Help, Help, I'm Being Suppressed!
The Significance of Suppressors in Software Testing

Alex Groce

Oregon State University
{grocea, zhangch, alipourm} @onid.orst.edu

Abstract—Test features are basic compositional units used to
describe what a test does (and does not) involve. For example,
in API-based testing, the most obvious features are function
calls; in grammar-based testing, the obvious features are the
elements of the grammar. The relationship between features
as abstractions of tests and produced behaviors of the tested
program is surprisingly poorly understood. This paper shows
how large-scale random testing modified to use diverse feature
sets can uncover causal relationships between what a test contains
and what the program being tested does. We introduce a general
notion of observable behaviors as targets, where a target can
be a detected fault, an executed branch or statement, or a
complex coverage entity such as a state, predicate-valuation, or
program path. While it is obvious that targets have triggers
— features without which they cannot be hit by a test —
the notion of suppressors — features which make a test less
likely to hit a target — has received little attention despite
having important implications for automated test generation
and program understanding. For a set of subjects including C
compilers, a flash file system, and JavaScript engines, we show
that suppression is both common and important.

I. INTRODUCTION

This paper uses large-scale random testing to show that
what is not included in a test can frequently be a key factor in
determining its effectiveness for coverage and fault detection.
Large-scale random testing (using swarm testing [1]) provides a
“statistical window” into the relationship between what we can
control about a test case (e.g., which APIs are called, which
features of the C or JavaScript language are used, which HTML
tags appear, etc.) and what we observe when we execute the
test case (e.g., coverage of statements/branches/paths, faults
detected, invariants that hold, program states reached, etc.).
The relationship between controllable and observable aspects
of testing provides insights into the structure of a program’s
state space and how to generate more effective test suites. In
particular, omitting features from tests can positively affect the
ability of a test to explore interesting behavior.

A. Features: Controllables

A feature in this paper means a property of a test case for a
system [1]. This use is different than (but related to) features in
customizable programs/software product lines [2]. Formally, a
feature is any property of a test case that can be imposed
at test generation time without increasing computational
complexity. For example, when testing an API-based system,

Chaogiang Zhang Mohammad Amin Alipour
School of Electrical Engineering and Computer Science

Eric Eide Yang Chen John Regehr
School of Computing
University of Utah

{eeide, chenyang, regehr} @cs.utah.edu

yaffs_symlink ("/ram2k", "/ram2k/fssr");
int f£d0 = yaffs_open("/ram2k/fssr/yr", O_TRUNC|O_WRONLY) ;
yaffs_lstat ("/ram2k/fssr/sshd", &st_buff);

(A) Simplified random test case for the YAFFS2 file system, with boilerplate code
removed. Features are API calls. The feature set is: {symlink, lstat, open}. Many
features (close, write, etc.) are not present.

tryItOut ("L: {constructor = __parent_ ; }");
tryItOut ("prototype = constructor;");
tryItOut ("__proto__ = prototype;");

tryItout ("with({}) {_proto__.__proto__=_parent_ ;} ");

(B) Simplified random test case (without jsfunfuzz infrastructure) for SpiderMonkey
JavaScript shell. Features here include labels, assignments, and with blocks, but do not
include try blocks, infinite loops, or XML.

Fig. 1. Features for Random Test Cases

every function/method can be considered a feature — it is
simple to generate tests that contain or do not contain a given
call. For grammar-based test generation, a feature might be a
terminal or production in the grammar — e.g., when testing a C
compiler, including or not including pointer variables. Features
should be not only easy to impose at generation, but at worst
linear to detect in a test case. A feature set is a constraint on
a test case, in terms of what it must not contain.!

This concept of features is intuitive and naturally adopted
by the developers of (random) testing systems. Most industrial-
strength random testing systems (and many model checking
harnesses) already support this notion of features [3], [4], [5],
[6]. Figure 1 shows test cases generated by two such systems
and discusses their feature sets. It is also quite easy to impose
feature sets in a symbolic or concolic testing harness. In this
paper we use “feature set” and “configuration” interchangeably,
as a feature set is simply a configuration for a test generator
that determines which tests can be produced.

B. Targets: Observables

A target is a behavior of a software system that some test
cases may produce and other tests may not produce. The most
obvious targets are faults and coverage entities. A test case may
either expose a given fault or not, execute a given block or not,
take a branch or not, execute a given path or not, reach a state
in a Boolean abstraction or not, and kill a given mutant or not.
Faults, blocks, branches, paths, predicate-complete test (PCT)
coverage points [7], and mutants therefore are all targets, and
a test case hits a target if it exposes/covers it. It is tempting to

"Most random testing systems do not guarantee that an allowed feature is
actually present, but non-inclusion is usually very rare.

equate targets with sets of program states — certainly sets of
program states are targets (targets thus include all reachability
properties). However, some targets (e.g., path coverage) may
not be expressible as reachability properties without the use of
history variables. For the examples in Figure 1, the hit targets
include all statements and branches executed when performing
the file system operations or running the JavaScript shell (and
a crash, for Mozilla’s js version 1.6). Targets are the atomic
building blocks of the things we hope to “get out” of testing.

C. Triggers and Suppressors

Given the concepts of features and targets, we can ask
whether a feature f “helps” us hit a target ¢: that is, are test
cases with f more likely to hit #? That some features are
helpful for some targets is obvious: e.g., executing the first
line of a method in an API library requires the call to be in
the test case. Less obviously, features may make it harder to
hit some targets. Finite-length tests of a bounded stack that
contain pop calls are less likely to execute code that handles
the case where the stack is full [1]. There are three basic “roles’
that a feature f can serve with respect to a target ¢: a trigger’s
presence makes ¢ easier to hit, a suppressor’s presence makes
t harder to hit, and an irrelevant feature does not affect the
probability of hitting 7.

No one questions the importance of triggers in testing. That
tests must, e.g., make certain calls or include certain strings to
cause behavior is self-evident. Attempts to generate behavior,
whether by producing very large numbers of tests with random
generation or by symbolic execution, essentially define the
field of automated testing, and motivate most manual testing.
However, the idea that certain properties of tests can (even if the
right triggers are present) make a test less likely to explore some
behaviors has seldom been explored. In previous work [1], we
suggested suppression as one explanation for the effectiveness
of “swarm testing,” a variation/improvement of random testing
that omits features at random from configurations. The primary
contribution of this paper (Sections III-IV) is an empirical
demonstration that suppressors are extremely common, both
in the sense that targets frequently have suppressors and that
many features act as suppressors for some targets. For some
subjects, suppression was observed more often than triggering,
and the strength of suppressors was sufficiently high (though
lower than the strength of triggers) to produce a major effect
on test effectiveness. A secondary contribution (Sections IV-E-
VI) is a discussion of causes of suppression, the value of
suppression in program understanding and test design, and the
impact of suppression on automated testing methods, including
examination of possible mitigation strategies.

