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Abstract

We consider the case where inconsistencies are present between a system and its corresponding model, used for
automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the
system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we
can sometimes exploit the verification results to assist in automatically learning the required updates to the model.
In a related previous work, we have suggested the idea of black box checking, where verification starts without
any model, and the model is obtained while repeated verification attempts are performed. Under the current
assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use
techniques from black box testing and machine learning. We present an implementation of the proposed
methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various
tactics of updating a model while trying to perform model checking.

Keywords: Black box testing, learning regular languages, model checking.

1 Introduction

The automatic verification of systems, also called model checking, is increasingly gaining
popularity as an important tool for enhancing system reliability. A major effort is to find
new and more efficient algorithms. One typical assumption is that a detailed model, which
correctly reflects the properties of the original system to be checked, is given. The
verification is then performed with respect to this model. Because of the possibility of
modeling errors, when a counterexample is found, it still needs to be compared against the
actual system. If the counterexample does not reflect an actual execution of the system,
the model needs to be refined, and the automatic verification is repeated.

Although there are several tools for obtaining automatic translation from various
notations to modeling languages, such translations are used only in a small minority of cases,
as they are syntax-specific. The modeling process and the refinement of the model are largely
manual processes. Most noticeably, they depend on the skills of the person who is performing
the modeling, and his experience.

In this paper, we deal with the problem of model checking in the presence of an inaccurate
model. We suggest a methodology in which model checking is performed on some preliminary
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Fig 1. The black box checking strategy

model. Then, if a counterexample is found, it is compared with the actual system. This
results in either the conclusion that the system does not satisfy its property, or an automatic
refinement of the model. We adapt a learning algorithm [1], to help us with the updating of
the model. We employ a testing algorithm [4, 18] to help us compare the model with the
actual system, through experiments.

Our adaptive model checking approach can be used in several cases.

e When the model includes a modeling error.

e After some previously occurring bug in the system was corrected.
e When a new version of the system is presented.

e When a new feature is added to the system.

We present an implementation of Adaptive Model Checking (AMC) and experimental
results. In the limit, this approach is akin to Black Box Checking [12] (BBC), where initially
no model is given. The current implementation serves also as a testbed for the black box
checking approach, and we present our experimental results.

The black box checking approach [12] is a strategy to verify a system without a model.
According to this strategy, illustrated in Figure 1, we alternate between incremental learning
of the system, according to Angluin’s algorithm [1], and the black box testing of the learned
model against the actual system, using the Vasilevskii-Chow (VC) algorithm [4, 18].

At any stage we have a model that approximates the actual system. We apply model
checking to this model. If we find a counterexample for the checked property, we compare
it with the actual system. If it turns out to be a false negative, we feed this example to
the learning algorithm, since this is an example of the difference between the model and
the system. This allows us, through the learning algorithm, to improve the accuracy of the
model. If we do not find a counterexample (recall that we use an approximation model for
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model-checking, and not the system directly), we apply the VC algorithm, looking for
a discrepancy between the current approximation model and the system. Again, if we find
a sequence that distinguishes the behavior of the system from the model, we feed it to the
learning algorithm, in order to improve the approximated model.

In this paper, we consider a variant case, in which a model for the tested system is provided,
but is inaccurate, due to modeling error or new updates in the system. Abandoning the model
and applying the black box checking approach may not be an efficient strategy due to the
inherently high complexity of the black box testing involved. Instead, we attempt to exploit
the existing model in order to learn the changes and verify the system. Specifically, we try
to diminish the need for the repeated call to the VC algorithm by providing the learning
algorithm with initial information taken from the given model. This is in line with our goal of
adapting an existing model, as opposed to performing model checking without a model being
initially present. We present experimental data that compares the different cases.

2 Preliminaries

A model and a specification

A Biichi automaton is a quintuple (S, Sy, 2, §, F'), where S'is a finite set of states, Sy C S are
the initial states, X is the finite alphabet, § € S x X x S is the transition relation, and F' C S
are the accepting states.

A run of a Biichi automaton over a word ajas... € X® is an infinite sequence of states
819283 ..., with s; € Sy, such that for each i > 0, (s;, @;, s;11) € 8. A run is accepting if at least
one accepting state occurs in it infinitely many times. A word is accepted by a Biichi
automaton exactly when there exists a run accepting it. The language L(A) of a Biichi
automaton A is the set of words that it accepts. Two automata are equivalent when they
accept the same language.

