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Abstract

Many methods for automated software test generation, including some that explic-
itly use machine learning (and some that use ML more broadly conceived) derive
new tests from existing tests (often referred to as seeds). Often, the seed tests from
which new tests are derived are manually constructed, or at least simpler than the
tests that are produced as the final outputs of such test generators. We propose
annotation of generated tests with a provenance (trail) showing how individual
generated tests of interest (especially failing tests) derive from seed tests, and how
the population of generated tests relates to the original seed tests. In some cases,
post-processing of generated tests can invalidate provenance information, in which
case we also propose a method for attempting to construct “pseudo-provenance”
describing how the tests could have been (partly) generated from seeds.

1 Seeded Automated Test Generation

Automatic generation of software tests, including (security) fuzzing [33, 8], random testing [31, 14,
26], search-based/evolutionary testing [5], and symbolic or concolic execution [7, 6, 2, 27, 22, 35]
is essential for improving software security and reliability. Many of these techniques rely on some
form of learning, sometimes directly using standard algorithms [20, 28, 3, 15] such as reinforcement
learning [12, 11, 30], and sometimes in a more broadly conceived way. In fact, using Mitchell’s classic
definition of machine learning as concerning any computer program that improves its performance at
some task through experience [24], almost all non-trivial automated test generation algorithms are
machine-learning systems, with the following approximate description:

1. Based on results of running all past tests (T ), produce a new test t′ = f(T ) to execute.
2. Execute t′ and collect data d′ on code coverage, fault detection and other information of

interest for the execution of t′.
3. T = update(T, t′, d′)

4. Go to step 1.

Performance here (in Mitchell’s sense) is usually measured by collective code coverage or fault
detection of tests in T , or may be defined over only a subset of the tests (those deemed most useful,
output as a test suite). The function f varies widely: f may represent random testing with probabilities
of actions determined by past executions [1], a genetic-algorithms approach where tests in T are
mutated and/or combined with each other, based on their individual performances [23, 5, 33], or
an approach using symbolic execution to discover new tests satisfying certain constraints on the
execution path [7, 6, 2]. A similar framework uses reinforcement learning, but constructs each test
on-the-fly and performs update calls after every step of testing [12]. A common feature however, is
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that many methods do not begin with the “blank slate” of an empty T . Instead, they take as an initial
input a population of tests that are thought to be high-quality (and, most importantly, to provide some
guidance as to the structure of valid tests), and proceed to generate new tests from these seed tests
[33, 27, 22, 35, 29]. Seed tests are usually manually generated, or tests selected from a previously
generated suite for their high coverage or fault detection [32, 10]. It is generally the case that seed
tests are more easily understood by users than newly generated tests. For example, seed tests often
include only valid inputs and “reasonable” sequences of test actions, while generated tests, to improve
coverage and fault detection, often include invalid inputs or bizarre method call sequences.

For example, consider the extremely popular and successful American Fuzzy Lop (AFL) tool for
security fuzzing [33]. It usually begins fuzzing (trying to generate inputs that cause crashes indicating
potential security vulnerabilities) from a corpus of “good” inputs to a program, e.g., actual audio or
graphics files. When a corpus input is mutated and the result is “interesting,” by a code-coverage
based heuristic, the new input is added to the corpus of tests to use in creating future tests. Many
tools, considered at a high level, operate in the same fashion, with the critical differences arising
from engineering aspects (how tests are executed and instrumented), varied heuristics for selecting
tests to mutate, and choice of mutation methods. AFL records the origin of each test in its queue in
test filenames, which suffices in AFL’s case because each test produced is the result of a change to a
single, pre-existing test, in most cases, or the merger of two tests, in rarer cases.

This kind of trace back to the source of a generated test in some seed test (possibly through a long
trail of also-generated tests) is essentially a provenance, which we argue is the most easily understood
explanation of a learning result for humans, in those cases (such as testing) where the algorithm’s
purpose is to produce novel, interesting objects from existing objects.

This simple approach used in AFL works for cases where the provenance of a test is always mediated
by mutation, making for a clear, simple “audit trail.” However, a more complex or fine-grained
approach is required when the influence of seeds is probabilistic, or a test is composed of (partial)
fragments of many tests. Moreover, AFL provides no tools to guide users in making use of what
amounts to an internal book-keeping mechanism, and does not produce provenance output designed
for human examination. Finally, tests, once generated, are frequently manipulated in ways that
may make provenance information no longer valid: a test produced from two seed tests (or seed
test-derived tests) may be reduced [34] so that one of the tests no longer is present at all, for example.