’

II. FORMALLY DEFINING SUPPRESSION
A. Estimating Hitting Fractions

Given a population of test cases with varying feature sets
hitting a varying set of targets, we want to compute the fraction
of tests hitting a target ¢ that contain a given feature f. If
tests hitting # never contain f, we can conclude (if our tests
are drawn from a distribution in which f is often enabled)

that f likely disables + — it is a very strong suppressor.
Conversely, if all tests hitting ¢ contain f, it is likely necessary
to trigger ¢. Unfortunately, we cannot exhaustively test realistic
systems. However, statistical methods exist for estimating such
proportions, given statistically independent tests. The Wilson
score [8] is a frequently used method (a binomial proportion
confidence interval) for estimating such proportions. Wilson
scores work well with sampling error even for small populations
and extreme probabilities. Using Wilson scores and sampled
tests, we can determine if f is a suppressor or a trigger for ¢
with any desired confidence C (e.g., C =95%) as follows.

Given feature f, target ¢, and test case population P where
f appears in tests at rate r, compute a C confidence Wilson
score interval (I,/) on the true proportion of #-hitting tests that
contain f. If h < r, we can be C % confident that f suppresses
t. The lower # is, the more suppressing f is for 7. Conversely,
when [> r, f is a trigger for . If neither of these cases holds,
we can say that f is irrelevant to . We can use the appropriate
bound (lower or upper) as a conservative estimate for the true
fraction F of r-hitting tests containing f:

r iff I <r<h; (irrelevant)
F(f,t)=< 1 iffl>r (trigger)
h iffh<r. (suppressor)

F is easily interpreted when the rates for features are set at
50% in P. If n tests hit ¢ in P, then there should be n- %
tests hitting # in a population Py of the same size where every
test includes f. F of 1.0 predicts that hits will be twice as
common over tests always containing the feature, and F of 0.0
predicts that tests always containing the feature will never hit
t. Measuring F allows us not only to determine if a feature is
a suppressor or trigger, but allows us to predict its quantitative
effect on testing for a given target.

B. Features and Causality

A key point to note is that F typically describes causal
relationships. In many statistical analyses, it is only possible to
show correlations, not causality, even if statistical confidence is
complete. If ¢ is anti-correlated with e, it may simply be because
some unknown third effect ¢’ causes both the presence of ¢
and the absence of e: e.g., large numbers of typos in comments
in a source code section could be correlated strongly with the
absence of correct error handling in the code. The relationship
is possibly useful (if it were strong enough, we might devote
more static analysis or testing effort at portions of code with
such comments) but it is not causal. It would be unreasonable to
propose “spellcheck your comments” as a method for reducing
program faults! We believe that “carelessness” or “hurry” or
some other factor causes both effects, rather than that errors
in comments actually cause faults in source code. Features,
however, are (by definition) controllable. If the presence of
f decreases the presence of ¢, statistically, f has no other
causes and therefore f and ¢t cannot both be the result of
some unknown primary cause. It is crucial to note that this
causality is in the full context of the system tested and a test
population/generation method.

Full controllability significantly increases the value of
examining trigger/suppressor relationships by random sampling:
relationships found are generally going to be causal truths about
the structure of the software’s execution space when sample
sizes are reasonably large. It is critical to note that this does
not extend to examining relationships between triggers. If we
observe correlation between, e.g., coverage of statement S| and

statement S7, this may obviously be the result of a shared cause.

It is only the fact that features are true controllables, rather
than observables, that makes our results causally meaningful.

There is one subtle issue related to this analysis. Most of
our features are completely independent, with no interactions.
However, in a few cases feature f] requires another feature f> in
order to actually express, even if f] is enabled: e.g., generating
C programs with bitfields (f) is impossible without generating
structs (f2). We believe that this simple kind of dependency is
harmless. The key point is that the presence/absence of f] in
tests without f5, hitting any target ¢, is completely random. The
rate r for fi is artificially high in F' computations, and / and &
values are potentially artificially high as well, but F is based
on relative values. The primary “bias” is simply that F will
normalize results to match those in a sample where r was, in
fact, equal to its artificially inflated value. For targets with very
few hits, however (a very small portion of our targets), we could
occasionally see false triggering (but not false suppression),
or miss a suppression effect. More complex and problematic
forms of dependency, e.g., where f, always disables fi, were
not present in our subjects.

C. Research Questions

While the basic concept of suppression is intuitively clear,
little is known about its frequency or importance in testing. The
key questions investigated in this paper concern the frequency
and degree of suppression in software systems:

+ RQ1: How many features suppress some targets?

« RQ2: How many targets are suppressed by some feature?
+ RQ3: How many suppressors do targets have?

« RQ4: How strong is the effect of suppression?

III. EXPERIMENTAL METHODOLOGY

The only practical way to answer these questions is to apply
large-scale random testing to real software systems. Estimates
of F(f,t) are based on 95% confidence level Wilson score
intervals over P produced by realistic random testing systems.
Unlike model checking, adaptive random testing, or random
testing with inter-test feedback [5], traditional random testing
satisfies the condition of statistical independence between
tests. However, it usually includes all features in each test
of nontrivial length, with very high probability, which makes
r too high to estimate F effectively. Our results are therefore
based on swarm testing [1], in which each generated test uses
a configuration that randomly omits features with probability
0.5 for each f. Swarm testing has the further advantage that it
may be more effective than traditional random testing, which
increases the set of targets. F(f,7) was only computed for
targets hit at least 4 times, since 95% confidence intervals

TABLE I
EXPERIMENTAL SUBJECTS

Features [

SUT [# T Type [LOC [# Tests
YAFFS2 37 API calls ~15K 5K

C Compilers 28 C language >~400K | ~200K
GCC snapshot 21 C language ~500K SK
Mozilla js 1.6, 1.7 266 | JavaScript ~42K ~100K
Mozilla js 1.8.5 266 | JavaScript ~42K ~20K
Lobo HTML parser 100 | HTML Tokens ~975 5K
SGLIB rbtree 7 API calls 476 12.7K
Java containers 2 API calls < 600 ~5K

always include the base rate for smaller samples. We measured
basic code coverage with blocks in some cases and statements
in others due to tool availability; blocks were preferred when
easily computable, as statements include many targets that
form an equivalence class.

A. Experimental Subjects

Table I summarizes key details of our experimental subjects:
the number and type of features, approximate LOC, and the
number of tests used to produce statistics.

