
The Theory of Composite Faults

Rahul Gopinath∗, Carlos Jensen†, Alex Groce‡

∗†School of EECS, Oregon State University, ‡Northern Arizona University
∗gopinatr@oregonstate.edu, ∗cjensen@oregonstate.edu, ∗agroce@gmail.com

Abstract—Fault masking happens when the effect of one fault
serves to mask that of another fault for particular test inputs. The
coupling effect is relied upon by testing practitioners to ensure
that fault masking is rare. It states that complex faults are
coupled to simple faults in such a way that a test data set that
detects all simple faults in a program will detect a high percentage
of the complex faults.

While this effect has been empirically evaluated, our theoret-
ical understanding of the coupling effect is as yet incomplete.
Wah proposed a theory of the coupling effect on finite bijective
(or near bijective) functions with the same domain and co-domain
and assuming a uniform distribution for candidate functions. This
model, however, was criticized as being too simple to model real
systems, as it did not account for differing domain and co-domain
in real programs, or for the syntactic neighborhood.

We propose a new theory of fault coupling for general
functions (with certain constraints). We show that there are two
kinds of fault interactions, of which only the weak interaction
can be modeled by the theory of the coupling effect. The strong
interaction can produce faults that are semantically different
from the original faults. These faults should hence be considered
as independent atomic faults. Our analysis shows that the theory
holds even when the effect of the syntactic neighborhood of
the program is considered. We analyze numerous real-world
programs with real faults to validate our hypothesis.

I. INTRODUCTION

Fault masking occurs when interactions between component

faults in a complex fault result in expected (non-faulty) values

being produced for particular test inputs. This can result in

faults being missed by test cases, and undeserved overconfi-

dence in the reliability of a software system.

The coupling effect [1] hypothesis concerns the semiotics1

of fault masking. It asserts that “complex faults are coupled

to simple faults in such a way that a test data set that detects

all simple faults in a program will detect a high percentage

of the complex faults.” [2], [3], [4].

This is relied upon by software testers to assert that fault

masking is indeed rare. However, our understanding of the

coupling effect is woefully inadequate. We do not know when

(and how often) fault coupling can happen, whether multiple

faults will always result in fault coupling, or the effect of

increase in number of faults on the number of faults masked.

Further, the formal statement of the coupling effect itself is

ambiguous and inadequate as it covers only the case where all

simple faults are detected. Even worse, it has no unambiguous

definition of what a simple (or atomic) fault is. We propose a

stronger version of the coupling effect (called the composite

fault hypothesis to avoid confusion):

1The relation between syntax and semantics of faults.

Composite fault hypothesis: Tests detecting a fault in

isolation will (with high probability κ) continue to detect the

fault even when it occurs in combination with other faults.

We investigate our hypothesis theoretically and empirically.

The terms used in this paper are given in Note 1.

A. Theory

Wah et al. [5], [6], [7] investigated the theory of the coupling

effect, which assumes that any software is built by composition

of q independent functions, with a few restrictions:

• Functions have the same domain and range (order n), and

the functions are bijective. The non-bijective functions are

modeled as degenerate functions.

• Separability of faults: A program with two faults can be

split into two independent faulty programs 2.

• Democratic assumption: Any applicable function may be

chosen as the faulty representation with equal probability.

• The number of functions considered, q, is much smaller

than the size of the domain. That is, q ≪ n. Wah suggests

that as q nears n, the coupling effect weakens.

For q functions, the survival ratio of I and II order test

sets are 1
n

and 1
n2 . Wah also makes an observation, used as a

heuristic, that the survival ratio of a multi-fault alternate is p+1
n

if there are p fault free functions left over after the last faulty

function. That is, there are 2p−1−1 multi fault alternates with

last faulty function at p, and the expected number of survivors

for q-function composition is:

1

nr

q∑

p=1

(2p−1 − 1)(q − p+ 1)r

for test sets of order r. Wah’s analysis lacks wider applicability

due to these constraints. Real programs vary widely in their

domain and co-domain. Second, the number of mathematical

functions with same domain and co-domain is not identical

to that of programs with same type. Third, the democratic

assumption ignores the impact of syntactical neighborhood.

That is, it is possible that a quick sort implementation can

have a small bug, resulting in an incorrect sort. However, it

is quite improbable that it is replaced by an algorithm for

— say — random shuffle, which has the same domain and

co-domain as that of a sorting function. While syntactical

nearness does not completely capture semantic nearness, it is

closer than assuming any function is a plausible fault for any

other function. Next, the separability of complex faults, as we

2 Wah assumed this to be true for all general functions, but Section III
shows that it is not.

(Semantic) Separability of faults: Two faults present in a

function are said to be separable if and only if the smallest

possible chunk containing both faults can be decomposed into

two functions g and h such that each fault is isolated within

a single function (providing ga and hb as faulty functions),

the behavior of composition h ◦ g equals the behavior of the

original chunk in terms of input and output , and composition

hb ◦ ga equals the behavior of the chunk with both faults.

Simple fault (first order fault): A fault that cannot be lexically

separated into other independent smaller faults.

Complex fault: (or higher order or combined fault) A fault

that can be lexically separated into smaller independent faults.

Constituent fault: A fault that is lexically contained in another.

Atomic fault: A fault that cannot be semantically separated.

Composite fault: A fault that can be semantically separated.

Traditional coupling ratio (C): The ratio between the percent-

age of complex faults detected and the percentage of simple

faults that were detected by a test suite.

Composite coupling ratio (κ): The ratio between the percent-

age of complex faults detected by the same set of test cases

that detected the constituent simple faults, and the percentage

of constituent simple faults detected.

Domain of a function: The set of all values a function can take

as inputs (this is practically the input type of a function).

Co-Domain of a function: The set of all values that a function

can produce when it is provided with a valid input from its

domain (this is practically the output type of a function).

Range of a function: The set of all values in co-domain that

directly maps to a value in the domain.

Syntactic neighborhood: The set of functions that can be

reached from a given function by modifying its syntactical

representation in a given language a given number of times.

Note 1. Terms used in this paper

show in Section III, is valid only in certain cases, and does

not account for recursion and iteration. Finally, Wah’s analysis

suggested that the survival ratio of mutants is dependent on

the domain of the function. We show that the survival ratio

of a mutant is actually dependent on the co-domain of the

function examined, but bounded by domain.