An automaton representing an implementation B = (5%, SP %, 5% 9%) has several
restrictions. We assume that the number of states |S?| is bounded by some value n, that
Sf is a singleton {t}, and that F? = SZ namely, all the states are accepting. We will also refer
to such an automaton as a model.

We can view an implementation machine as a Mealy machine: at each state v and for each
input a, the machine outputs 0 if the transition is not enabled, and then remains in the same
state, and 1 if it is enabled. Furthermore, we assume that the implementation automaton
is deterministic, i.e., if (s, a, t) € 8% and (s, a, t') € 8%, then t = ¢

For a specification automaton P = (SP, SP. %, 8P, FP), we will denote the number of
states |S”| by m. Let the size of the alphabet ¥, common to the implementation and the
specification, be p. As we mentioned in the introduction, we can easily extend the framework
of this paper, and the results to implementation machines with arbitrary output (i.e., Mealy
machines), and specification machines that describe the legal input—output behaviors.

The  intersection  (or  product) of two  Biichi automata Bx P is
(S8 x 8P, 5(1)9 x ST, %, 8, 5% x FP), where

8§ =1{((s,8), 0, (t, )| (5,0, 1) € 8B A (S, a, ) € 8T},

Thus, the intersection contains (initial) states that are pairs of (initial, respectively) states of
the individual automata. The transition relation relates such pairs following the two
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transition relations. The accepting states are pairs whose second component is an accepting
state of P. We have that £(B x P) = L(B) N L(P).

Model checking of a temporal property ¢ against an implementation B can be done as
follows [17]. We assume that ¢ is a specification written in some formalism, e.g., Linear
Temporal Logic [13]. As such, it represents some language L(¢) over an alphabet X.
An implementation B satisfies a specification ¢ if

L(B) < L(g) (2.1)

That is, all the runs accepted by B are allowed by ¢. To check this, we may translate
—¢ into an automaton P such that L(—¢) = L(P). For such a translation, see, e.g., [9].
Then we check the emptiness of the intersection, namely whether L(P)N L(B) = #.
Through the translation, emptiness here means that (2.1) holds. If the intersection is
nonempty, then it includes a word o that does not satisfy ¢ (since it is in £(—¢)) and also
is in £(B). This means that o is a counterexample for the implementation to satisfy the
specification. Finding such a counterexample is very useful for debugging the checked
implementation.

A reset is an additional symbol of $” not included in ¥, allowing a move from any state to
the initial state. An experiment is a finite sequence

a1y ... a1 € (LU {reset})*,

such that there exists a sequence of states s;sy...s; of SB, with s € Ség , and for each
1 <j <k, either

(1) aj =reset and s;;; = (a reset move), or
(2) (s, ), $i+1) € 87 (an automaton move), or
(3) there is no t € SP such that (s;, o, ) € 8% and sj11 = s; (a disabled move).

We view a system S = (2, T) as a (typically infinite) prefix closed set of strings T'C T*
over a finite alphabet of inputs £ (if v € T, then any prefix of vis in T). The strings in T
reflect the allowed ezxecutions of S.

We assume that we can perform the following experiments on S:

e Reset the system to its initial state. The current experiment is reset to the empty
string e.

e Check whether an input a can be currently executed by the system. The letter a is added
to the current experiment. We assume that the system provides us with information on
whether a was executable. If the current successful part of the experiment so far was
v € T* (i.e., v € T), then by attempting to execute a, we check whether va € T. If so, the
current successful part of the experiment becomes va, and otherwise, it remains v.

An implementation B agrees with a system S if for every v € X* wv is a successful
experiment (after applying a Reset) exactly when v is a run of B. Note that our
system generates binary output in accordance with the enabledness of a given input
after executing some sequence from the initial state. We can easily generalize the
construction and subsequent algorithms to deal with arbitrary output. We deal here with
finite state systems, i.e., systems that are modeled by some finite state automaton. The size
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of a system is defined to be the number of states of the minimal implementation automaton
that agrees with it.

Angluin’s Learning Algorithm

Angluin’s learning algorithm [1] plays an important role in our adaptive model checking
approach. The learning algorithm performs experiments on the system S and produces a
manimized finite automaton representing it.