1) YAFFS2: The YAFFS2 flash file system [9] was the
image file system for early versions of Android. YAFFS2 tests
can include or exclude any of 37 core API calls. Feedback [4],
[5] in the YAFFS?2 tester ensures that calls such as close
and readdir occur only in states where valid objects are
available. The version of YAFFS2 used is ~15 KLOC of C code.
YAFFS2 experiments used a variety of targets, made possible
by the modest size of the code: basic blocks, branches, mutants,
and even automatically instrumented predicate-complete test
coverage states [7], a very fine-grained coverage measure.
Mutation analysis was based on 1,000 randomly sampled
mutants generated by the software of Andrews et al. [10].
Random sampling of mutants has been shown to provide
useful results approximating fault detection in cases where
using all mutants is not practical [11]. (YAFFS2 has well
over 14,000 possible mutants.) YAFFS2 results are based on
5,000 tests of length 200 API calls (10° file system operations,
with an additional 10° operations required to evaluate mutants,
motivating the relatively small number of tests).

2) C Compilers: Csmith [3] uses a customized grammar for
a subset of the C language to generate random C programs. The
major challenge is to avoid generating invalid code; Csmith
accomplishes this by interleaving generation with static analysis
of the partially generated program. The resulting code — at
least partially because it contains infinite loops, irreducible flow
graphs, and other constructs that C compilers do not routinely
encounter — tends to be an effective stress-testing tool for
optimizing compilers [3].

We used programs generated by Csmith to test a collec-
tion of production-quality C compilers including GCC 3.2.0,
3.3.0, 3.4.0, 4.0.0, 4.1.0, 4.2.0, 4.3.0, 4.4.0, 4.5.0, 4.6.0, and
LLVM/Clang 2.6, 2.7, 2.8, 2.9. All of these compilers were
configured to generate x86-64 code and were invoked at
standard optimization levels (-O0, -O1, -O2, -Os, and -O3).
Results are based on generating and compiling about 200,000

test cases using Csmith and each of the 14 compilers at each
of the optimization levels. Code generated by the compilers
was not executed, as it is difficult to automatically cluster
wrong-code bugs; results are based on whether the compilers
generated code at all, as opposed to terminating in an abnormal
fashion. During testing, we found 56 unique compiler-crash bug
symptoms. A “unique symptom” is represented by a particular
string that a compiler emits while crashing. Real faults are the
most interesting and important targets in testing. The compiler
results below combine crashes from all compilers to form a
target set, in order to provide a large enough set of targets to
provide answers to the research questions and because a tool
like Csmith is intended to work as a general-purpose compiler
testing tool. Results over all compilers are more likely to apply
to future testing than results for the small number of crashes
detected in any one compiler. The trends observed over all
compilers held for individual compilers as well.

A second compiler experiment used Csmith to generate tests
for the August 8, 2012 developer snapshot of GCC, and used
statements as targets. The source contained ~550 KLOC, and
tests covered about ~125K. Because coverage measurement
reduces test throughput and the extremely large number of
targets increases analysis time, these experiments cover only
21 features (removing some that cause slowdowns in practical
testing) and 5,000 test cases.

3) JavaScript Shells: The jsfunfuzz tool [12] has been
used to find over 1,800 bugs in Firefox’s JavaScript engine,
many of which were exploitable memory-safety bugs. Tests
in this case are sequences of JavaScript language constructs,
randomly generated by a highly complex set of recursive
functions tuned to cover combinations of language features;
jsfunfuzz not only executes these constructs, but checks
for basic semantic properties (e.g., round-trip properties).
Subjects were the SpiderMonkey js JavaScript shell versions
1.6, 1.7, and 1.8.5 (the latest source release), all C/C++
programs of ~120KLOC, including comments, of which
~42,000 are executable statements. For versions 1.6 and 1.7
approximately 100,000 tests containing 1,000 JavaScript shell
inputs were generated. Features were automatically derived
from the full set of randomized case splits in the jsfunfuzz
code generation (production rules in the grammar), yielding
a set of 266 features, using a short (< 50 lines of Python)
“swarm fuzzer” that produces versions of jsfunfuzz with
different random features. Testing version 1.6 revealed 37
distinct failure symptoms with at least 4 instances, including
several showing a serious memory error, a wide variety of
JavaScript semantics violations, one case of non-termination,
and two distinct out-of-memory errors. Testing version 1.7
produced 52 different distinct failure symptoms (but only
one variety of segmentation fault and memory exhaustion),
though some of these were similar semantic issues that may
result from a single underlying fault. For version 1.8.5, we
gathered statement coverage for each test with gcov, which
greatly reduced the throughput of testing; the time to execute
approximately 20,000 tests was much larger than for 100,000
runs of 1.6 and 1.7. Only 13 distinct crashes (including one

memory failure and no segmentation faults) were detected for
version 1.8.5, and each only occurred once in over 20,000 tests.
We note in passing that for JavaScript, swarm tests had failure
rates and total distinct-failures-found values almost twice those
of tests using a single configuration (not used in our analysis),
confirming the value of swarm testing and supporting our hope
to reach “hard to hit” targets.

4) HTML Parser: We tested the HTML parser included in
the Lobo project [13], a pure-Java web browser. The parser code
itself (the testing target) is about 975 lines of code, supported
by an HTML document class and other infrastructure. Coverage
was computed over the HTML parser code only. The features
in this experiment were 100 tokens including most common
HTML tags. Targets in this case were branches and statements.
Results were based on 5,000 tests of length 50.

5) SGLIB rbtree: SGLIB is a popular library for data
structures in C [14]; its red-black tree implementation is an
example of a relatively simple, but nontrivial (i.e., it has semi-
redundant API calls, etc.), container. The code is 476 LOC
in C. Basic blocks, branches, and (all) mutants served as targets.
Results are based on 12,700 tests of length 10.

6) Java Container Classes: The final set of subjects are
taken from Java container classes used in multiple papers to
compare test generation methods [15], [16]. These all have very
small APIs (3 methods — insert, remove, and £ind). For
these subjects, the only features are remove and find, as
tests with no insert operations are essentially identical (as
state never changes). One possible explanation of the previous
inattention to suppression effects may be that suppression is
less problematic for simple container classes, which have been
the subjects of many studies [15], [16], [17]. These subjects
were easily covered by ~5,000 length-200 tests each.

B. Threats to Validity

The primary threat to validity is that we only consider a
modestly sized set of subjects. However, these systems are
realistic and relevant: automated testing is most desirable for
critical systems code, and reusable container classes are the
most popular subjects in the literature. Moreover, all of the
nontrivial test generators were developed and used prior to this
study. For gaining insights into automated testing of critical
software, test cases produced by realistic test generators focused
on finding faults seems like the best population to study.