We propose a simpler theory of fault coupling that uses

a similar model to Wah’s, but with relaxed constraints, and

incorporates differing domain and co-domain. We clarify the

semantic separability of complex faults, and show how it

affects the coupling effect. We also show that certain common

classes of complex faults may not be semantically separable.

This provides us with a definition of an atomic fault: a

fault that cannot be semantically separated into simpler faults.

This is important because two faults that may be lexically

separate but inseparable can be expected to produce a different

behavior than either fault considered independently. Further,

we consider the impact of syntactic neighborhood. Using

both case analysis and statistical argument, we show that our

analysis remains valid even when the syntactic neighborhood

is considered.

B. Empirical Validation

Lipton et al. [8], [1], and Offutt [2], [3], observed that the

tests for first order mutants were sufficient to kill up to 99% of

all 2nd order mutants, and 99% of 3rd order mutants sampled.

Further research [9], [10], [11], [12], [13], [14] confirms that

mutants are coupled to real faults.

Offutt suggests [2], [3] that there are two distinct definitions

of coupling involved. The general coupling effect: simple

faults are coupled to more complex faults such that test data

adequate for simple faults will be able to kill a majority of

more complex faults. The mutation coupling effect: test data

adequate for simple first order mutants will be able to detect a

majority of more complex mutants. Previous research validates

mutation coupling effect but not general coupling effect.

Our empirical analysis aims to accomplish the following:

First, we empirically evaluate the composite coupling ratio κ
for numerous real-world projects. This gives us confidence

in the assumptions made in the theoretical analysis, and

serves to validate the composite fault hypothesis. Second, we

empirically evaluate the general coupling effect for faults, and

compute the traditional coupling ratio C. Lastly, as the size

of the faults increase, it is possible that strong interactions

also increase, which can produce semantically different faults.

Hence, it is important to empirically validate both composite

coupling and the general coupling effect for syntactically large

fault clusters.

What is the relation between the composite coupling ratio

κ and the traditional coupling ratio C? We can regard the

composite coupling ratio as a lower limit of the traditional

coupling ratio. As we explain further, the general coupling

ratio does not discount the effect of strong fault interactions,

which can produce complex faults semantically independent

from the constituent faults. Hence, C is not bounded by any

number, and will often be larger than κ, with κ < 1.

Contributions:

• We propose the composite fault hypothesis that resolves

vagueness and ambiguity in the formal statement of the

coupling effect for non-adequate mutation scores.

• Our theoretical analysis results in the composite fault

hypothesis for general functions. We find the composite

coupling ratio to be 1− 1
n

, where n is the co-domain.

• We show that our analysis remains valid even when

considering recursion and loops.

• Using 25 projects, we compute the composite coupling

ratio κ to be greater than 0.99, with 95% confidence. This

helps substantiate the impact of composite coupling.

Our full data set is available for replication3.

II. RELATED WORK

Fault masking in digital circuits was studied before it was

studied in software. Dias [15] studies the problem of fault

masking, and derives an algebraic expression that details the

3 http://eecs.osuosl.org/rahul/icst2017/

http://eecs.osuosl.org/rahul/icst2017/

number of faults to be considered for detection of all multiple

faults. Morell [16] provided a theoretical treatment of fault

based testing, and also [17] gave a formal treatment of the

coupling effect. and shows impossibility of a general algorithm

to identify fault coupling. Wah et al. [5], [6], [18], [7] using

a simple model of finite functions (the q-function model,

where q represents the number of functions thus composed)

showed that the survival ratio of first and second order test

sets are respectively 1
n

and 1
(n2

−n) where n is the order of the

domain [4]. A major finding of Wah is that the coupling effect

weakens as the system size (in terms of number of functions in

an execution path) increases (i.e. q increases), and it becomes

unreliable when the system size nears the domain of functions.

Another important finding was that minimization of test sets

has a detrimental effect. That is, for n faults, one should use n
test cases, with each test case able to detect n−1 faults (rather

than a single fault) to ensure that the test suite minimizes

the risk of missing higher order faults due to fault masking.

Kapoor [19] proved the existence of the coupling effect on

logical faults. Voas et al. [20] and later Woodward et al. [21]

suggested that functions with a high DRR (domain to range

ratio) tend to mask faults. Al-Khanjari et al. [22], found that

in some programs there is a strong relationship between DRD

(Dynamic Range to Domain) ratio and testability.

Androutsopoulos et al. [23] found that one in ten tests

suffered from failed error propagation. Clark et al. [24] found

that likelihood of collisions was strongly correlated with an

information theoretic measure called squeeziness, related to

the amount of information destroyed on function application.

Our research is an extension of the theoretical work of

Wah [6] and Offutt [3], [2]. The major theoretical difference

from Wah [6] is that, given a pair of faulty functions that

compose, we try to find the probability that, for given test

data, the second function masks the error produced by the

first one. On the other hand, Wah [6] tries to show that the

coupling effect exists considering the entire program composed

of q functions, each having a single fault (given by q in the q-

function model). Next, Wah [6] assumes semantic separability

of all complex faults. However, as we show, there exist a

class of complex faults that are not semantically separable.

We make this restriction clear. Further, our analysis shows that

the probability of coupling is related to the co-domain, not the

domain, as Wah [6] suggests. In fact, Wah [6] considers only

functions which have exactly same domain and range, and

hence are more restricted than our analysis. Finally, we show

that even if syntax is considered, our analysis remains valid.

While Offutt [2] evaluates the traditional coupling effect,

and shows the empirical relation with respect to all simple

faults and their combinations, we aim to demonstrate the

composite fault hypothesis and evaluate the relation between

any pair of faults, and the combined fault including both.

III. THEORY OF FAULT COUPLING

We start with a function compositional view of programs

(similar to Wah [7]). While Wah considered composition of

q functions, with as many as q faults, we consider only pairs

of faulty functions, since any faulty program with a number

of separable faults can be modeled as composition of two

functions with (possibly complex) faults.

We have the following assumptions, and simplifications

(also made by Wah [6]): our biggest simplification is modeling

programs by mathematical functions. While, theoretically,

there can be an infinite number of alternatives to any given pro-

gram, practically, the domain and co-domain often determines

the plausible syntactical alternatives. Next, we assume a finite

domain and co-domain, and consider only total functions.

We also assume that faulty versions have same domain and

co-domain (that is, the same type) as that of the non-faulty

version. Since any function can be regarded as a single

parameter function by considering the input as composed of

a tuple of all the original parameters, we restrict our analysis

to single parameter functions. While Wah considers how a

known number of test inputs (1, 2, 3, or more than 3), some

of which can detect some of the component faulty functions,

can together detect the composite faulty function, we consider

the probability of any single test input that can detect a fault

being masked by a new fault. This allow us to significantly

simplify our analysis.

