.00
Haskell 4.48 4.46 3.93 -0.08 0.13 0.02 0.69

TABLE VII: Average tokens changed between bug-fixes and

other changes

Next we compare the distributions of tokens between dif-

ferent languages. The mean difference from Students t-test is

given in Table VIII. These were not significant for the pair

C and Java, but was significant with p < 0.05 for all other

language pairs.

C Java Python Haskell
MD LCI HCI MD LCI HCI MD LCI HCI MD LCI HCI

C 0 0 0 -0.02 -0.09 0.04 -0.1 -0.2 -0.06 -0.3 -0.4 -0.2
J -0.02 -0.09 0.04 0 0 0 -0.1 -0.2 -0.03 -0.3 -0.3 -0.2
P -0.1 -0.2 -0.06 -0.1 -0.2 -0.03 0 0 0 -0.2 -0.2 -0.09
H -0.3 -0.4 -0.2 -0.3 -0.3 -0.2 -0.2 -0.2 -0.09 0 0 0

TABLE VIII: Mean difference for average tokens changed

between different languages (p < 0.05 except C x Java)

We observe here that while the difference between lan-

guages seems small, there is a large similarity between C and

Java patterns, and Haskell is closer to Python than others. This

seems somewhat intuitive if we consider that C and Java are

descendants of the Algol family, while Python to a large part

supports functional programming paradigms, of which Haskell

is an exemplar.
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Fig. 4: Relative occurrence of mutation operators

A. Mutation operator distribution

A major part of our analysis is the comparison of mutation

operator distributions across different languages and kinds

of patches. We analyze the difference between the complete

distribution, that of just bug-fixes alone, and localized bug-

fixes. This is visualized in Figure 4. The summary of mutation

operators are also provided as in Table II, and a summary of

mutation operators for localized changes are given in Table III.

Finally, Table IV tabulates the distribution of mutation oper-

ators for bug-fixes, and Table V the distribution of localized

bug fixes. The mutation operator class explanations are given

in Table VI.

B. Regression Analysis

Regression analysis is a statistical process that helps us

to understand the relative contributions of different variables.

Here, we make use of regression analysis to assess the contri-

bution of class of mutation operator, programming language,

and the kind of change (bug-fix or otherwise) to the prevalence

of the mutation operator.

First we run our analysis for the complete distribution,

analyzing which model fits best. Next, we run our analysis on

only the patches classified as bug-fixes, and finally on those

localized bug-fixes. We use the keys given in Table IX to refer

to the variables in the model.

Variable Name

P Prevalence of mutation operator
O Operator (Mutagen operator)
L Language
B Bug-fix or otherwise

TABLE IX: Explanations of model variables

1) Complete Distribution: We started with the full model

containing the full interactions between all given variables.

µ{P |O,L,B} = O+L+B+O×L+O×B+L×B+O×L×B



Class Explanations

Add:oth Added tokens not including twiddle, negation, unary and statement mutation operators
Change:oth Replaced tokens not classified under any of other changes
Rem:oth Removed tokens not including twiddle, negation, unary and statement mutation operators
Twiddle Addition or removal of +/- 1 or the use of unary increment or decrement operators
Const Change in constant value
Var.Const Changing a constant to a variable or reverse
Var Changing a variable to another variable
BinaryOp Changing a binary operator to another
Negation Negation of a value (includes arithmetic, bitwise, and logical)

TABLE VI: Explanations of mutation operator classes
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Fig. 5: Op× Language interaction

However, not all the variables were significant contributors to-

wards the prevelance of the mutation operator. We sequentially

eliminated non-significant variables resulting in

µ{P |O,L,B} = O + L+O × L

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 101703.67 11300.41 1724.49 0.0000
Language 3 0.00 0.00 0.00 1.0000
Op:Language 27 10669.20 395.16 60.30 0.0000
Residuals 760 4980.20 6.55

TABLE X: Results of the model fit for complete distribution

This provides us the best fit given in Table X, and has

correlation coefficient R2 =0.955. This suggests that a patch

has similar change patterns irrespective of whether it is a bug-

fix or otherwise. This is also suggested by the interaction

plot between mutation operator bug-fixes given in Figure 6.