Results over features are largely “correct” for these subjects,
with the caveat that dependencies may produce a few spurious
triggers and hide some suppressors. Results over targets,
however, could be artifacts of which targets our test population
was able to cover. If a branch was never covered, or a
compiler never crashed in a particular way, we cannot draw any
conclusions about how features influence the rate of detection
for that branch/crash, but can only place a bound on the
probability of hitting that target with the test population. In
general, target coverage is undecidable, so complete results
over all targets is not a realistic goal. Test suites are large
enough in all cases, however, to cover targets that are within
the domain of random or systematic automated testing, but

TABLE 11
ROLES FILLED, BY FEATURE

I=Irrelevant, S=Suppressor, T=Trigger, C=Crashes
M=Mutants, BL=Blocks, BR=Branches, ST=Statements

SUT [Targ. “ IST[IS[IT[ST[I[S[T
YAFFS2 M 29 1 7 - B z N
YAFFS2 BL 31 - 5 - 1 - -
YAFFS2 BR 33 - 3 - 1 - -
YAFFS2 PC 37 - - - B B N
Compilers | C 22 2 4 - - -

gce ST 21 - - - - N
js 1.6 C 139 59 47 -1 21 -

js 1.7 C 178 40 41 - 7 -

js 1.8.5 ST 266 - - - B B N
HTML ST 28 21 21 - 130 | - -
HTML BR 30 27 21 -1 22 - -
rbtree M 4 1 2 - - B -
rbtree BL 5 - 2 - - B -
rbtree BR 4 1 2 - - B -
AVLTree ST 1 1 - - - Z N
AVLTree BR 1 1 - - - Z N
FibHeap ST 1 - 1 - B _ N
FibHeap BR 1 - 1 - - - _
HeapArr ST - - 1 - 1 [
HeapArr BR - - 1 - 1 [
TreeMap ST 1 - 1 - o -
TreeMap BR 1 - 1 - - _ N
Sum [“ 833 [154 [161 [- [84 [- [-

have low probability of appearance. In previous work we have
shown that swarm testing tends to be as or more effective
than traditional random testing with a single configuration [1]:
these results cover most targets likely to be found in random
testing, except where large clusters of machines are applied for
weeks of testing. One side-effect of this problem of unexplored
targets is difficulty examining the relationship between ease
of hitting a target and its suppressors. Because the testing
randomly omits features, it is hard to hit targets that require
large numbers of features in combination, as few such tests
will be generated. The low-probability targets hit will therefore
be biased towards those requiring only a few features, with
suppressors. This problem is difficult to avoid. Concolic testing
might hit such targets (though we are not sure it would work
well for our more complex subjects), but would not tell us about
the population of tests hitting the targets. Random testing with
most features included in each test case could potentially hit
more such targets, but makes detecting suppressors and triggers
nearly impossible. Minimizing tests [18] cannot distinguish
suppressors from irrelevant features.

IV. EXPERIMENTAL RESULTS
A. RQI: Features Often Suppress Some Targets

As Table II shows, most features for most Subjects Under
Test (SUTs) we examined were triggers for some targets but
suppressors for other targets. The table shows, for each subject
and target type, how many features served in all roles (for some
target), each combination of two roles, or in only one role. In
this table and all following tables, ‘C’ stands for Crashes and
other failures, ‘M’ stands for Mutants, ‘BL’ stands for Blocks,

‘BR’ stands for Branches, ‘PC’ stands for predicate-complete
test coverage [7], and ‘ST’ stands for Statements. ‘I’ stands for
Irrelevant, ‘S’ stands for Suppressor, and ‘T’ stands for Trigger.
Column headings in Tables II and III indicate the range of
roles that a feature fills (or a target has some feature filling).
For example, ‘IST’ indicates that a feature is irrelevant to at
least one target, a suppressor for at least one target, and a
trigger for at least one target. ‘IS’ indicates the same, except
that the feature is never a trigger. In this and following tables,
the dividing line separates results over more complex systems
with at least 7 API calls or grammar elements from simple
systems with few API calls and no overlap between features.
For the complex systems software, the range of roles
taken by features was considerable: 4 compiler features
(paranoid, union-read-type-sensitive, consts,
and return-unions) were never suppressors, and 2 com-
piler features (muls and arg—-structs) were never triggers.
The other 22 compiler features served in all three roles for
some crash. For the YAFFS2 tests, approximately 30 features
served in all three roles for mutant, block, and branch targets.
Calling fstat was only a suppressor or irrelevant for mutants,
and 3-7 features were only irrelevant or triggering for each
kind of target. The only feature that was never suppressing
for any kind of target was pwrite. For version 1.6 of the
JavaScript shell, more features were suppressors than triggers,
and for 1.6 and 1.7 a large number of features were either
irrelevant or suppressors only or irrelevant and triggers only.
For the HTML parser, there were many more purely
irrelevant features but about 1/4 of all features still served in
all roles. For SGLIB-rbtree mutants and branches, 2 features
were only triggers and 1 feature was only a suppressor. The
other 4 features served in all roles. For blocks, as we would
expect, no feature served as only a suppressor (given that the
features are API calls, there are obviously blocks that can only
be reached via that API call), so 5 features served in all roles.
The only subject with no suppressors was a Java container
class. Even for container classes, 50% of features served in
all three roles for three SUTs. Overall, 987 of 1,232 features
(where a feature is counted once for each SUT/target) were
suppressing for some target, only slightly less than the 994 that
were triggers. In terms of features, suppression is roughly as
common as triggering. Only 84 features were always irrelevant.

B. RQ2: Many Targets Have Suppressors

Table 111 is similar in structure to Table II, except that here the
values in the table indicate how many targets had some feature
filling each role — that is, the ‘IST’ column here indicates
the number of rargets that had at least one suppressor, at least
one trigger, and at least one irrelevant feature. Again, across
all SUTs and target types, suppression was very common. No
JavaScript crashes lacked suppressors. For gcc, almost 8,000
statements had suppressors but no triggers. The very large
number of ‘I’ only targets for js 1.8.5, gcc, and YAFFS
PCT coverage are due to initialization, etc.: statements/points
covered by all (or almost all) tests. In general, triggering was
at most twice as common as suppression.