Note that the theory does not rely on the constituent faults

being considered to be simple.

A major idea in our analysis is the semantic separability of

faults. Two faults present in a function are said to be separable

if and only if the smallest possible chunk containing both

faults can be decomposed into two functions g and h such

that each fault is isolated within a single function (providing

ga and hb as faulty functions), the behavior of composition

h◦g equals the behavior of the original chunk in terms of input

and output , and composition hb◦ga equals the behavior of the

function with both faults. A chunk here is any small section of

the program that can be replaced by an independent function

preserving the behavior.

That is, given a function:

def functionX(x, y, n)

for i in (1..n):

y = faultyA(x) (1)

if odd(i): x = faultyB(y) (2)

x += 1

The lines (1) and (2) together form a chunk. The interaction

between the faults and their separability is discussed next.

A. Interaction Between Faults

There are two kinds of interaction between faults: weak, and

strong. Weak interactions occur when faults can be semanti-

cally separated. That is, given two faults â and b̂ in a function

f , which can be split into fab = hb ◦ ga, where ga and hb

are faulty functions, the only interaction between â and b̂ is

because the fault â modifies the input of h (or hb) from g(i0)
to ga(i0) (where i0 is an input for f). That is, the interaction

can be represented by a modified input value.

Strong interactions happen when the interpretation of the

second fault is affected by the first, and hence faults can’t be

semantically separated. For example, consider:

def swap(x,y): x,y=y,x

Say this was mutated into

def swap(x,y): x,y=x,y

Clearly, there were two independent lexical changes: x → y
and y → x. However, consider the disassembly:

>>> dis.dis(swap)

1 0 LOAD_FAST 1 (y)

3 LOAD_FAST 0 (x)

6 ROT_TWO

7 STORE_FAST 0 (x)

10 STORE_FAST 1 (y)

13 LOAD_CONST 0 (None)

16 RETURN_VALUE

The changes in source resulted in intertwined bytecode

changes, and hence cannot be separated. Since the faults

cannot be separated, strong interactions produce faults with

different characteristic from the component simple faults, and

hence should be considered independent atomic faults4. Why

should we consider the semantically inseparable faults as

independent faults? An intuitive argument is to consider two

functions that implement id (these are not strongly interact-

ing). That is, given any value x, we have g(x) = h(x) = x.

If two faults â, and b̂ occur as we suggest above in g and h,

causing inputs i to ga and inputs j to hb to fail, then the faulty

inputs for hb ◦ ga are bounded by i ∪ j, where i represents

inputs to f that result in faulty outputs due to faulty g and j,

inputs to f resulting in faulty outputs due to faulty h.

What about fault masking? Any input i that failed for ga
could possibly result in an input value that would cause a

failure for hb. For any element outside of i, there is no

possibility of two faults acting on it, and hence no possibility

of fault masking. However, if the faults are not semantically

separable, one cannot make these guarantees, as the faulty

inputs may be larger than i ∪ j or even completely different.

In the general case, when the interaction is weak, we expect

the faulty output for up to i ∪ j.

For formal proof, consider a function f that has domain x,

represented as h ◦ g using two functions. Replacing g with ga
causes i ∈ x inputs to result in faults. Similarly, replacing h
with hb causes j ∈ x inputs to f to result in faults. Joining

together to form fab, we know that any of i ∈ x has a

potential to produce a faulty output unless it was masked by

hb. Similarly, any of j ∈ x also has the possibility of producing

a faulty output. Now, consider any element k not in either i
or j. It will not result in a faulty output while passing through

ga because it is not in i, further, the value ga(k) = g(k) = k1.

We already know that k1 would not result in a faulty output

from hb because k /∈ j. Hence, any element k /∈ i∪ j will not

be affected by faults â and b̂.
We can make this assertion only because we can replace g

and h separately. If â and b̂ interacted strongly, any function

could potentially replace f . Hence, any element in x may

potentially result in a fault when fab is applied. Harman et

al. [25] calls these de-coupled higher order mutants.

4Wah [6] ignores strong interaction of faults.

Depending on the language used, other features causing

strong faulty interaction may exist.

B. Analysis

Consider a program f with two simple faults â, and b̂,
which can be applied to f to produce two functions fa and

fb containing one fault each, and fab containing both faults

(Figure 2). Say such a program can be partitioned into two

functions g and h (f = h ◦ g) with restriction that â lies in g,

producing alternative ga, and b̂ lies in h producing hb, such

that the new faulty version of f containing both is given by

fab = hb◦ga. We note that the particular kind of fault depends

on the syntax and semantics of the programming language

used, and there can be fault pairs that cannot be separated

cleanly. As stated previously, we ignore these kinds of fault

pairs as they are syntax dependent and strongly interacting.

Hence, no general solution is possible for these faults.

Given that we can distinguish a fault in isolation using a

given input, what is the probability that another fault would

not result in the masking of that fault for the same input? That

is, given a test input i0 for f , able to distinguish (f , fa), what

is the probability that (f , fab) can be distinguished by the

same input?

Since we know that fa is distinguished from f , we know

that ga(i0) 6= g(i0). Hence, the function hb will have a

different input than h. Thus, the question simplifies to: given

an alternate input for function h (or anything that can be

substituted in its place), what is the probability that a faulty

h, with the new input ga(i0) will result in same output as the

old h, with the old input g(i0)?

Let us assume for simplicity that functions g and h have

fixed domain and a co-domain given by g ∈ G : L → M and

h ∈ H : M → N. That is, h belongs to a set of functions

H , which has a domain M , and a co-domain N such that

m = |M | and n = |N |. Considering all possible functions

in H , with the given domain and co-domain, there will be

nm unique functions in H (separated by at least one different

{input, output} pair).

The only constraint on hb we have is that hb(ga(i0)) should

result in the same output as h(g(i0)). We are looking for

functions that can vary in every other {input, output} pair

except for the pair given by {ga(i0), h(g(i0))}. There are

nm−1 functions that can do that out of |H| = nm functions.

That is, the composite coupling ratio is given by κ = 1−nm−1

nm
,

which is simplified to 1 − 1
n

of the total number of eligible

functions where m is the size of domain, and n is the size of

co-domain of the function. That is, given any test input, the

probability of the composite coupling effect where the fault

in one constituent is not masked by the fault in another is

1 − 1
n

, and 1
n

tends to be very small when the co-domain of

the function (n) is large.