In this paper, we propose to go beyond the kind of simple mechanisms found in AFL, and offer the
following contributions:

• We present an implementation of provenance for an algorithm that involves generating new
tests from partial sequences from many seed tests.

• We discuss ways to present information about not just the provenance of a single test, but
the impact on future tests of initial seed tests. While single-test provenance is useful for
developers debugging, information on general impact of seeds is more important for design
and analysis of test generation configuration and algorithms.

• We identify test manipulations that partially or completely destroy/invalidate provenance
information, and propose an algorithm for producing a pseudo-provenance, showing how
the tests generated could have been generated from seeds, even if they were not actually
thus generated, and discuss abstractions that enable pseudo-provenances.

2 A Simple Seeded Generation Algorithm with Provenance

We implemented a novel test generation technique for the TSTL [19, 16, 17, 18] test generation
language and tool for Python. In this approach, the seed tests are split into (usually short) sub-
sequences of length k. In place of the usual algorithm for random testing, where a new test action
is randomly chosen at each step during testing, our approach always attempts to follow some sub-
sequence, in a best-effort fashion (if the next step in the current sub-sequence is not enabled, it is
skipped). When a test generated in this fashion covers new code (the usual metric for deciding when
to learn from a test, in such methods), it too is broken into sub-sequences and the sequences are added
to the sub-sequence pool and used in generation of future tests.

In TSTL, a test is a sequence of components (test actions), and the provenance of a test generated
using this algorithm involves numerous tests, and varying parts of those tests. We extended TSTL
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int1 = 13 # STEP 0 ;;; quick1.test:11
int0 = 7 # STEP 1 ;;; quick1.test:14
int2 = 16 # STEP 2 ;;; quick2.test:4
avl1 = avl.AVLTree() # STEP 3 ;;; quick5.test:3
avl1.insert(int2) # STEP 4 ;;; quick0.test:15
avl1.insert(int1) # STEP 5 ;;; quick0.test:16
avl0 = avl.AVLTree() # STEP 6 ;;; quick3.test:1
int1 = 10 # STEP 7 ;;; quick3.test:2
avl0.insert(int0) # STEP 8 ;;; quick3.test:3
avl0.insert(int1) # STEP 9 ;;; quick3.test:4
avl0.delete(int0) # STEP 10 ;;; quick3.test:5
avl1.insert(int2) # STEP 11 ;;; quick5.test:10
int2 = 14 # STEP 12 ;;; quick5.test:11

Figure 1: Example test generated with fine-grained provenance information

to allow every component of a test to be annotated with a string. Whenever a component from a
sequence in the sequence pool is added to a test, it is labeled with the file name of the source test and
the exact location in that test of the component. Figure 1 shows part of a high-quality test for an AVL
data structure library. In the example, we first generated a set of “quick tests” [9, 10], small tests
that together obtain maximum coverage. We then used sequences from these tests to guide testing,
with the goal of producing a single test with maximal code coverage (the highest coverage from any
one quick test is 173 branches and 131 statements). The complete generated test of which the first
fragment is shown in Figure 1 covers 204 branches and 152 statements. Each step (component) in the
test is labeled with its exact source in one of the 6 seed tests. Because all tests generated (including
new quick tests enhancing coverage) are thus annotated, the source of a test component can always be
traced back to an initial seed test. Here, the file names of the tests are not highly informative; however,
using a recently-proposed technique for automatically giving generated tests high-quality names [4],
the information could be even more useful. In practice, many seed tests would also be named for
previously detected faults they are associated with, thus providing considerable information as to the
context of test components.

In this example algorithm, provenance is certain and direct: each component of a test arises from one
previously-generated or seed test. However, in some cases (e.g., learned models) multiple tests may
influence the probability of a component appearing. For example, the probability of each possible
component could be non-linearly proportional to how many seed (and learned) tests that component
appears in. In such cases, however, the same approach applies, except that instead of a single source,
each component is labeled with a set of contributing tests, along with their degree of contribution
(e.g., if a component appears 5 times in some seed tests, it will increase probability of generating that
component more than a seed test in which it only appears once).

3 Presenting Collective Provenance Information

While provenance of components of a single test is the most interesting information for debugging
and understanding a newly generated test, the most difficult and frequently performed part of an
automated testing effort is the effort to understand the overall behavior of the test generation. For
that task, information beyond the provenance of single tests is essential.