TABLE III
ROLES FILLED, BY TARGET

TABLE V
STRENGTH OF SUPPRESSORS AND TRIGGERS

SUT [Tar. [IST [IS] IT [ST]| T] ST T S T
YAFFS2 M 95 E 99 B 38 Min. Avg. Min. Max. | Avg. Max.
YAFFS2 | BL 328 - 670 - 455 SUT Tar. feat. | tar. feat. | tar.
YAFFS2 | BR 432 B 755 B 451
YAFES? PC 7678 B 9990 Z 6070 . YAFFS2 M 0.21 044 | 0.44 1.0 0.85 | 093
Compilers | C 49 1 5 - 1 - - YAFFS2 BL 0.11 | 045 | 042 1.0 0.98 | 0.94
gce ST 12841 7752 11973 | 702 | 81842 1813 8711 YAFES?2 BR 0.11 0.43 042 1.0 0.96 0.94
PG T e —+——+—— YAFFS2_ | PC_|[006 | 039 | 041 [10 | 0.97 | 0.92
js 1.8.5 ST 7553 25 4185 B 9660 Compilers | C 0.08 0.41 | 0.36 1.0 0.76 | 0.81
gmi 133£ ﬁi - ig - ?; gcc ST 0.01 | 0.21 | 0.38 1.0 0.99 | 0.72
e o = . T > i 1.6 C 0.18 | 046 | 0.41 || 0.98 0.54 | 0.71
Thirce BL 3 - 35 T 116 - js 1.7 C 0.30 | 046 | 042 || 099 | 0.55 | 0.69
thtree BR 44 B 29 | 140 1 js 1.8.5 ST 0.04 | 038 | 044 1.0 0.77 | 0.71
AVLTree | ST B 3 54 | 26 128 HTML ST 0.18 | 048 | 042 1.0 0.58 | 0.90
?_‘;;Tree 1:? - 3 2; ‘2& ?(7) - 97' HTML BR 0.18 0.48 | 0.42 1.0 0.57 | 0.89
ibHeap - - z
FibHeap IR - - T 12 6 - 3 rbtree M 027 | 037 | 042 1.0 0.88 | 0.80
HeapArr | ST . . 70 - 76 . rbtree BL 0.18 | 033 | 042 1.0 0.88 | 0.76
HeapArr BR - - 12 - 9 - - rbtree BR 0.18 | 0.32 | 041 1.0 0.88 | 0.76
ek e L AVITree [ST [[037 | 043 [043 [10 [073 | 0.97
AVLTree BR 037 | 043 | 043 1.0 0.73 | 0.97
TABLE IV FfbHeap ST 0.02 | 033 | 0.41 1.0 1.0 0.77
AVERAGE FEATURES IN EACH ROLE, PER TARGET FibHeap BR 0.02 0.33 | 040 1.0 1.0 0.84
HeapArr ST - - - 0.99 0.99 | 0.99
SUT [Tar][Avg.T | Avg.S | Avg. T | S/T Ratio HeapArr BR - - - 0.99 0.99 | 0.99
YAFFS2 [M 32.7 L1 3.0 [037 TreeMap ST 0.35 | 050 | 041 || 099 | 0.80 | 0.96
YAFFS2 BL 3356 12 21 | 057
varre | pR g = Y31 oes TreeMap BR 0.35 | 050 | 041 || 099 | 0.80 | 0.96
YAFFS2 | PC 336 1.0 23 | 0.3
Compilers | C 222 2.1 32 | 0.65
gcc ST 16.5 .1 34 | 032
js 1.6 C 2384 10.8 98 | 1.1 » , , , , ,
js 1.7 C 2402 94 114 | 0.82 [arays
5185 ST 756.6 29 54 | 054 1| et
HTML ST 94.4 1.9 3.4 1056 £ | EEumes
ATML BR 937 2.1 36 | 0.58 § 1o o ekt
tbtree M 0.8 3.0 28 | 1.07 I -
thiree BL 3 28 28 | 1.0 5| EJunions
ibtree BR 12 30 28 | 1.07 I 1:
AVLTree | ST s 01 04 [025 S R 03 04
AVLTree | BR 13 0.2 04 | 025
FibHeap ST 0.2 0.3 15 | 02 .
FibHeap BR 0.4 0.4 12 | 033 £
HeapArr | ST 5 0.0 05 | - S
HeapArr BR 14 0.0 06 | - 2
TreeMap ST 1.2 0.2 0.6 | 0.33
TreeMap BR 1.2 0.1 0.6 | 0.17

C. RQ3: Targets on Average Have a Small Non-Zero Number
of Suppressors and a Small, Non-Zero Number of Triggers

Table IV shows the average number of features filling each
role for each target, for each SUT and target type. The average
number of irrelevant features varies quite simply, with the
number of features. (The standard deviation of the average
number of irrelevant features is approximately the standard
deviation in the total number of features.) The ranges and
variance for suppressors and triggers, however, are considerably
smaller: JavaScript crashes had almost ten times as many
features as compiler crashes, but had only ~5 times as many
average suppressors and ~3—4 times as many triggers. This
bounding is even more marked for the HTML parser. As
the number of features increases, the number of suppressors
and triggers per target may grow slowly, or even be bounded

1.0

Fig. 2. F(f,t) Scores for Some Compiler Features over Crashes

for many natural feature sets. This makes intuitive sense: as
programs grow more complex, modularity somewhat limits
interaction between features. Most code is not concerned with
most features; it tends to only read and write a projection of
the state space. (In a sense, this is why abstraction “works” in
verification.) The SGLIB example suggests that systems above
a certain minimal threshold may also have a lower bound on
suppression and triggering: despite having only 7 total features,
the average S/T numbers for SGLIB were in the same range
as other subjects. The only subjects averaging less than one
suppressor per target were the simple Java container classes,
which may explain why testing of these subjects works well
despite ignoring suppression.

D. RQ4: Suppression Matters

Table V shows the strength of suppressors and triggers.
The values under the column labeled “Min” show the single
lowest F(f,t) for each SUT and target type: the strength
of the single most suppressing relationship (the strongest
suppressor). The next columns show the average minimum
F(f,t) over, respectively, all features and all targets. The last
three columns of the table, for comparison, show the same
values for triggers, except that maximum F (f,7) is used instead
of minimum. In general, triggers are considerably stronger than
suppressors, as we might expect: it is somewhat surprising
that any faults or coverage targets lack at least one almost
essential feature, particularly for API-based testing. The key
observation, however, is that a large number of subjects not
only had at least one suppressor strong enough to result in a
large change in the difficulty of hitting a target, but that the
average strongest suppressor for the average target over all
subjects had F' < 0.45. Recall that for an F = 0.45 suppressor,
there will be 10% fewer tests hitting ¢ in a population of tests
that all contain f than in a population where f is present half
the time. Given that many targets in automated testing have
extremely low frequency (e.g., we found JavaScript failures
with a rate as low as # test cases, and file system testing at
JPL found some rates lower than ﬁ tests [6]), suppression
almost certainly hides some faults.

Figure 2 shows the range of F(f,t) for some features of C
compilers. The graph is a histogram showing the percent of
crashes for which each feature had F(f,¢) in a given 0.1-width
range (shown by its max under the bars). While it is difficult
to make out details at this scale, it is clear the crashes had
a large range of F(f,t) for many features: e.g., pointers and
volatiles were very suppressing (0.2—-0.3) for 15 and 2% of
targets respectively, but critical triggers (F > 0.9) for another
15 and 8%.