A symmetric argument can be made when the function

fixed is h, and g varies. There are ml functions in G, of

which ml−1 can be used as a replacement without affecting

1
n

i0

n
−1
n

1
n
× 1

n 1
n

n
−1
n × 1

n

n−1
n

× n−1
n n−1

n

1
n
×

n−
1

n

Fig. 1. Recursive interaction. The blue solid lines represent the masking
values where the values are same as what would be expected before the fault
was introduced, and the red dotted lines represent values that are different
from the non-faulty version so that faults could be detected.

{input, output}, in which case, the probability of composite

coupling effect is 1− 1
m

where m is the co-domain5.

C. Recursion and Iteration

Recursion and iteration can present challenges to our anal-

ysis. For example, consider:

while y > 0: y = h(g(y)

The two functions g and h are otherwise independent. How-

ever, the input of h influences g, and vice versa. Here, we

do not know when the loop will end, and any faults will

be detected. The faults may be detected after a larger or

smaller number of iterations than the non faulty version.

Hence, we consider the chances of propagation of the faulty

value after each iteration. That is, if a faulty value is present

after executing the function ga once, what are the chances that

it will be caught at the end of each iteration?

Let f denote the program segment composed of g and h.

After the first iteration of f , we will have 1
n

possibility for

fault masking as we discussed before, and n−1
n

possibility for

detectable faulty values. Now, consider the next iteration. In

this case, of the original 1
n

masked outputs, 1
n

will again be

masked, for a total of 1
n2 , and the remaining

(n−1)
n2 will have a

value that is faulty. Consider the original n−1
n

that had faulty

values in the first iteration. Out of that, 1
n

will be masked

in the second iteration (i.e. n−1
n2). Similarly,

(n−1)2

n2 of the

original faulty outputs will remain faulty. That is, after second

iteration, we will have 1
n2 + n−1

n2 = 1
n

masked output values.

Similarly, we will have n−1
n2 + (n−1)2

n2 = n−1
n

possibility of

faulty output values. That is, after each iteration, we will

have 1
n

possibility of fault masking (See Figure 1). Hence,

composite fault hypothesis will hold even for recursion and

iteration.

1) Premature loop exits: What if a fraction of inputs –

say x – diverge so much (crashes or gets detected by asserts)

that they never make it through all iterations? We can model

this as the case where the remaining fraction (y = 1 − x) of

inputs belong to a function with reduced domain and hence

co-domain. This is more involved because functions with a

smaller co-domain are more prone to fault masking. We need

5We note that the logic of probability is very similar to Wah [6], and this is
the same value derived by Wah for single test input, where n is the domain of
the function as Wah does not consider functions that have a different domain

and co-domain.

to show that the total fraction of masked values is lesser than

the original 1
n

, or show the other side

x+
ny − 1

ny
≥

n− 1

n
(1)

We assume that nx ≥ 1 (at least one input causes a crash)

and ny ≥ 1 (at least one input reaches the end – otherwise,

there is no fault masking involved).

We simplify Equation 1 by first making the denominator the

same (ny) and then simplifying, which results in the equation

nxy + ny − 1 ≥ ny − y. On expanding y to 1 − x, and

simplifying, we get ny ≥ 1. Note that this was our original

assumption. Hence, premature loop exits result in a stronger

coupling between faults.

What happens if instead of a fixed fraction, we have say r%
input values detected at the end of each iteration? Of course,

any finite number of loops could be modeled as we did above.

If instead, we rely on the crashes alone to distinguish faulty

values, we are still in luck. Each iteration detects r% of the

input values, and the remaining q = 1 − r% of the values

restart the iteration. This results in r + rq + rq2 + . . . rqn−1

values getting detected at the end of nth iteration. This infinite

sum converges to 1. That is, no faults will be masked.

2) Different execution paths: Another wrinkle is the pattern

where iteration proceeds in different paths during different

executions. For example:

for i in 1..10:

if odd(i): x = g(y)

else: y = h(x)

In programs such as this, one may unroll the loop, i.e.

for i in 1..10:2:

x = g(y)

y = h(x)

which can make it amenable to the above treatment. Recursion

can be resolved similarly. We do not claim that this is

exhaustive. There could exist other patterns of recursion or

iteration that do not fit this template. However, most common

patterns of recursion and iteration could be captured in this

pattern.

Can we extend the bounds we found (i∪j for faulty outputs)

to recursion? Unfortunately, it is possible for a faulty function

to interact with its own output during recursion, and hence

mask a failure. Hence, we can not bound the failure causing

inputs in a doubly faulty function that incorporates recursion.

D. Accounting for Multiple Faults

What happens when there are multiple faults? Say, we have

a system modeled by p◦q◦r◦s◦t◦u, where any of the functions

may be faulty or not faulty, for example pa◦q◦rb◦sc◦td◦u. We

can not directly apply the technique in recursion because there

are non-faulty functions interspersed. The thing to remember

here is that a non faulty function immediately adjacent to a

faulty function can together be considered a faulty function.

Hence, the above reduces to (pa ◦ q) ◦ rb ◦ sc ◦ (td ◦ u),
or equivalently pqa ◦ rb ◦ sc ◦ tud. This is now amenable

g
i0

h
f(i0)

ga

g
i0

hb fab(i0)

h
fb(i0)

hb′
fab(i0) = f(i0)

Fig. 2. Fault interaction (ga(i0) is masked by hb′)

to the treatment in Figure 1 because each function now can

produce 1
n

non-faulty and n−1
n

faulty outputs. An additional

complication is that a general expression is not possible unless

we simplify further, and assumes that domain and co-domain

of all functions are same. With this simplification, even when

we consider a number of faulty functions, the mean ratio of

fault masking remains the same at 1
n

. Indeed, this is one of

the significant differences from Wah. Wah does not attempt

to collapse the non-faulty functions to their neighbours. Why

do we do this? Because we know that each faulty function on

its own was detected by the test suite. That is, we know that

p ◦ qa ◦ r ◦ s ◦ t ◦ u would have been detected. Hence, we can

certainly consider pqa ◦ r ◦ s ◦ t ◦ u as the set of functions

where the function pqa is the function with an atomic fault.

E. Dynamically Checked Languages

In the case of dynamically checked or unityped languages,

every single function has the same type (domain, co-domain),

and alternatives are large (but finite), because one may not

identify a faulty input type until execution. Hence, we can

expect large composite coupling ratio.