The basic data structure of Angluin’s algorithm consists of two finite sets of finite strings V
and Wover the alphabet ¥, and a table f. The set V is prefix closed (and contains thus in
particular the empty string €). The rows of the table fare the strings in V U V - X, while the
columns are the strings in W. The set W must also contain the empty string. Let f(v, w) =1
when the sequence of transitions vw is a successful execution of S, and 0 otherwise. The entry
f(v, w) can be computed by performing the experiment vw after a Reset.

We call the sequences in V the access sequences, as they are used to access the different
states of the automaton we are learning from its initial state. The sequences in W are called
the separating sequences, as their goal is to separate between different states of the
constructed automaton. Namely, if v, v € V lead from the initial state into a different state,
than we will find some w € W such that S allows either vw or v'w as a successful experiment,
but not both.

We define an equivalence relation =mod( W) over strings in ¥* as follows: v; = vymod(W)
when the two rows, of v; and v, in the table fare the same. Denote by [v] the equivalence class
that includes v. A table fis closed if for each va € V - X such that f(v, &) # 0 there is some
v' € V such that va = v mod(W). A table is consistent if for each v, v € V such that
v = v mod(W), either f(v,€) = f(n,e) =0, or for each ae€ X, we have that
va = v a mod(W). Notice that if the table is not consistent, then there are v, v € V,
a€X and we W, such that v; = vy mod(W), and exactly one of vjaw and waew is an
execution of §. This means that f(va, w) # f(v2a, w). In this case we can add aw to W in
order to separate v; from wy.

Given a closed and consistent table f over the sets V and W, we construct a proposed
automaton M = (S, sy, X, 8) as follows:

e The set of states Sis {[v]| v e V, f(v, &) # 0}.

e The initial state s, is [¢].

e The transition relation § is defined as follows: for v € V, a € X, the transition from [v]
on input a is enabled iff f(v, a) = 1 and in this case 8([v], a) = [va].

The facts that the table fis closed and consistent guarantee that the transition relation
is well defined. In particular, the transition relation is independent of which state v of the
equivalence class [v] we choose; if v, v are two equivalent states in V, then for all a € &
we have that [va] coincides with [va] (by consistency) and is equal to [u] for some u € V
(by closure).

There are two basic steps used in the learning algorithms for extending the table f:

add_rows(v): Add v to V. Update the table by adding a row va for each a € ¥ (if not already
present), and by setting f(va, w) for each w € W according to the result of the experiment
vaw.
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subroutine ANGLUIN(V,W,f,0)
if f, Vand W are empty then
/ * starting the algorithm from scratch */
let V:={¢e}; W={¢g};
add_rows(€);
else
for each v € prefix (o) that is not in V do
add_rows(v'),
while (V,W, f) is inconsistent or not closed do
if (V,W,f) is inconsistent then
find v, v, €V,ae€XZ, we W, such that
vy =vymod(W) and f (via,w) # f (voa,w);
add_column (aw);
else / * (V,W, f) is not closed */
findveV,ael,
such thatva ¢ [u] for any u € V;
add_rows (va);
end while
return automaton (V, W, f)
end ANGLUIN

Fig 2. An incremental learning step

add_column(w): Add w to W. Update the table fby adding the column w, i.e., set f(v, w) for
each v € VU V- X, according to the experiment vw.

The Angluin algorithm is executed in phases. After each phase, a new proposed automaton
M is generated. The proposed automaton M may not agree with the system S. We need to
compare M and S (we present later a short description of the VC black box testing algorithm
for performing the comparison). If the comparison succeeds, the learning algorithm
terminates. If it does not, we obtain a run o on which M and S disagree, and add all its
prefixes to the set of rows V. We then execute a new phase of the learning algorithm, where
more experiments due to the prefixes of o and the requirement to obtain a closed and
consistent table are called for.

The subroutine in Figure 2 is an incremental step of learning. Each call to this
subroutine starts with either an empty table f, or with a table that was prepared in the
previous step, and a sequence o that distinguishes the behavior of the proposed automaton
(as constructed from the table f) and the actual system. The subroutine ends when the table
fis closed and consistent, hence a proposed automaton can be constructed from it.