E. Subject Details: Causes of Suppression

Suppression can be helpful for what might be termed
dynamic program understanding — a cross between the general
concept of “program understanding” which captures the notion
of the “true” behavior of a system (as defined by the semantics
of the program) and its observed behavior, which is determined
partly by the true behavior and partly by the test suite used
to observe the program in action. In practice, understanding a
program’s test suite can be nearly as important as understanding
the program itself [19]. Knowing the suppressors for a
single target can (akin to a fault localization approach like
Tarantula [20]) help understand that target, whether it is a fault
or simply a subtle piece of code. Understanding the causes
of suppression for all targets can help in understanding why
some test suites are more effective than others, or even provide
insights into the nature of a software system. One problem with
many dynamic understanding methods, e.g. invariants [21], is
that it can be hard for users to decide if the results are “true’
or an artifact of limited empirical data [22]. Suppression and
triggering relationships do not require judgments as to whether
they are universally valid, since their most obvious use is

i

in tuning automated testing. We also expect that if used for
oracle generation, our methods would pose easier problems
than general invariants, in that they would always generate
assertions of the form “z will never by observed in a test that
has/does not have f.”

1) YAFFS2: YAFFS2 serves as a useful introduction to
common causes of suppression. Calling close is a moderately
strong suppressor for almost 5% of mutants, and a marginal
suppressor for another 15% of mutants. Interestingly, when
close is a trigger it is either a very weak trigger or appears
in at least 90% of all tests exposing a target. This tells us that
closing files does not “help” with other behaviors. Closing files
is useful in tests essentially only in order to test the code in the
yvaffs_close function. Examining the code for YAFFS2,
we see that the function only calls functions that are called
by numerous other functions. This explains why close is
not very triggering, but the essence of its suppression is that
close, like pop reduces the system state — it is a consumer
or simplifier of state. There are fewer next behaviors of a
system after a close than before. In the case of close or
pop this results from the call being the “dual” of a producer
(open or push). Similarly, both £sync and sync suppress
about 7% of all mutants, and are in the top 6 most frequent
suppressors because they empty out buffers.

A second interesting observation about YAFFS2 suppression
is that it seems to show the effects of feedback [5], [4] in
suppression. Random testing with feedback uses the current
state of the system to select a next API call to make, avoiding
invalid extensions of a test. Some API calls serve as “guards”
for a large number of other calls: a single call to open enables
a large number of other calls (e.g., read, write, fstat,
close) that require a valid file handler. If a target does not
require file operations — for example, numerous bugs involving
directory manipulation — it will be “suppressed” by open
because calling open can change the probability of calling
mkdir (the trigger) from % to %.

2) C Compilers: There was considerable diversity in the
way that features of C programs interacted with compiler bugs
(Figure 2). For example, GCC 4.0.0 has a crash bug (“internal
compiler error: in c_common_type, at c-typeck.c:529”) for
which arrays are a trigger (F = 0.64) and pointers are a
suppressor (F = 0.27). Another bug in the same compiler
(“internal compiler error: in make_decl_rtl, at varasm.c:868”)
has both pointers and arrays as triggers with F = 0.99. Yet
another bug in this compiler requires pointers (F' = 0.97) but is
indifferent to arrays. Other compilers in our test suite contain
bugs that require arrays and that are suppressed by pointers.
This is, in itself, quite interesting given that arrays in C are
quite close to “syntactic sugar” for pointers.

Out of the 20 compiler bugs that had the strongest suppres-
sors, pointers were the most common suppressor, occurring 13
times. We speculate that pointers suppress crashes by causing
compiler optimization passes to operate in a more conservative
fashion. Pointer suppression is different than the most common
YAFFS2 suppression effects, in that it is difficult to claim
that pointers make a C program’s state simpler. The problem

is that pointers simplify the behavior in some respects while
complicating it in other respects (hence serving as a common
triggers as well). Out of the remaining 7 suppressors, none
occurred more than once.

The single strongest suppressor that we saw was the “argc”
feature supported by Csmith, which suppressed an out-of-
memory condition in Clang 2.7 with F = 0.08. Csmith’s “argc”
feature causes it to change the prototype of main so that the
random program accepts command-line parameters, and it also
adds about two lines of code that conditionally sets a flag telling
the generated code to print some additional details about the
computation it performs. (By default, a program generated by
Csmith prints a single checksum.) Without the “argc” feature,
the flag variable is unconditionally false. A smart compiler
can recognize this and use it to perform more aggressive
optimizations. However, Clang 2.7 contains a bug that causes
its loop strength reduction pass to enter an infinite allocating
loop, eventually running out of RAM. This bug is triggered by
the fact that the generated code’s flag variable is a compile-
time constant value, and is suppressed when this flag’s value is
indeterminate at compile time due to command line processing.
Many causes of suppression are this idiosyncratic, and thus
almost impossible to predict without a deep understanding of
the target behavior, which is almost certainly not available for
unknown faults. Knowing such idiosyncratic relationships can
directly assist random testing engineers in tuning a tester to
target certain behaviors.

3) JavaScript Shells: Because it exhibited failures varying
widely (by three orders of magnitude) in frequency, the js 1.6
shell demonstrates particularly well one source of suppression:
fault masking. The single most frequent suppressor for 1.6
(suppressing 11 failures versus triggering 3) was assignment of
an ID to an I-value, which was a moderate trigger for three very
frequent failures, including the single most common failure
(with over 4,000 instances). The F value for this feature as a
suppressor decreased (recall that this means it was a stronger
suppressor) as the rarity of failures increased, and it was a
suppressor for two of the three rarest failures. Examining the
code, there does not appear to be any link between the feature
and the failures other than that the feature causes js to fail
in one of the three “common” ways before the less frequent
failures (all requiring longer executions on average) can take
place. Complex systems will almost always have multiple faults
that differ in frequency of appearance; in our experience, for
compilers and JavaScript engines, failure rates for different
faults typically exhibit a power law curve and sometimes a
“double power law” curve [23]. Masking may therefore merit
special attention as a source of suppression.

4) HTML Parser: None of the important features for HTML
parsing were very surprising. That >’ was a suppressor for
34% of statements was interesting: some parse errors, €.g.
nested unclosed parenthetical constructs, are hard to generate
with a purely random mix.

5) SGLIB rbtree: Calls that add items to a container are,
while redundant (and thus weaker triggers), needed in order
to produce any interesting behavior, and suppress essentially

no behaviors. While deletion calls are also interchangeable,
however, they serve to suppress roughly as often as they trigger;
care must be taken in automated container class testing to avoid
over-inclusion of deletes.