F. Impact of Syntax

In order to model composite coupling, we assumed that

all faults are equally probable, which is often not the case,

with faults that are closer syntactically being more probable

than faults which are not in the syntactic neighborhood of

correctness. In fact, we have some reasonable estimate of the

distribution of size of faults that programmers make [26].

Implementation of functions as code need not necessarily

follow the same distribution as that of their mathematical

counterparts. For example, for mathematical functions, there

exist only 4 functions that map from a boolean to a boolean.

However, there can be an infinite number of program im-

plementations of that function. The way it can be made

tractable is again to consider the human element. The com-

petent programmer hypothesis suggests that faulty programs

are close (syntactically) to the correct versions. So one need

only consider a limited number of alternatives (the number of

which is a function of the size of the correct version, if one

assumes that each token may be legally replaced by another).

As soon as we speak about syntactic neighborhood, the

syntax of a language can have a large influence on which faults

can be considered to be in a neighborhood. However, we note

that most languages seem to follow a similar distribution of

faults with a size below 10 tokens for 90% of faults [26].

Let us call the original input to h, g(i0) = j0, and the

changed value ga(i0) = ja. Similarly, let f(i0) = k0, fa(i0) =
ka, fb(i0) = kb, and fab(i0) = kab. Given two inputs i0, and

i1 for a function f , we call i0, and i1 semantically close if their

execution paths in f follow equivalent profiles, e.g., taking the

same branches of conditionals. We call i0 and i1 semantically

far in terms of f if their execution profile is different.

Consider the possibility of masking the output of hb by

ga (ga′ in Figure 2). We already know that h(ja) = kb was

detected. That is, we know that ja was sufficiently different

from j0, that it propagated through h(ja) to be caught by a test

case. Say ja was semantically far from j0, and the difference

in code path contained the fault â. In that case, the fault â
would not have been executed, and since kab = kb, it will

always be detected.

On the other hand, say ja was semantically close to j0 in

terms of g and the fault â was executed. There are again three

possibilities. The first is that â had no impact, in which case

the analysis is the same as before. The second is that â caused

a change in the output. It is possible that execution of â could

be problematic enough to always cause an error, in which case

we have kab = ka, and detection. Thus masking requires kab
to be equal to k0.

Even if we assume that the function hb is close syntactically

to h, and that this implies semantic closeness of functions

h and hb, we expect the value kab to be near kb, not k0.

This suggests that masking, even when considered in the light

of syntactical neighborhood, is still unlikely, but this belief

requires empirical verification since we are unable to assign

probabilities to the cases above. Our empirical data (provided

in the next section of this paper) should shed light on the actual

incidence of masking when syntactic/semantic neighborhoods

are taken into account, since real faults are likely in the

syntactic and semantic neighborhood of the correct code.

A statistical observation can further buttress our argument.

We know that if all functions were equally probable, fault

masking has low probability. Now, consider the functions that

are syntactically close to a given function. For most input

values, we can assume that the syntactically close functions

will have same output as that of the given function, more so

than functions that are far away lexically. If h did not mask a

value originally, (which we know since we were able to detect

fault h(ga(i0))), then the syntactically close functions to h will

with a higher probability than a uniform sample, produce the

same value as h(ga(i0)), which will be detected as faulty.

G. Can Strong Interaction be Avoided?

The coupling effect argues that if a test suite can find all

atomic faults, then by composite fault hypothesis, a large

percentage (κ) of complex faults will also be found. However,

when can one assert that all atomic faults have been found?

Any strong fault interaction has the potential to produce an

atomic fault.

Given that the strong interaction is dependent on the execu-

tion, can runtime environment or compiler order computation

so that strong interaction is no longer present?

Consider the function swap (a,b) = (b,a) that we examined

earlier. We see how one may mistakenly use id (a,b) = (a,b)

instead, and cause a strong interaction. Now, the question is,

does there exist a way to split the two functions, so that the

condition of separability can be satisfied? Given that there

are only four possible functions that can operate on a tuple,

(swap (a,b) = (b,a), id (a,b) = (a,b), dupleft (a,b) = (a,a),

dupright (a,b) = (b,b)) we could check it exhaustively. The

condition is that the functions representing single faults should

individually cause a detectable deviation on their own, and on

composition, result in same behavior as id. Now, it can be seen

that, neither of the single fault functions can behave like swap
since that represents no fault, so they can not behave like id,

since that suggests that the other faulty function behaves like

swap. Hence, no compiler or runtime environment can remove

the strong interaction in swap.

Where can we expect strong interaction to appear? While we

can not provide an exhaustive overview of possible language

features, we can demonstrate that even very simple languages

such as the λ-calculus are vulnerable. Consider the λ-calculus

expression λx y .y x, and its faulty version λx y .x y. There are

two lexical points where the faults have been injected {x →
y, y → x}. However, they cannot be separated out. That is,

even such simple features can cause strong interaction.

IV. METHODOLOGY FOR ASSESSMENT

Our methodology was guided by two principles [27]: We

sought to minimize the number of variables, and tried to be

as general as possible. Hence, we selected Apache commons

for analysis.

For our set of projects, we iterated through their commit

logs, and generated reverse patches for each commit. For

each patch thus created, we applied the patch on the latest

repository, and removed any changes to the test directory, thus

ensuring that the test suite we tested with was always the latest.

Any patch that resulted in a compilation error was removed.

This resulted in a set of patches for each project that could be

independently applied. The complete test suite for the project

was executed on each of the patches left, and any patch that

did not result in a test failure was removed. The failed test

cases that corresponded to each patch were thus collected. At

this point, we had a set of patches that introduce specific test

case failures. The set of Apache projects, along with the set

of reverse patches thus found, are given in Table I.