Fortunately, the critical information is easily summarized. Usually simply tabulating frequency
of a seed test contributing to a generated test is sufficient, either at the level of the entire test or,
for an algorithm like the one presented above, at the level of individual components of a seed test.
For example, if we apply our new algorithm to test pyfakefs [25], a popular Python file system
simulator for testing, we discover that a test that first creates, then removes, a sequence of nested
directories is the single most useful test to mine for new coverage, out of a set of 50 seed tests
covering basic file system functionalities. However, more useful perhaps is an analysis of actual
components used, abstracted to their general type of operation (what file system call is involved).
This shows that, in order, the most important operations for exposing new coverage are: symlink,
makedirs, rename, and close, followed by variations of open. The file-level data combined with
this data shows that our seeds provide very few variations on the creation and destruction of multiple
directories at once, making the one test with such a sequence extremely important, despite these not
being the most contributory components for adding test coverage. At this point, adding more seeds
with the “over-used” components is a plausible next step for improving test generation.
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4 Test Manipulations and Pseudo-Provenance

The approaches presented above are applicable to a large set of test generation methods. However,
tests generated are often manipulated after generation. In particular, they are very often reduced
in size [34], producing a test with fewer components that preserves either fault detection or code
coverage [9] properties of the original test. Reduction usually preserves provenance in a sense
(components not removed maintain their provenance annotations), but a long sequence is likely to be
broken up and have its context lost. Understanding the provenance after reduction is therefore likely
harder, because there are fewer long sequences from existing tests. Moreover, test normalization [13],
which uses term rewriting to change (vs. simply remove) test components tends to destroy provenance
information completely (any components rewritten during normalization lose their provenance, since
the new component is produced by a brute force search, not from seed tests).

However, we can still provide some of the information that provenance would have provided, by
showing how an algorithm based on replaying sub-sequences of seed tests could have produced the
new tests. This applies to both a simple sub-sequence-replay approach such as described above, or to
more complex approaches, such as a Markov model of the seed tests.

4.1 A Greedy Pseudo-Provenance Algorithm

The algorithm for constructing a pseudo-provenance is simple. We take the set of seed tests, and a
test for which no provenance exists (or for which provenance has been partially destroyed). First,
for each component of the test missing provenance, we compute all possible positions in all seed
tests compatible with that component. Normally, this will be matching components only, but we also
allow optional abstraction (as with provenance summaries) to the type of test action, rather than the
specific action (since normalization and alpha conversion tend to modify exact variable names from
source tests). For components that already have provenance, the set of compatible seed components
is just the actual provenance source. After this, we iterate through the test, at each step removing any
compatible provenances that do not extend a previous sub-sequence. Whenever the set of compatible
components from seeds becomes empty, the current sub-sequence cannot be extended, so we return to
the previous step, and construct a pseudo-provenance by iterating backwards from that position until
we encounter test components already labeled with a provenance, annotating each step with the same
arbitrarily selected provenance source from possible sequences in seeds (since all are guaranteed to
produce an equally sized sub-sequence).

The problem is similar to computing a string alignment (e.g., as in computing Levenshtein distances
[21]), except that there are multiple strings to potentially align with. While in principle a more
expensive algorithm than our greedy approach could produce better pseudo-provenances, we believe
that making initial sub-sequences as long as possible, in order to “orientate” readers is more important
in debugging, and the exact quality is not critical for summarization purposes.

Using our greedy approach, we can construct the provenance of the test in Figure 1 exactly, with
the exception that in several cases we find a better matching sequence than was really responsible
for the generated test. For example, STEP 3 now is associated with quick0.test:14 rather than
quick5.test:3. This is also an actual way the test could have been produced by our sequence-based
generation algorithm, and in many cases would make understanding the relationship to a seed test
easier. Pseudo-provenance may be useful even in cases where real provenance exists, since for our
generation algorithm, at least (or a Markov-based approach), a pseudo-provenance is equally valid
in the sense that it provides a causal explanation of the generated test. The pseudo-provenance may
relate to a less likely sequence of events, but it may also relate to a more likely sequence of events. In
many cases, the ability to understand generated tests by having extended sub-sequences of seed tests
is more important than such questions of generation-method probability.

5 Conclusions

In this paper, we present the problem of explaining the origins of generated tests derived from seed
tests, and propose and implement (in TSTL [19], with code on GitHub [18]) approaches for handling
this problem in practical testing. One unusual feature of automated test generation is that even when
provenance is lost in either generation or post-processing of tests, constructing a pseudo-provenance
is still useful in understanding the context of generated tests, and how they relate to seed tests.
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