V. USING SUPPRESSION INFORMATION TO PREDICT,
PRODUCE, AND UNDERSTAND BEHAVIORS

As an example of a practical application of suppression to
dynamic program understanding, we consider the analysis of
never-paired program statements: s; and s, are a never-pair if,
over a test suite, no one test executes both s; and s,. Never-
paired statements can be thought of as a dual notion to the idea
of dynamic basic blocks, statements that always have the same
coverage value for each test [24]. Never-pairs are interesting in
that they describe potential behavioral interactions that are never
explored. (Never pairs are a particular example of an extended
invariant [25].) If the behaviors are compatible but not explored,
they may expose faults when combined; if the behaviors are
not possible in the same test, for reasons other than trivial
CFG relationships, the fact that they cannot be paired indicates
partitioning of program behaviors. Unfortunately, the primary
cause for never-pairing is the size of a test suite. If the hit
rate for sy is r; and the hit rate for s, is rp, for a suite of
size k, if ry-rp -k is low, we do not expect there to be any
co-appearances for s; and s, even if they are compatible. If r;
and ry are sufficiently low, running more tests may not be a
practical solution to this problem: if both are “1 in a million”
coverage targets, running 1 trillion tests may not be feasible.
We would like to predict whether we can pair statements,
in order to 1) identify statements that genuinely partition
behavior, as important artifacts for program/suite understanding
and 2) motivate directed searches for possible pairings, via
symbolic/concolic or statistical techniques.

Suppression provides us such a prediction mechanism. By
comparing suppressors and triggers for s; and s, that we would
not expect to have co-detected in a suite, we can predict whether
a larger suite will co-detect the features. For the js 1.8.5
coverage results, we examined a random sample of 300 pairs
of never-paired statements over the first 5,000 tests executed,
such that 1) s; and s, were both covered, 2) s; and so had
suppressors and/or triggers, 3) the rates did not predict any hits
within these 5,000 tests, and 4) the rates did predict common
hits for the full suite of ~24,000 tests. In other words, we
chose cases where 5,000 tests did not provide useful insight
into whether the statements were truly difficult to pair, but
where the remainder of the test suite was likely to resolve
the question. To attempt to predict whether we would actually
hit the statements together, we simply checked s; and s, for
conflicting features — cases where f is a suppressor for s; and
a trigger for s,, or vice versa. If the statements had conflicting
features, we predicted no hits for the remainder of the test suite.
Even this naive approach (as opposed to using all suppressor
and trigger information for s; and s, with a statistical model
or machine learning algorithm to predict an expected hit rate)
was correct over 66% of the time. Additionally, we were able
to use the full suppression and trigger information for pairs to

build “ideal” configurations for finding common occurrences,
and prove some rarely appearing sj, sp never-pairs spurious.

Moreover, examining the suppressors and triggers for our
samples explained why some statements were difficult to
execute together in the same test. For example, we found
two statements handling destructuring assignments (one in
jsemit.cpp and one in jsparse.cpp), both firing for
unusual l-value choices that appear rarely in tests. Both
statements “need” some form of destructuring assignment,
but they require different arities in the assignment (as well as
other complex conditions to prevent other code from handling
the assignment). Because both statements are rarely executed
in general, choosing only the arity appropriate is practically
required to see the behavior — tests containing both arities
are unlikely to manage to conjoin arity and conditions and
hit either target. We realized this after seeing that the arity-
one case is an F = 0.30 suppressor for one statement and a
F =0.67 trigger for the other.

VI. SUPPRESSION AND TESTING

This paper establishes that suppression is an important factor
in random testing. What about other testing approaches?

A. Suppression and Other Test Methods

Suppression almost certainly matters for Bounded Exhaustive
Testing (BET). While complete BET will, by definition, cover
all test cases within a bound that omit some feature, suppression
can make the expected time until a particular fault is detected
much higher. In general, the expected time before detection
of a fault in BET with tests of length & is controlled by the
failure rate over pure random tests of length k [26].

For incomplete BET, or BET with abstraction, which is the
only practical approach for realistic systems with very large
branching factors (all of our non-container class examples),
the effect of suppression has likely been seen in practice. In
performing non-exhaustive model checking of a file system
used in JPL’s Curiosity rover, Groce noted that model checking
where directory operations were disallowed could dramatically
improve path coverage for file operations (and vice versa) [19].
The effectiveness of swarm verification [27] is partly based on
reordering of transitions in model checking. For a depth-first
search with limited memory/time, placing a transition last is
very much like removing it from the feature set for a model
checking run — which can reduce suppression.

As Jin and Orso have shown, symbolic testing can scale
better for finding some faults when given a call sequence [28].
In their work, the aim is to reproduce a failure observed in
the field, but the observation that KLEE [29] can reproduce
failures much more easily given a call sequence than from
point of failure information only suggests that one approach
to scaling constraint-based approaches to complex systems
such as YAFFS2 is to begin concolic testing from “skeletons’
of potential test cases, rather than introducing a costly case
split over various API calls at each step. Using suppression
relationships should make it possible to avoid the combinatoric
explosion produced by considering all feature combinations.

bl

B. Mitigating Suppression

Swarm testing [1] works because it helps mitigate some
effects of suppression by omitting features from tests. Swarm as
practiced so far is a relatively simple strategy, however, and the
purely random, uniform approach to configuration generation
taken in swarm does not precisely fit the data. Swarm thus far
assumes that 1) including and excluding features are equally
useful (thus sets a 50% inclusion rate) and 2) all features should
be treated equally. However some features are mostly triggers,
some are mostly suppressors, and triggering is both much
stronger and more frequent than suppression. Swarm also thus
far fails to exploit causes of suppression (e.g., consumption,
feedback, and fault masking).

The obvious response would be to use feedback, based
on information such as that included in this paper. After
an initial series of uniform 50% inclusion tests, fit the rate
for each feature to its frequency and strength as a trigger
or suppressor, etc. We speculate, however, that this might
decrease effectiveness in practice. Tuning feature inclusion this
way specializes the tester in hitting targets that have already
been hit, while the desired goal is to hit targets that have
not been hit. These targets may have been missed because
they are masked by many already hit features, or because they
depend on configurations not yet generated that are different
from those best for hit targets. We therefore propose a mixed
feedback strategy: on the one hand, re-hitting rarely hit targets
may lead to coverage of further “nearby” targets. On the other
hand, using “reverse” feedback to explore configurations “far”
from the space in which easily hit targets reside may find new
targets better. Initial experiments show that for reverse feedback,
simply taking the most common failures and reducing the rates
for triggers and increasing the rates for suppressors is not that
helpful for js 1.6: some triggers for these faults are useful for
getting any interesting behavior. Even with large amounts of
data, it is hard to distinguish general triggers of useful behavior
from triggers unique to only a subset of behaviors.