We conducted our remaining analysis in two parts. For the

first part, we generated patch pairs by joining together two

random patches for any given project. For the projects where

the total number of unique pairs was larger than 100, we

randomly sampled 100 of the pairs produced. After removing

patch combinations that resulted in compilation errors, we

had 1,126 patch combinations. We evaluated the test suite

of each project against the pair-patches thus generated, and

collected the test cases which failed against these. Adopting

TABLE I
APACHE COMMONS LIBRARIES

Projects SLOC TLOC CPatches Fails

1 commons-bcel 30,175 3,155 148 6
2 commons-beanutils 11,640 21,665 63 5
3 commons-cli 2,665 3,768 71 5
4 commons-codec 6,599 11,026 179 4
5 commons-collections 27,820 32,913 333 16
6 commons-compress 18,746 13,496 430 65
7 commons-configuration 26,793 37,806 322 78
8 commons-csv 1,421 3,168 150 8
9 commons-dbcp 11,259 8,487 98 18

10 commons-dbutils 3,064 3,699 43 1
11 commons-discovery 2,320 268 171 1
12 commons-exec 1,757 1,601 90 5
13 commons-fileupload 2,389 1,946 129 8
14 commons-imaging 31,152 6,525 174 4
15 commons-io 9,813 17,968 177 18
16 commons-jexl 10,921 9,509 54 10
17 commons-jxpath 18,773 6,137 10 2
18 commons-lang 25,468 43,981 571 49
19 commons-mail 2,720 3,869 48 5
20 commons-math 84,809 89,336 954 142
21 commons-net 19,749 7,465 454 21
22 commons-ognl 13,139 6,873 190 3
23 commons-pool 5,242 8,042 149 12
24 commons-scxml 9,524 5,119 74 7
25 commons-validator 6,681 7,926 126 17

SLOC is the program size in LOC, TLOC is the test suite size in LOC,
CPatches is the number of compiled patches, and Fails is the number of test

failures.

the terminology of Jia et al. [28], out of 1,126, we had 1,126

coupled higher order mutants, and 56 subsuming mutants.6

Out of these, there were only 2 strongly subsuming mutants.

We tried to reduce the number of external variables further

for the second part, and chose a single large project — Apache

commons-math. We generated a set of combined patches by

joining 2, 4, 8, 16, 32, and 64 patches at random, and evaluated

the test suite for commons-math against each of these kth

order patches. We removed all patches that resulted in any

compilation errors, producing 342 patch combinations.

For both parts of our analysis, we generated two sets. The

first set containing the unique failures from the constituent

faults in isolation, and the second containing the combined

patches.

V. ANALYSIS

There are two questions that we tackle here. The first

investigates the fraction of test cases that detect any of the

constituent mutants that also detect the combined mutant.

That is, evaluates the following prediction from the model:

“Given two faults, and the test cases killing each, (assuming

a sufficiently large domain and co-domain, and ignoring the

effects of strong interaction), there is a high probability for

the same test cases to kill the combined fault.”

The second investigates the general coupling effect. Since

the general coupling ratio does not distinguish between strong

and weak interaction, this also serves as an evaluation of the

6Of course, our patches are derived from actual faulty code, not mutants
in the traditional sense of generated modification.

All Projects: composite coupling

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

● ●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

1

10

100

1 10 100

Test fails for separated faults

T
e
s
t
fa

ils
 f
o
r

c
o
m

b
in

e
d
 F

a
u
lt
s

Fig. 3. The size of set of the test cases able to detect the faults when they
were separate is in the x-axis, and the subset of the same test cases able to
detect the combined fault is in the y-axis. Colors correspond to projects.

strong interaction between faults where inputs other than the

original i and j – that is, outside i∪j – becomes faulty (where i
represents faulty inputs to f due to faults in h, and j represents

faulty inputs to f due to faults in g).

Indeed, we believe that strong interaction between different

faults is rarer than weak interaction. While there is no easy

way to verify it, one may look at the newer faults (new test

failures) that are introduced by a combination of patches when

compared to the original patches as instances of strong fault

interaction, which may be considered a reasonable proxy. Our

empirical evaluation does not require individual patches to be

simple faults. Our theory suggests that irrespective of whether

the faults are complex or not, we can expect the same fault

masking probability.

A. All Projects

This section investigates fault pairs from all projects.

1) The Composite Fault Model: Here, we try to answer the

question: what percentage of test cases detecting constituent

faults can detect the complex faults?

Figure 3 plots the set of test cases able to detect the faults

when they were separate with the set of test cases able to

detect the combined fault. To analyze the fraction of test

cases expected to detect the combined mutant, we evaluate

the regression model given by:

µ{AfterT |BeforeT} = β0 + β1 ×BeforeT (2)

where BeforeT is the size of the test suite that includes all

test cases that can detect both faults separately, and AfterT
is the size of the test suite which is a subset of BeforeT that

can detect the fault pair when combined. We force β0 to zero

to account for the fact that if no test cases detected the original

mutant, then the question of their fraction does not arise. This

linear regression model lets us predict the number of test fails

for combined faults from the test fails for separated faults.

We note that we are interested in β1 for another purpose.

β1 is also the composite coupling ratio κ. Thus this regression

provides us with a model for prediction, its goodness of fit

(R2), and also the composite coupling ratio.

All Projects: general coupling

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●●

●

●

●●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

1

10

100

1 10 100

Test fails for separated faults

T
e
s
t
fa

ils
 f
o
r

c
o
m

b
in

e
d
 F

a
u
lt
s

Fig. 4. The size of the set of test cases able to detect the faults when they
were separate is the x-axis, and the set of all test cases able to detect the
combined fault is in the y-axis. Colors correspond to projects.

2) The General Coupling Model: Figure 4 plots the general

coupling of faults. We evaluate the following regression model.

µ{NewT |BeforeT} = β0 + β1 ×BeforeT (3)

where BeforeT is the size of the test suite that includes all

test cases that can detect both faults separately, and NewT
is the size of the test suite that can detect the fault pair

when combined. Note that we do not set β0 = 0 here as the

combined fault pair may be detected by a new test case even

if its constituents were not detected. In fact, β0 represents the

complex faults that became detectable due to interaction even

though the constituent faults are not detectable.

However, if one wishes to investigate the general coupling

ratio, we have to investigate a simpler regression model,

because the general coupling ratio does not permit an intercept.

µ{NewT |BeforeT} = β1 ×BeforeT (4)

Here, similar to the previous section, β1 corresponds to the

general coupling ratio C.

3) Strong fault interaction: The incidence of strong fault

interaction may be ascertained by the average number of new

test cases that failed for the combined patch. Note that this

number is not exhaustive, as some of the original test cases

may fail for new faulty behavior too, even if the behavior is

not same as that of the component faults.

B. Apache Commons-math

1) The Composite Fault Model: We try to answer the

question what percentage of test cases detecting constituent

faults can detect the complex faults? for Commons-math. We

rely on the regression given by Equation 2. Figure 5 plots test

cases able to detect the faults when they were separate with

the test cases able to detect the combined fault.

2) The General Coupling Model: We rely on the regres-

sions given by Equation 3 and Equation 4. Figure 6 plots the

general coupling of faults for Apache commons math.