Let m be the size of an automaton that faithfully represents the system S. Assume
that Angluin’s algorithm is executed in such a way that each time an automaton that does
not faithfully represents the system S is proposed, a shortest counterexample showing the
discrepancy in behavior is presented, without accounting for the time it takes for calculating
such a counterexample. This assumption is made in order to decouple the complexity of
comparing S with M from the learning algorithm. Then, the time complexity is O(m?).

Spanning trees

A spanning tree of an automaton M = (S, {t}, &, 8, S) is a graph G = (S, , X, A) generated
using the following depth first search algorithm.
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explore(t);
subroutine explore(s):
set old(s);
for each ¢ € ¥ do
if 3¢’ € Ssuch that (s, a, ') €8
and —old(s') /* s was not found yet during the search =/
add (s, a, &) to A;
explore(s);

A spanning tree thus is a subgraph G of M, with no cycles. Let T be the corresponding
runs of G. Notice that in Angluin’s algorithm, when a proposed automaton M is learned,
the set Vof access sequences includes the runs of a spanning tree of M.

Separating Sequences

Let M = (S, {1}, X,8,S5) be an automaton with a set of states S. Let ds be a function
ds: 8 — 2% . That is, ds returns, for each state S, a set of words over X. We require that if
s, €8, s# &, then there are w € ds(s) and w € ds(s'), such that some o € prefiz(w)N
prefiz(w') is enabled from exactly one of s and . Thus, o separates s from §'. We call ds the
separation function of M (see, [11]).

A simple case of a separation function is a constant function, where for each s, ¢,
ds(s) = ds(s'). In this case, we have separation set. Note that the set W generated by
Angluin’s algorithm is a separation set. We denote the (single) set of separating sequences
(a separation set) for an automaton M by DS(M).

The Hopcroft algorithm [10] provides an efficient O(n log n) for providing a set of
separating sequences, where n is the number of states.

Black box testing

Comparing an implementation M with a finite state system S can be performed using the
Vasilevskii-Chow [4, 18] algorithm. As a preparatory step, we require the following;:

e A spanning tree G for M, and its corresponding runs 7.
e A separation function ds, such that for each s € 5, |gs(s)| < n, and for each o € gs(s),
lo| < n.

Let £=F be all the strings over ¥ with length smaller or equal to k. Further, let m be the
number of states of the automaton M. We do the experiments with respect to a
conjectured maximal size n of S§. That is, our comparison is correct as long as
representing S (using a finite automaton) does not need to have more than n states.
The black box testing algorithm prescribes experiments of the form Reset op, performed

on S, as follows:
e The sequence o is taken from T - R="—m+1,
e Run o from the initial state ¢ of M. If o is enabled from ¢, let s be the state of M that is

reached after running o. Then p is taken from the set ds(s).

The complexity of the VC algorithm is O(n?m |Z|"~"1).
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3 Adaptive verification

Our adaptive model checking methodology is a variant of black box checking [12]. While the
latter starts the automatic verification process without having a model, adaptive model
checking assumes some initial model, which may be inaccurate. The observation is that the
inaccurate model is still useful for the verification. It can be used for performing model
checking. Caution must be taken as any counterexample found must still be compared
against the actual system; in the case that no counterexample is found, no conclusion about
the correctness of the system can be made. In addition, the assumption is that the given
model shares some nontrivial common behavior with the actual system. Thus, the current
model can be used for obtaining a better model.
The methodology consists of the following steps:

(1) Perform model checking on the given inaccurate model.

(2) Provided that an error trace was found, compare the error trace trace with the actual
system. If this is an actual execution of the system, report it and stop.

(3) Start the learning algorithm. Unlike the black box checking case, we do not begin with
V = W = {¢}. Instead, we initiate Vand W to values obtained from the given model M
as described below. We experiment with several ways of doing so.

(4) If no error trace was found, we can either decide to complete the verification attempt
(assuming that the model is accurate enough), or perform some black box testing
algorithm, e.g., VC, to compare the model with the actual system. A manual attempt to
correct or update the model is also possible. Notice that black box testing is a rather
expensive step that should be eliminated.