Further, we also see the evidence of non additive interaction

between mutation operators and language in Figure 5 and in

the ANOVA results in Table X.
2) Localized Change Distribution: Next, we analyze the

localized changes. These are changes that modify only a single

file in a single part such that the change is restricted to a

single chunk. We investigate localized changes because they

are closest to the changes produced by mutation operators.

µ{P |O,L,B} = O+L+B+O×L+O×B+L×B+O×L×B

Interestingly, for localized distribution, the interaction between

mutation operators, language, and bug-fix is significant, which

makes the full model the one with the best fit. The model has

R2 =0.955, and the model ANOVA is given in Table XI.

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 79759.07 8862.12 4088.18 0.0000
Language 3 0.00 0.00 0.00 1.0000
Bug 1 0.00 0.00 0.00 1.0000
Op:Language 27 5319.62 197.02 90.89 0.0000
Op:Bug 9 1378.17 153.13 70.64 0.0000
Language:Bug 3 0.00 0.00 0.00 1.0000
Op:Language:Bug 27 860.12 31.86 14.70 0.0000
Residuals 720 1560.77 2.17

TABLE XI: Results of the model fit for localized distribution

3) Localized Bug-fix Distribution: The previous result in-

duced us to also look at the distribution of localized bug-fixes.

These are localized changes that were also identified as bug-

fixes. This results in a very close fit model with a coefficient

of correlation R2 =0.991. The result of ANOVA is given in

Table XII.

µ{P |O,L} = O + L+O × L

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 42910.04 4767.78 4880.83 0.0000
Language 3 0.00 0.00 0.00 1.0000
Op:Language 27 2002.98 74.18 75.94 0.0000
Residuals 360 351.66 0.98

TABLE XII: Results of the model fit for complete

distribution
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C all J all P all H all C bug J bug P bug H bug

0.5 4.9 6.1 6.2 10.5 5.5 6.3 4.2 10.8
1 29.7 23.6 20.5 31.9 30.2 23.9 19.4 34.7

1.5 36.4 32.2 26.5 42.3 36.4 32.0 24.8 41.7
2 47.2 41.7 38.2 50.7 47.5 42.2 37.3 51.4

2.5 52.1 48.9 42.5 56.3 51.9 48.5 40.8 55.5
3 63.9 65.5 59.9 64.6 63.9 65.7 59.2 64.7

3.5 67.9 70.3 64.8 68.3 67.7 69.9 63.7 67.8
4 72.6 74.9 72.3 72.2 72.5 74.8 71.8 72.4

4.5 75.5 77.6 74.9 75.4 75.3 77.4 74.1 75.0
5 81.1 81.2 80.4 78.1 81.0 81.0 80.2 78.1

5.5 82.8 83.1 82.6 80.2 82.7 82.9 82.1 79.9
6 85.1 84.6 84.8 82.0 85.0 84.5 84.6 82.1

6.5 86.2 86.0 86.2 83.7 86.1 85.8 85.8 83.5
7 88.1 87.5 88.3 85.1 88.0 87.5 88.1 85.0

7.5 89.0 88.5 89.3 86.6 88.9 88.4 89.0 86.3
8 90.0 90.2 90.4 87.5 89.9 90.1 90.3 87.5

8.5 90.6 90.9 91.3 88.4 90.5 90.8 91.0 88.2
9 91.4 91.9 92.2 89.2 91.4 91.8 92.1 89.1

9.5 92.0 92.3 92.9 90.0 91.9 92.2 92.6 89.8
10 92.7 92.9 93.5 90.6 92.6 92.8 93.3 90.6

maxǫ 0.5 0.6 0.6 0.7 0.5 0.6 0.7 0.6

TABLE XIII: Cumulative density(%) of average token

changes

V. RESULTS

Our first question was whether we could quantify the

Competent Programmer Hypothesis, and verify whether real

faults look like mutation operators. Our analysis shows that a

significant number of changes are larger than the common

mutation operators. A typical change modifies about three

to four tokens in all the programming languages surveyed.