Commons-math: composite coupling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

10

100

10 100

Test fails for separated faults

T
e
s
t
fa

ils
 f
o
r

c
o
m

b
in

e
d
 f
a
u
lt
s

Combinations
●

●

●

●

●

●

2

4

8

16

32

64

Fig. 5. The set of test cases able to detect the faults when they were separate is
in the x-axis, and the subset of the same test cases able to detect the combined
fault is in the y-axis. Colors correspond to number of patch combinations.

Commons-math: general coupling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

10

100

10 100

Test fails for separated faults

T
e
s
t
fa

ils
 f
o
r

c
o
m

b
in

e
d
 f
a
u
lt
s

Combinations
●

●

●

●

●

●

2

4

8

16

32

64

Fig. 6. The set of test cases able to detect the faults when they were separate
is in the x-axis, and the set of all test cases able to detect the combined fault
is in the y-axis. Colors correspond to number of patch combinations.

3) Strong fault interaction: The incidence of strong fault

interaction may be ascertained by the average number of new

test cases that failed for the combined patch. The difference of

note here is that the number of patches are larger, and hence

the chances of strong interaction are correspondingly larger.

VI. RESULTS

A. All Projects

The results for regression for Equation 2 for all projects

is given in Table II. The correlation between the dependent

and independent variable is 0.99975. The composite coupling

ratio was found to be 0.99916. The results for regression for

Equation 3 for all projects is given in Table III. The correlation

between the dependent and independent variable is 0.99967.

The results for regression for Equation 4 for all projects is

given in Table IV. The general coupling ratio was found to

be 0.99931. Further, the mean number of faulty test cases that

TABLE II
ALL PROJECTS FOR COMPOSITE COUPLING RATIO. R2 =0.99975

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9992 0.0005 2,116.13 0.0000

TABLE III
ALL PROJECTS R2 =0.99967

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0399 0.0189 -2.12 0.0343

SeparateFaults 0.9997 0.0005 1,847.83 0.0000

TABLE IV
ALL PROJECTS FOR GENERAL COUPLING RATIO. R2 =0.9997

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9993 0.0005 1,939.82 0.0000

were not present in the component faults were found to be

0.0417. See Table V for the summary.

B. Apache commons-math

The results for regression for Equation 2 for all projects

is given in Table VI. The correlation between the dependent

and independent variable is 0.99983. The composite coupling

ratio was found to be 0.98956. The results for regression

for Equation 3 for commons-math is given in Table VII. The

correlation between the dependent and independent variable

is 0.99971. The results for regression for Equation 4 for

commons-math is given in Table VIII. The general coupling

ratio was found to be 0.9944. Further, the mean number of

faulty test cases that were not present in the component faults

were found to be 0.137. See Table IX for the summary.

VII. DISCUSSION

Fault masking is one of the key concerns in software testing.

The coupling effect hypothesis asserts that fault masking is

rare. Unfortunately, little is known about the theory behind

fault coupling. We study the coupling effect and fault masking

using theoretical and empirical methods.

TABLE V
SUMMARY FOR ALL PROJECTS.

SeparateFaults JoinedFaults RemovedFaults AddedFaults

bcel 27.73 27.73 0.00 0.00
beanutils 4.80 1.60 3.20 0.00

cli 7.60 7.60 0.00 0.00
codec 2.50 2.50 0.00 0.00

collections 16.49 16.49 0.00 0.00
compress 11.60 11.60 0.00 0.00

configuration 37.19 37.16 0.04 0.02
csv 2.00 2.00 0.00 0.00

dbcp 10.60 10.91 0.01 0.32
exec 16.50 16.50 0.00 0.00

fileupload 4.64 4.64 0.00 0.00
imaging 6.50 6.50 0.00 0.00

io 7.93 7.55 0.54 0.17
jexl 3.58 3.56 0.02 0.00

jxpath 3.00 3.00 0.00 0.00
lang 4.46 4.46 0.00 0.00
mail 2.30 2.30 0.00 0.00
math 7.67 7.64 0.03 0.00

net 4.13 4.13 0.00 0.00
ognl 27.00 27.00 0.00 0.00
pool 4.48 4.45 0.05 0.02

scxml 36.62 36.62 0.00 0.00
validator 3.07 3.06 0.01 0.00

TABLE VI
C-MATH FOR COMPOSITE COUPLING RATIO. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9896 0.0007 1,418.94 0.0000

TABLE VII
C-MATH R2 =0.99971

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0924 0.0482 1.92 0.0563

SeparateFaults 0.9933 0.0009 1,090.92 0.0000

Our theoretical evaluation of the composite fault hypothesis.

shows that for any pair of separable faults, composite coupling

effect exists. We find that composite coupling ratio κ = 1− 1
n

,

where n is the co-domain of the function being considered, and

that syntactical neighborhood does not have an adverse impact

on our result. Further, while Wah suggests that, as system size

increases the coupling effect weakens exponentially, our results

suggest that the mean coupling ratio remains the same at 1
n

.

Why is our prediction on fault masking so important? Basic

testing relies on fault masking. Say you are unit testing a

function with multiple faults, and some of the faults are left

undetected due to fault masking. Wah’s analysis suggests that

when we integrate these units into a larger system, the faults

in the larger system have a much higher (indeed exponential)

tendency to self correct, and avoid failure due to masking.

Our analysis suggests that even on larger systems composed

of smaller systems, the rate of fault masking remains the same.

We proposed the existence of strongly interacting faults,

which cannot be accounted for within the formal coupling

theory. Our empirical analysis (see Table V and Table IX)

indicates that strong interaction is possibly rare, occurring

at a similar frequency as fault masking. Figure 3 suggests

that while there is some reduction in the combined faults for

the faults with smaller semantic footprint (as given by the

number of test cases that failed for that fault) with respect to

constituent faults, the difference vanishes when the size of the

fault increases. This same effect is also seen in Figure 5.

The results for regression (Equation 2) also suggest a similar

TABLE VIII
C-MATH FOR GENERAL COUPLING RATIO. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9944 0.0007 1,401.55 0.0000

TABLE IX
SUMMARY FOR ALL COMMONS-MATH.

SeparateFaults JoinedFaults RemovedFaults AddedFaults

2 7.67 7.64 0.03 0.00
4 14.67 14.70 0.05 0.07
8 30.53 30.42 0.17 0.06

16 59.25 59.09 0.42 0.25
32 109.85 108.96 1.37 0.48
64 220.25 219.50 3.00 2.25

observation — that test cases that are able to detect a fault in

isolation will with very high probability detect the same fault

in combination with other faults.