In the black box checking algorithm, we start the learning with an empty table f
and empty sets V and W. This immediately cause the initialization of V = W = {&}
(see Figure 2). As a result, the black box checking algorithm alternates between the
incremental learning algorithm and a black box testing (VC algorithm) of the proposed
automaton with the actual system. Applying the VC algorithm may be very expensive. In
the adaptive model checking case, we try to guide the learning algorithm using
the already existing (albeit inaccurate) model M. We assume that the modified system
has a nontrivial similarity with the model. This is due to the fact that changes that
may have been made to the system were based on the old version of it. We can use the
following;:

(1) A false negative counterexample o found (i.e., a sequence o that was considered to
be a counterexample, but has turned out not to be an actual execution of the system S).
We perform learning experiments with prefiz(o), i.e., the set of all prefixes of o.

(2) The runs T of a spanning tree G of the model M as the initial set of access sequences V.
We precede the learning algorithm by performing for each v € T do add_rows(v).

(3) A set of separating sequences DS(M) calculated for the states of M as the initial value of
the set W. Thus, we precede the learning algorithm by setting f to be empty, and
W = DS(M).

Thus, we attempt to speed up the learning, using the existing model information,
but with the learning experiments now done on the actual current system S. We experiment
later with the choices 1 + 2 (in this case we set W = {e}), 1 + 3 (in this case we set V = {¢})
and 1+ 2+ 3.
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In order to justify the above choices of the sets Vand W for the adaptive model checking
case, we will show the following: If the model M agrees with the system S, starting with the
aforementioned choices of Vand W the above choices allow Angluin’s algorithm to learn M
accurately, without the assistance of the (time expensive) black box testing (the VC
algorithm).

THEOREM 3.1

Assume that a finite automaton M agrees with a system S. Let G be a spanning tree of M,
and T the corresponding runs. If we start Angluin’s algorithm with V = T and W = {€},
then it terminates learning a minimized finite automaton A with £(A) = L(M). Moreover,
the learning algorithm will not require the use of the VC black box testing algorithm.

Sketch of proof. By induction on the length of experiment that is require to distinguish
pairs of states of M. As the induction basis, by consistency, we will separate states in V
according to whether va can be accessed from the initial state or not, for v € V, a € Z. Then,
suppose that the states reached by va and v'a were separated. The table cannot become
consistent before we separate va and v'a. |

THEOREM 3.2

Assume that a finite automaton M agrees with a system S. Let DS(M) be a set of separating
sequences for M. If we start Angluin’s algorithm with V = {e} and W = DS(M), then it
terminates learning a minimized finite automaton A with L£(A) = L(M). Moreover, the
learning algorithm will not require the use of the VC black box testing algorithm.

Sketch of Proof. Because of the selection of the separation set, each time a new state of Mis
accessed through an experiment with a string v € V, it will be immediately distinguished
from all existing accessed states. Consequently, by the requirement that the table will be
closed, the learning algorithm will generate for it a set of immediate successors. Thus, the table
fwill not be closed before all the states of M are accessed via experiments with strings of V.l

The above theorems show that the given initial settings do not prevent from learning
correctly any correct finite representation of S (note also that adding arbitrary access and
separating sequences does not affect the correctness of the learning algorithm). Of course,
when AMC is applied, the assumption is that the system S deviates from the checked system.
However, if the changes to the system are modest, the proposed initial conditions are
designed to speed up the adaptive learning process.

The Effect of Changes to the System

The assumption is adaptive model checking is that the given system incurs small changes
from the unupdated model. We will now describe (qualitatively) how such changes to the
checked system can affect the performance of the algorithm.

An additional edge from an existing state s to a new state s'. Reaching sis achieved through
an access sequence vin V (since V'is formed through a spanning tree), provided that no edge
in v was removed due to a further change. As part of the learning algorithm, we test for all
the successors of v, hence §' is now reached, say with the sequence vy. Applying the existing
distinguishing sequences in W, the learning algorithm will form a row in its table for vy for .
If this row is different than all other rows, vy is added to V and this path will be further
extended in this way, to learn new states. If this (or a subsequent) row is the same as existing
ones (note that the distinguishing sequences in Ware initially based on the old system, hence
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they may fail to distinguish new states), the learning algorithm may initially identify such
states with the same rows and fail to discover the new states. Performing model checking on
the newly learned automaton may discover a counterexample through the new edge(s). In this
case, either this is a false negative, prompting immediate further learning, or a real
counterexample (which is reported as a result of the verification). In either case, the VC
algorithm is not involved. There are cases where behaviors of the checked system that do not
satisfy the checked property require other changes as well; these may have not been caught yet
by the learning algorithm. In such cases, the newly learned model may not yet contain
counterexamples that identify bad behaviors, calling for the expensive VC algorithm.