To reduce the “data gathering” phase of testing, we propose
attempting to statically identify suppressors. Using typestate
information, it should be possible to identify at least some
producers and consumers, e.g. close. Similarly, calls that
deallocate memory or reduce the value of indices into arrays
(such as sync) can be detected. Cheap, imprecise analysis is
acceptable as the properties are only used to tune feature
selection. Over time, test results should identify incorrect
assumptions — if a proposed “suppressor” suppresses few
targets, its frequency can be increased.

VII. RELATED WORK

In previous work on swarm testing [1] we suggested a
formal notion of suppressors and proposed that suppression
might explain the effectiveness of swarm. This paper extends
those results by formalizing and evaluating the importance of
(and causes of) suppression for a larger set of subject programs
and targets, as well as showing a mismatch between swarm’s
configuration assumptions and actual ideal feature probabilities.

The investigations in this paper can also be seen as gen-
eralizing the ideas behind combinatorial testing [30]. Where
Kuhn et al. consider the case when “behavior is not dependent
on complex event sequences and variables have a small set of
discrete values,” we generalize to systems with more complex
behaviors and a large set of inputs by replacing combinations of
input parameters with more general constraints on test contents.
Our work is also similar in spirit to (though more general
than) key work in fault localization, in particular Tarantula
[20], [31] and similar methods that use statistical relationships
to find code relevant to a fault. Suppressors should have low
“suspiciousness” scores by Tarantula-like methods. Applying
Tarantula-like analysis to all targets, rather than just faults, to
our knowledge, has not previously been considered.

VIII. CONCLUSIONS

In this paper, we used large-scale random testing to sta-
tistically investigate the relationships between test features
(controllable aspects of a test) and fargets (things we are
interested in observing in a test). In particular, we looked at
how features can suppress (make less likely) a target behavior.
Investigating a variety of real-world programs we showed that:

« RQ1: Features tend to suppress at least some targets.

« RQ2: Large numbers of targets have suppressors.

+ RQ3: The average number of suppressors (and triggers)
for each target was strikingly and surprisingly similar
across non-toy SUTs. The average was > 1.0 in all cases,
and had a standard deviation far smaller than that of the
number of features.

« RQ4: Most subjects had at least one target with a
very strong (F < 0.20) suppressor; average targets had
suppressors able to cause a > 10% difference in hit rates.

Suppression therefore tends to cause some faults in systems
to be difficult to detect — tests must not only include the
right calls/grammar elements/etc., but they must omit other
features to have a good chance of triggering many behaviors.
Suppression likely applies not only to random testing but to
bounded exhaustive testing and model checking. We suggest
some methods for mitigating suppression, but believe that at
present it poses an open problem for automated testing and
results in undetected faults.

REFERENCES

[11 A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,”
in International Symposium on Software Testing and Analysis, 2012, pp.
78-88.

[2] N. Siegmund, S. S. Kolesnikov, C. Kastner, S. Apel, D. Batory,
M. Rosenmuller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in International Conference on Software
Engineering, 2012, pp. 166-177.

[3] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2011, pp. 283-294.

[4] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing as
a prelude to formal verification,” in International Conference on Software
Engineering, 2007, pp. 621-631.

[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in International Conference on Software
Engineering, 2007, pp. 75-84.

[6]

[7]
[8]

[9]
[10]

(11]

(12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

A. Groce, G. Holzmann, R. Joshi, and R.-G. Xu, “Putting flight software
through the paces with testing, model checking, and constraint-solving,”
in Workshop on Constraints in Formal Verification, 2008, pp. 1-15.

T. Ball, “A theory of predicate-complete test coverage and generation,”
in Formal Methods for Components and Objects, 2004, pp. 1-22.

E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” J. of the American Statistical Assoc., vol. 22, pp. 209-212,
1927.

“Yaffs: A flash file system for embedded use,” http://www.yaffs.net/.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering, 2005, pp. 402-411.

L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in International
Conference on Software Engineering, 2010, pp. 435-444.

J. Ruderman, “Introducing jsfunfuzz,” 2007, http://www.squarefree.com/
2007/08/02/introducing- jsfunfuzz/.

“The Lobo project,” http://lobobrowser.org.

M. Vittek, P. Borovansky, and P-E. Moreau, “A simple generic library
for C,” in Int. Conference on Software Reuse, 2006, pp. 423-426.

A. Groce, A. Fern, J. Pinto, T. Bauer, A. Alipour, M. Erwig, and C. Lopez,
“Lightweight automated testing with adaptation-based programming,” in
International Symposium on Software Reliability Engineering, 2012, pp.
161-170.

R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov, “Testing
container classes: Random or systematic?” in Fundamental Approaches
to Software Engineering, 2011, pp. 262-277.

W. Visser, C. Pasdreanu, and R. Pelanek, “Test input generation for
Java containers using state matching,” in International Symposium on
Software Testing and Analysis, 2006, pp. 37-48.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183-200, 2002.

A. Groce, “(Quickly) testing the tester via path coverage,” in Workshop
on Dynamic Analysis, 2009.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula au-
tomatic fault-localization technique,” in Automated Software Engineering,
2005, pp. 273-282.

M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,” in
International Conference on Software Engineering, 1999, pp. 213-224.
M. Staats, S. Hong, M. Kim, and G. Rothermel, “Understanding user
understanding: determining correctness of generated program invariants,”
in International Symposium on Software Testing and Analysis, 2012, pp.
188-198.

Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2013, pp. 197-208.
B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for efficient
fault localization,” in International Conference on Software Engineering,
2006, pp. 82-91.

M. A. Alipour and A. Groce, “Extended program invariants: applications
in testing and fault localization,” in Workshop on Dynamic Analysis,
2012, pp. 7-11.

J. Andrews, Y. R. Zhang, and A. Groce, “Comparing automated unit
testing strategies,” Department of Computer Science, University of
Western Ontario, Tech. Rep. 736, December 2010.

G. Holzmann, R. Joshi, and A. Groce, “Swarm verification techniques,
IEEE Transactions on Software Engineering, vol. 37, no. 6, pp. 845-857,
2011.

W. Jin and A. Orso, “BugRedux: reproducing field failures for in-house
debugging,” in International Conference on Software Engineering, 2012,
pp. 474-484.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Operating System Design and Implementation, 2008, pp. 209-224.

D. R. Kuhn, D. R. Wallace, and J. Albert M. Gallo, “Software fault
interactions and implications for software testing,” IEEE Transactions
on Software Engineering, vol. 30, no. 6, pp. 418-421, 2004.

D. L. Lucia, L. Jiang, and A. Budi, “Comprehensive evaluation of
association measures for fault localization,” in International Conference
on Software Maintenance, 2010, pp. 1-10.

>