This increases to addition or removal of about six to eight

tokens if we consider addition or removal changes rather than

replacement. This increases to five tokens (ten tokens for

addition or removal) if we wish to include at least 80% of

the real faults, and remains relatively the same even when we

consider localized bug-fixes which we had expected to have a

distribution similar to that produced by mutation analysis, pro-

vided the Competent Programmer Hypothesis is applicable to

the mutants produced. This suggests that our understanding of

the Competent Programmer Hypothesis, at least as suggested

by typical mutation operators, may be incorrect.

This also suggests that in at least one dimension—that of

patterns of change—mutations are different from real faults.

Our next effort was to identify whether programming lan-

guage had any effect on the distribution of mutants, first

without considering the different mutation operators, and later,

including the differences between mutation operators. Our

initial analysis in Table VII and Table VIII indicated that while

there are interesting affinities between different languages

with regard to the syntactical distance, the effect itself was

weak when different mutation operators were not considered.

However, once we consider the different classes of mutation

operators, as shown in the interaction plot in Figure 5, there

is a significant difference in mutation distribution between

different programming languages. Finally we conclusively

showed using regression analysis that language is an important

contributor to the mutation operator distribution in Table X.

The result holds true even for localized bug-fixes as shown in

Table XII.

This quite strongly suggests that while the average change

involves touching about four tokens in all languages examined,

different languages encourage different mutation patterns. This

suggests that we have to be careful while adapting the results

from a different language.

As our final step, we investigated the most common muta-

tion operators. Our results shown in Figure 4, and tabulated in

Table II, Table III, and Table V show that different languages

have different mutation patterns. Addition, deletion, and the

replacement of tokens, especially those that did not come

under traditional mutation operators, dominated the mutation

operator distribution. This suggests a need for more effective

ways to simulate real faults.

An interesting result is also that the distribution we iden-

tified between changes of addition and removal (which are



somewhat similar in magnitude in each language surveyed)

is somewhat at odds with previous research [20] which finds

addition of statements to be the highest category (64%), while

deletion was small at 2.7%.

Another interesting finding is also the difference between

Haskell and other languages in the prevalence of localized

changes. We found that for Haskell, more than 60% of the

changes were localized changes. Further, we also found that

Haskell showed a higher affinity with Python than other lan-

guages with regard to change length distribution (Table VIII).

In order to ensure that our automatic classification was not

a source of error, we also analyzed manually classified patches

separately, the results of which were in line with the results of

this paper. Due to lack of space, the results of this analysis are

not shown here, but these are available online and summarized

in the appendices of this paper [29].

VI. DISCUSSION

Mutation analysis is a very useful technique that is com-

monly used by researchers as a stand-in for test suite quality.

Its theoretical foundations rely on two important concepts: that

of the Competent Programmer Hypothesis, and the Coupling

Effect. While the Coupling Effect has been investigated to

some extent both theoretically [30], [31] and empirically [32],

relatively little research has investigated Competent Program-

mer Hypothesis.

In this paper, we investigated the Competent Programmer

Hypothesis. According to Budd et al. [33] and DeMillo [34],

a competent programmer constructs programs that are at most

one simple fault [32] away from correctness, and the program,

together with the mutants generated—the finite neighborhood

Φ(P )—would include the correct program. The implicit claim

is that real world programmers are in fact competent, at least

most of the time and with regard to a particular program unit

and fault. Mutation analysis looks for tests that are adequate

relative to Φ.

For the ease of discourse, we define different versions of

the Competent Programmer Hypothesis, differentiated by their

syntactical finite neighborhood Φ̄δ(P ), that is, Φ̄1(P ) are all

the mutants that are at most one token away.