In general, the addition of functionality is a change that is more difficult for the adaptive
model checking algorithm to tackle than other changes. The reason is that if many new states
are added, they are separated from each other during the initial application of the learning
algorithm due to the distinguishing sequences W that based on the old description of the
system. Hence the distinction between some of the new states, or new states and the old ones
may be initially missed. In the event that the new states are the only source of a
counterexample, this may result in invocation of the expensive VC algorithm.

Redirecting an existing edge from an existing state to a different existing state s'. The learning
algorithm may successfully identify the new target due to the existing distinguishing
sequences W. Of course, the behavior of the system over W may change because of (this and)
other changes to the system. However, any two accesses to § through a sequence from the
initial state, including the new one and an existing one, would never be separated from each
other by any set of distinguishing sequences.

Remowal of edges from s to s'. The removed edge would certainly not appear in the newly
learned algorithm since once we access s there is no way to get to . Thus, this change is
quickly learned in the new model. Counterexamples that existed previously and included the
edge from sto ¢ would cease to exist, and properly so; this can be the case where the removal
of the edge is due to correcting the error reported through this counterexample.

An additional difficult case is the addition of a new initialization sequence to a system
before ‘“‘normal operations’ or the old initial state. This will typically invalidate the spanning
tree, forcing completely new access sequences to be generated. Even in this case, the distin-
guishing sequences may turn to be very useful for the initial learning of the updated model.

4 An implementation

Our implementation of AMC is described in this section. We provide some experimental
results.

Experimental results

Our implementation prototype is written is SML (Standard ML of New Jersey) and includes
about 5000 lines of code. We have performed several experiments with our AMC prototype.
We compared adaptive learning (AMC) and black box checking (BBC). In addition, we
compare the behavior of different initial values with which we started the AMC. In
particular, we experimented with starting AMC with a spanning tree T of the current model
M, a set of distinguishing sequences DS(M), or with both. In each case of AMC, the prefixes
of the counterexample that was found during the verification of the given property against
the provided, inaccurate, model was also used as part of the initial set of access sequences V.
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The examples used in our experimental results are taken from a CCS model of a COMA
(Cache Only Memory Architecture) cache coherence protocol [2]. We use the more recent
CCS model contained at the site

ftp.sics.se/pub/fdt/fm/Coma

rather than that in the paper; we also modify the syntax to that of the Concurrency
Workbench [6]. We used the Concurrency workbench in order to convert the model into a
representation that we can use for our experiment.

The model is of a system with three components: two clients and a single directory. The
system S2 with 529 states is a set of processes to generate local read and write requests from
the client. The system 53 with 136 states, allows observation only of which processes have
valid copies of the data and which (if any) have write access. (We preserved the names 52
and S3 from the paper [2]).

Property ¢; asserts that first the component called ‘directory’ has a valid copy, then clients
1 and 2 alternate periodically without necessarily invalidating the data that any of the others
hold. (The directory is the interface between the two memory units in the cache protocol.
COMA models basically have only a cache to handle memory.) Property ¢» describes a
similar property but the traces now concern a cache having exclusivity on an entry (a cache
can have a valid copy without exclusivity, which is more involved to obtain). For AMC, we
have selected properties that do not hold, and tampered with the verified model, in order to
experiment with finding (false negative) counterexamples and using them for the adaptive
learning.

The next table summarizes the experiments done on S2. The columns marked BBC
correspond to the black box checking, i.e., learning from scratch, while the rightmost column
correspond to the three different ways in which the learning algorithm was initialized for
the adaptive learning case. The notation ¢; > ¢» means that the experiment included
checking ¢, first, and then checking ¢,. In the black box checking this means that
after a counterexample for ¢; was found (which is designed to be the case in our
experiments), we continue the incremental learning algorithm from the place it has stopped,
but now with ¢, as the property. This possibly causes continuing the incremental learning
process for the proposed model automata, and performing the VC algorithm several times. In
the adaptive case, it means that we initialize AMC with the information about the previously
given model, according to the three choices. The memory and time measurements
for these cases are the total memory and time needed for completed the overall checking
of o1 and .