Overall, our statistical analysis suggests that there is a very

high probability (between {0.998 & 1.000} for all projects,

and {0.988 & 0.991} for commons-math — 95% confidence

interval with statistical significance p < 0.0001) that when

two faults are paired to produce a combined fault, any test

cases that detected either of the faults continue to detect the

combined fault.

Our results for Table IV suggests that between {0.998

& 1.000} of complex faults are caught (95% confidence

interval, p < 0.0001). This is again confirmed by the deeper

analysis of Apache commons-math, using larger size faults

in Table VIII which suggests that between {0.993 & 0.996}
fraction of complex faults are caught (95% confidence interval,

p < 0.0001). We note that this is the first confirmation of the

general coupling effect (unlike the mutation coupling effect

which has been validated multiple times). Why is validating

the general coupling effect important? We already know that

faults emulated by traditional mutants are only a subset of the

possible kinds of faults (Just et al. [14] found that up to 27%

of faults were inadequately represented by mutants). Hence,

it is important to verify the general coupling effect using real

faults so that our results are applicable for faults in general,

and especially for possible future mutation operators. Indeed,

the mutation coupling effect has been validated multiple times,

and we do not attempt it again here.

VIII. CONCLUSION

The coupling effect hypothesis is a general theory of fault

interaction, and is used to quantify fault masking. It also finds

use in mutation analysis. While there is compelling empirical

evidence for the coupling effect, our theoretical understanding

is lacking. The extant theory by Wah is too restrictive to be

useful for real world systems. We address this limitation, and

provide a stronger, modified version of the theory called the

composite fault hypothesis.

Our theoretical analysis suggests that the composite fault

hypothesis has a high probability of occurring (1− 1
n

, where n
is the co-domain of the function under consideration) under the

assumptions of total functions, finite domain, and separability

of faults, irrespective of the size of the system.

Our empirical study provides validation, and an empirical

approximation of the composite coupling ratio κ (0.99), with

99% of the test cases that detected a fault in isolation contin-

uing to detect it when it is combined with other faults.

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[2] A. J. Offutt, “Investigations of the software testing coupling effect,”
ACM Transactions on Software Engineering and Methodology, vol. 1,
no. 1, pp. 5–20, 1992.

[3] ——, “The Coupling Effect : Fact or Fiction?” ACM SIGSOFT Software

Engineering Notes, vol. 14, no. 8, pp. 131–140, Nov. 1989.

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[5] K. S. H. T. Wah, “Fault coupling in finite bijective functions,” Software

Testing, Verification and Reliability, vol. 5, no. 1, pp. 3–47, 1995.
[6] ——, “A theoretical study of fault coupling,” Software Testing, Verifi-

cation and Reliability, vol. 10, no. 1, pp. 3–45, 2000.
[7] ——, “An analysis of the coupling effect I: single test data,” Science of

Computer Programming, vol. 48, no. 2, pp. 119–161, 2003.
[8] R. J. Lipton and F. G. Sayward, “The status of research on program

mutation,” in Digest for the Workshop on Software Testing and Test

Documentation, December 1978, pp. 355–373.
[9] R. A. DeMillo and A. P. Mathur, “On the use of software artifacts to

evaluate the effectiveness of mutation analysis for detecting errors in
production software,” Software Engineering Research Center, Purdue
University, West Lafayette, IN,, Tech. Rep. SERC-TR92-P, 1991.

[10] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software

Engineering. IEEE, 2005, pp. 402–411.
[11] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using

mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[12] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions

on Software Engineering, vol. 32, no. 9, pp. 733–752, 2006.
[13] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison

of four unit test criteria: Mutation, edge-pair, all-uses and prime path
coverage,” in International Conference on Software Testing, Verification

and Validation Workshops. IEEE, 2009, pp. 220–229.
[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and

G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in ACM SIGSOFT Symposium on The Foundations of Software

Engineering. Hong Kong, China: ACM, 2014, pp. 654–665.
[15] F. J. O. Dias, “Fault masking in combinational logic circuits,” IEEE

Trans. Comput., vol. 24, no. 5, pp. 476–482, May 1975.
[16] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on

Software Engineering, vol. 16, no. 8, pp. 844–857, 1990.
[17] ——, “A model for code-based testing schemes,” in Fifth Annual Pacific

Northwest Software Quality Conf, 1987, p. 309.
[18] K. S. H. T. Wah, “Theoretical insights into the coupling effect,” in

Mutation testing for the new century, W. E. Wong, Ed. Norwell, MA,
USA: Kluwer Academic Publishers, 2001, pp. 62–70.

[19] K. Kapoor, “Formal analysis of coupling hypothesis for logical faults,”
Innovations in Systems and Software Engineering, vol. 2, no. 2, pp.
80–87, 2006.

[20] J. M. Voas and K. W. Miller, “Semantic metrics for software testability,”
The Journal of Systems and Software, vol. 20, no. 3, pp. 207 – 216, 1993.

[21] M. R. Woodward and Z. A. Al-Khanjari, “Testability, fault size and the
domain-to-range ratio: An eternal triangle,” ACM SIGSOFT Software

Engineering Notes, vol. 25, no. 5, pp. 168–172, 2000.
[22] Z. A. Al-Khanjari and M. R. Woodward, “Investigating the partial re-

lationships between testability and the dynamic range-to-domain ratio,”
Australasian Journal of Information Systems, vol. 11, 2003.

[23] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, and M. Harman,
“An analysis of the relationship between conditional entropy and failed
error propagation in software testing,” in International Conference on

Software Engineering. New York, NY, USA: ACM, 2014, pp. 573–583.
[24] D. Clark and R. M. Hierons, “Squeeziness: An information theoretic

measure for avoiding fault masking,” Information Processing Letters,
vol. 112, no. 8, pp. 335–340, 2012.

[25] M. Harman, Y. Jia, and W. B. Langdon, “A manifesto for higher
order mutation testing,” in International Conference on Software Testing,

Verification and Validation Workshops. IEEE, 2010, pp. 80–89.
[26] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are

they to real faults?” in International Symposium on Software Reliability

Engineering, Nov 2014, pp. 189–200.
[27] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external

validity in empirical software engineering,” in International Conference

on Software Engineering, 2015.
[28] Y. Jia and M. Harman, “Higher order mutation testing,” Information and

Software Technology, vol. 51, no. 10, pp. 1379–1393, Oct. 2009.