The current generation of mutation operators are over-

whelmingly members of Φ̄1 (excepting a few OO operators for

Java [35] and the statement deletion operator [36]). However,

our finding is that real faults appear to have a mean token

distance of three to four, for all languages examined.

This also brings us to the question of effectiveness of the

Coupling Effect on these larger changes. Coupling has been

demonstrated to work only using the entire domain of higher

order faults. We note that the actual empirical data indicates

that real faults occur in such a way as to ensure that the real

higher order faults are drawn not from the entire domain, but

a much restricted domain of (what we suspect is) a semantic

neighborhood of the correct program. It could be that detecting

mutants from the Φ̄1 family does detect 90% or more of

mutants from the full Φ̄δ>1 family, but that real faults fall

heavily into the 10% of mutants hard to detect, for example,

since the distributions do not resemble the syntactic space of

higher order operators. Hence, we suggest further research

needs to be done to empirically show that the Coupling Effect

holds on real faults, especially on those belonging to Φ̄δ>1.

We also note that the effectiveness of mutation analysis need

not be tied to its theoretical basis. That is, if suites that

effectively kill mutants based on Φ̄1 also have a very high

likelyhood, in a purely empirical sense, of also detecting faults

very well, that the mutants do not resemble the faults does not

matter. However, this itself is in fact the real Coupling Effect

that needs to be demonstrated, and as we noted in Section II

the current evidence is not strong enough to place mutation

analysis on a sound footing.

VII. THREATS TO VALIDITY

While we have taken utmost care to avoid errors, our results

are subject to various threats. First, our samples have been

from a single source—open source projects in Github. This

may be a source of bias, and our inferences may be limited

to open source programs. However we have not seen any

evidence of open source programs differing from closed source

programs in terms of fault patterns.

Github selection mechanisms favoring projects based on

some confounding criteria may be another source of error.

However, we believe that the large number of projects sampled

more than adequately addresses this concern.

Another source of error is in the bug classification of

patches. However, we have followed current research recom-

mendations, and obtained a result in classification that is close

to that obtained from current best research in the field.

VIII. CONCLUSION

One of the main assumptions in mutation analysis is the

Competent Programmer Hypothesis, which claims that real

programs are very close to correct. If this assumption holds

true, then mutation analysis will produce faults that are

similar to real faults. However, except for an initial small

scale research by DeMillo et al., there has been a lack of

research quantifying the syntactic changes involved in real

faults, especially with an adequate number of subjects.

Our research attempts to quantify the syntactic differences

found in real faults, and finds that faults produced by typ-

ical mutation operators are not representative of real faults.

Therefore the Competent Programmer Hypothesis, at least

from a syntactical perspective, may not be applicable. This

suggests that mutation analysis requires further research to

place the use of mutants to evaluate suites on a firm empirical

footing. Moreover, the differences between results for different

programming languages suggest that mutation operators may

need to vary even more than has been suspected in order to

work in new languages.

APPENDIX

A. Average tokens changed in each language

The Table XIV represents the average tokens changed in

each language for the manually classified set of commits. This



suggests that the average changes are indeed larger than single

tokens. This corresponds to our observation in the paper, that

the changes made by developers do not correspond to what

we expect if the competent programmer hypothesis is true.

C Java Python Haskell

Bugs 6.96 6.53 10.67 10.74
Features 7.77 7.79 8.11 6.5

TABLE XIV: Average number of tokens changed for

manually classified patches

B. Summary of mutation operators

Table XV and Table XVI provide the average prevalence

of operators in manually classified commits. We note that

while the values differ somewhat from those obtained using

the automatically classified data set, they still support our

conclusion, which was that there is a significant difference

between different languages in patterns of errors, even when

considering operators that are common across languages.