In the tables, time is measured in seconds, and memory in megabytes. The experiments
were done on a Sun Sparc Ultra Enterprise 3000 with 250 Mhz processors and 1.5 gigabytes
of RAM.

Property BBC V £ {e} W # {e} V, W # {e}
Time Mem Time Mem Time Mem Time Mem
01 1234 31 423 41 682 32 195 37
) 934 31 424 45 674 42 198 42
01> P2 1263 31 454 45 860 44 227 47

Q2> @1 1099 31 453 45 880 40 227 44
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The following table includes the number of states learned in the various experiments, and
the length of the counterexample in under BBC.

Property BBC V # {e} W # {e} V, W # {&}
States Len States Len States Len States Len
o1 258 90 489 211 486 211 489 211
¥ 174 113 489 539 486 539 489 539
©1 > @y 274 112 489 539 486 539 489 539
@2 > @ 259 160 489 211 486 211 489 211

The next table includes similar time and memory measurement experiments performed
with the system S3:

Property BBC V # {e} W £ {e} V, W # {e}
Time Mem Time Mem Time Mem Time Mem
01 913 24 14 25 13 24 7 25
) 13917 26 14 25 14 25 7 25
@1 > P2 1187 27 17 25 19 26 10 25
©2 > @1 13873 27 17 26 19 25 10 25

Similarly, the following table includes the number of states and length of counterexample
for the experiments with S3.

Property BBC V # {e} W + {&} V, W # {e}
States Len States Len States Len States Len
¥1 79 25 134 114 135 114 134 114
©2 108 118 134 142 135 142 134 142
1> @2 81 94 134 142 135 142 134 142
@2 > @ 114 113 134 114 135 114 134 114

In addition, we performed sanity checks. We applied AMC with the three different
initializations on S2 and S3, and checked that we indeed obtained automata with 136 and
529 states, respectively. It should be commented that the deliberate change that was made to
the original systems of S2 and 53 has resulted in no change in the number of states (in the
minimal representation) of these systems.

Observing the tables, we see that performing BBC, i.e., learning a model from scratch, was
2.2 to 100 times slower than AMC. In addition, BBC has in some cases learned a model that
is less than half of the actual states of the minimal automaton that faithfully represents the
system (after the modification), while AMC was able to generate a representation that is less
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than 50 states short. It turned out that for the smaller system, S3, BBC has done a better job
in learning a model than for S2. This means that it got a model with number of states closer
to the actual minimal representation of the system.

We also see that the counterexample for BBC is shorter than that of AMC. This is not
surprising, as BBC is ‘zooming into’ an error by considering incrementally growing automata for
representing the system, while AMC is attempting to obtain a close enough representation first.

We comment that the implementation was done using SML, which takes about
20 megabytes for keeping its internal runtime structures. SML performs garbage
collection phases during the execution, which slightly affects the running time and
memory usage.

Improving the prototype

Note that there is no guarantee that the adaptive model checking will zoom into a correct
model by performing the learning algorithm. After the learning algorithm terminates, it is
still possible that discrepancies exist, and to detect them, we need to apply the black box
testing part and then resume the learning. Of course, it is beneficial to avoid the testing part,
in particular for relatively large models, as much as possible. For that, we may enhance the
learning part with various heuristics. For example, we start AMC in Section 3 assuming that
the actual structure of S would resemble a model M immediately after resetting S. This does
not need to be the case. Thus, we may look for behaviors that match or resemble the set of
runs 7T of a spanning tree of the model M from other points in the execution of S. For
example, we may augment the learning algorithm by looking forward two or three inputs
from every given state, and try to pattern match that behavior with that of set of runs 7.

The Vasilevskii-Chow algorithm, used to compare the system with a model, is a bottleneck
in our approach. In the limit, when there is no error, the algorithm is exponential in the
difference between the conjectured size of the system and its actual size.