C Java Python Haskell

Add 17.07 15.8 20.33 45.93
BinaryOp 0.0 0.0 0.0 0.0

Change 27.91 16.31 26.71 10.97
Const 6.34 2.77 0.76 0.62

Negation 0.12 0.15 0.0 0.0
Rem 11.19 18.57 23.67 29.02

Twiddle 0.12 0.0 0.3 0.0
Var 34.26 45.16 27.47 6.96

Var.Const 3.0 1.24 0.76 0.11

TABLE XV: Summary of mutation operators for all changes

C Java Python Haskell

Add 17.28 27.4 12.5 36.49
BinaryOp 0.0 0.0 0.0 0.0

Change 30.04 20.62 25.0 4.03
Const 6.17 6.5 6.25 0.95

Negation 0.21 0.28 0.0 0.0
Rem 12.76 13.56 31.25 54.27

Twiddle 0.21 0.0 0.0 0.0
Var 32.1 27.4 25.0 1.66

Var.Const 1.23 4.24 0.0 0.0

TABLE XVI: Summary of mutation operators for all bugfixes
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“Is it a bug or an enhancement?: A text-based approach to classify
change requests,” in Proceedings of the 2008 Conference of the Center

for Advanced Studies on Collaborative Research: Meeting of Minds, ser.
CASCON ’08. New York, NY, USA: ACM, 2008, pp. 23:304–23:318.
[Online]. Available: http://doi.acm.org/10.1145/1463788.1463819

[28] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W.
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Design of mutant
operators for the C programming language,” Software Engineering
Research Center, Purdue University, West Lafayette, IN,, Tech. Rep.
SERC-TR41-P, March 1989.

http://doi.acm.org/10.1145/267580.267590
http://doi.acm.org/10.1145/229000.226313
http://doi.acm.org/10.1145/2001420.2001461
http://dx.doi.org/10.7910/DVN/24329
http://dx.doi.org/10.1007/s10664-008-9077-5
http://dx.doi.org/10.1007/s10664-008-9077-5
http://www.github.com
http://crm114.sourceforge.net
http://doi.acm.org/10.1145/1463788.1463819


[29] Rahul Gopinath, Carlose Jensen, Alex Groce, “Appendix
to mutations: How close are they to real faults?” http:
//research.engr.oregonstate.edu/hci/sites/research.engr.oregonstate.
edu.hci/files/papers/gopinath2014issre-appendix.pdf.

[30] K. Wah, “A theoretical study of fault coupling,” Software testing,

verification and reliability, vol. 10, no. 1, pp. 3–45, 2000.
[31] K. How Tai Wah, “An analysis of the coupling effect i: single test data,”

Science of Computer Programming, vol. 48, no. 2, pp. 119–161, 2003.
[32] A. J. Offutt, “Investigations of the software testing coupling effect,”

ACM Transactions on Software Engineering and Methodology, vol. 1,
no. 1, pp. 5–20, 1992.

[33] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs,” in Proceedings of the 7th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. ACM,
1980, pp. 220–233.

[34] R. A. DeMillo, “Completely validated software: Test adequacy and
program mutation (panel session),” in Proceedings of the 11th ICSE,
ser. ICSE ’89. New York, NY, USA: ACM, 1989, pp. 355–356.
[Online]. Available: http://doi.acm.org/10.1145/74587.74634

[35] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mutation operators
for java,” in Software Reliability Engineering, 2002. ISSRE 2003.

Proceedings. 13th International Symposium on. IEEE, 2002, pp. 352–
363.

[36] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf,
“An experimental determination of sufficient mutant operators,” ACM

Transactions on Software Engineering and Methodology, vol. 5, no. 2,
pp. 99–118, 1996.

http://research.engr.oregonstate.edu/hci/sites/research.engr.oregonstate.edu.hci/files/papers/gopinath2014issre-appendix.pdf
http://research.engr.oregonstate.edu/hci/sites/research.engr.oregonstate.edu.hci/files/papers/gopinath2014issre-appendix.pdf
http://research.engr.oregonstate.edu/hci/sites/research.engr.oregonstate.edu.hci/files/papers/gopinath2014issre-appendix.pdf
http://doi.acm.org/10.1145/74587.74634