We apply the following heuristic improvement. The most wasteful part of the algorithm is
manifested when arbitrary sequences of inputs over the input alphabet X (of length
n — m + 1) are required by the algorithm. We generate a smaller set of sequences as follows.
Given some information about the inputs, we calculate a partial state and carry the updating
of the current state with the generation of the sequence. For example, if we know that some of
the inputs correspond to message passing, we may include with each partial state a counter
for each message queue. Such a counter will be set to zero in the initial state and will
increment or decrement according to the corresponding send and receive events, respectively.
Thus, from a current state where a counter that corresponds to some queue is zero, we do not
allow an input that corresponds to a receive event.

5 Related work

As previously noted, this work is an extension and optimization of the original black box
checking technique [12]. Another approach to learning a system to be verified is that of
Vardhan, et al. [16], which uses regular approximations of infinite-state systems to verify
safety properties. Steffen and Hungar propose a behavior-based model construction approach
that also makes use of Angluin’s automata learning techniques, relying on more rigid
abstractions and expert knowledge [15]. Xie and Notkin apply an iterative feedback loop to
refine a specification in order to produce better test cases [19].
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The iterative refinement loop used in black box and adaptive model checking resembles, at
least superficially, the approach taken in counterexample guided abstraction refinement
(CEGAR) [5]. Counterexamples are used to refine an abstraction of a system; in our case,
counterexamples are used to refine a learned model of a system, which is not a safe
abstraction of the system. In both cases, the refinement may terminate with the discovery of
a valid counterexample for a property; however, because the black box approach cannot use a
safe abstraction (as the real system is unknown), verification of a property can only succeed
when a model equivalent to the unknown system is learned. The equivalent of the adaptive
case for CEGAR would presumably be to use predicates (or the equivalent) taken from a
previous version to seed the initial abstraction of a revised version of a system. In the case of
CEGAR techniques optimized to produce a small set of predicates [3], this might well obtain
some advantage over beginning with a less detailed model.

Learning based on Angluin’s algorithm has also been used by Cobleigh et al. to
automatically generate assumptions for assume-guarantee verification of systems [8].
Experimental results in that context do not show an improvement when using adaptive
approaches over relying on Rivest and Schapire’s improvement [14] of Angluin’s
algorithm [7].

6 Discussion

Our adaptive model checking approach is applicable for models that are inaccurate but not
completely irrelevant. There are a number of scenarios where this may be the case, such as
the following. (1) New Functionality: Suppose we have a system modeled by M, and that we
add some functionality to it in the form of a new operation, i.e new inputs that can be applied
to it, which result in a new system equivalent to a more refined automaton M’. Assuming we
have the model M of the old system, we can jump-start the learning algorithm with it, and go
on from there; there is no reason to start with the empty model. (2) Partial specification:
More generally, suppose that we have a partially specified model M, i.e. for some actions at
some states we know what happens (whether a transition is enabled and the destination
state if it is), while for some others we do not know yet, so there are missing transitions
which may or may not be enabled, and may lead to new unknown states. Again we can use
the access sequences V and the separating sequences W from the existing partial model
and go on from there. (3) Small number of modified transitions: Suppose we have a system
modeled by M except for some transitions that were modified (but we don’t know which).
If the set V of access sequences is still valid (i.e. all the transitions are enabled), then we
can use them. The model M is inaccurate now and some of the separating sequences may not
be wvalid, but the algorithm will find this out, discover new separating sequences,
and converge to the correct new model, or will find an error track for the property before
that point.

When a principle change is made, the approach will still work, but the time to update the
model may be substantial. In some pathological cases, simple changes can also lead to a
substantial update effort. In particular, the following change to a system provides a ‘worst
case’ example: The system functionality is not being changed, except for adding some
security code that needs to be input before operating it.

The main problem we have dealt with is the ability to update the model according to the
actual system, while performing model checking. While the changes learned may not fully
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reflect corresponding changes in the actual system S, the obtained model may still be useful
for verification.

We have compared two approaches: one of abandoning the existing model, in favor
of learning a finite state representation of the system S from scratch (BBC). The other one
is using the current model to guide the learning of the potentially modified system (AMC).
We argue that there are merits to both approaches. The BBC approach can be useful when
there is a short error trace that identifies why the checked property does not work. In this
case, it is possible that the BBC approach will discover the error after learning only a short
proposed model. The AMC approach 1is wuseful when the modification of the
system is simple or when it may have a very limited effect on the correctness of the
property checked.
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