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ABSTRACT
Mutation testing is widely used in research (even if not in prac-
tice). Mutation testing tools usually target only one programming
language and rely on parsing a program to generate mutants, or
operate not at the source level but on compiled bytecode. Unfortu-
nately, developing a robust mutation testing tool for a new language
in this paradigm is a difficult and time-consuming undertaking.
Moreover, bytecode/intermediate language mutants are difficult for
programmers to read and understand. This paper presents a sim-
ple tool, called universalmutator, based on regular-expression-
defined transformations of source code. The primary drawback of
such an approach is that our tool can generate invalid mutants
that do not compile, and sometimes fails to generate mutants that
a parser-based tool would have produced. Additionally, it is in-
compatible with some approaches to improving the efficiency of
mutation testing. However, the regexp-based approach provides
multiple compensating advantages. First, our tool is easy to adapt
to new languages; e.g., we present here the first mutation tool for
Apple’s Swift programming language. Second, the method makes
handling multi-language programs and systems simple, because
the same tool can support every language. Finally, our approach
makes it easy for users to add custom, project-specific mutations.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Mutation testing [7, 25] is a widely used technique, originally pro-
posed as a way for test engineers to understand omissions in their
testing, and now routinely used in research, e.g., to evaluate novel
software testing methods [2, 4, 8] and to improve software fault
localization [20, 23, 27].

Unfortunately, despite the considerable utility of mutation test-
ing, effective mutation testing tools are surprisingly rare. Java
alone has widely available, easily used mutation tools, but the
most popular and useful of these, PIT [6], operates only at the
bytecode level, making it difficult for users to read and under-
stand the generated mutants. While there are multiple tools for
C mutation, they often crash on surprisingly simple programs,
and both Milu (https://github.com/yuejia/Milu) and Proteum (https:
//github.com/magsilva/proteum) have not been updated since mid-
2016. In fact, the simple Prolog-based tool developed byAndrews [5]
is still widely used in research and practice, despite not even work-
ing with recent versions of the Prolog compiler.

The universalmutator1 is a tool for mutation testing that aims
to expand the applicability of mutation testing by making it easy to
extend effective mutant generation to new programming languages.
The tool’s design is informed by four basic principles:

(1) In practice, most source-code mutants of interest can be pro-
duced without actually parsing the language of a source code
file. Most useful mutations are approximately equivalent to
a set of string manipulations that can be defined by a regular
expression to match and a replacement string. This makes it
possible to avoid the onerous work of building a parser for
every language to be mutated.

(2) Modern optimizing compilers are better at detecting invalid
and (more importantly) equivalent and redundant mutants

1https://github.com/agroce/universalmutator
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than any tool that can be produced with a reasonable amount
of effort. Reducing the set of mutants to be tested to useful
mutants is most easily approached by leveraging Trivial
Compiler Equivalence [16, 26].

(3) Because of the theoretical and practical limits of mutation
reduction strategies [10, 12], the effectiveness of random
sampling [11], and the need for novel mutants to correlate to
important classes of software defect [9, 17, 21], it is essential
for a mutation tool to make adding new kinds of mutations
easy, and to support custom, project-specific mutants defined
by developers expert in their own code base.

(4) Mutants are used in a wide variety of contexts; while simplic-
ity limits the efficiency of our tool, we aim to make it easy
to integrate the tool into a variety of software testing and
engineering tasks. This aim leads us to a UNIX-like “little
tools” philosophy, where rather than having one monolithic
program for mutant generation, execution, and presentation
of results, we provide separate tools for mutant generation,
mutant execution, exclusion of mutants based on code cov-
erage, and so forth, using simple text files as a means of
communication between these tools.

Such an approach has limitations, of course. In general, it will
usually produce more invalid mutants, or generally uninteresting
mutants (e.g., modifying part of a constant string), and it will be
difficult to apply many of the methods proposed for speeding up
mutation testing, such as mutant schemata [28] or “forking” ap-
proaches [13, 29]. However, we believe that having a somewhat
inefficient mutation tool is better than having no tool at all for the
many languages currently lacking tools. Moreover, the more so-
phisticated techniques for making mutation testing more efficient
also make it more difficult to allow custom mutation operators,
discouraging project-specific approaches or experimentation with
novel operators, e.g., for concurrency or functional programming.

The design of universalmutator is simple. After determining
which language a source file is written in, it applies appropriate
regular-expression-based mutation rules, contained in .rules files
(a number of which are provided with the tool). In most cases, a
source file will be mutated based on multiple rule files: there is a
set of “universal” mutations rules, common to all languages, a set
of rules for C-like languages, and then (often) a set of rules for each
specific language. For instance, mutating a Swift program uses the
files universal.rules, c_like.rules, and swift.rules.

Figure 1 shows the set of rules that are applied in common to
all languages. Some of these rules are irrelevant to some languages
(for instance, Python does not use && as a logical operator), but in
such cases the presence of the rule is harmless. The core mutations
defined here include various operator replacements, numeric and
string constant replacements (introducing several additions to the
set used by Andrews [5], such as replacing any string by the empty
string), and the insertion of new break statements. The universal
rules also include an example of a mechanism for annotating that a
line should never be mutated. This is a feature not (to our knowl-
edge) present in most tools, but can be useful: first, some lines may
be known to relate to untested code (e.g., WARNING messages that
are never checked by tests); second, in rare instances a statement

DO_NOT_MUTATE ==> DO_NOT_MUTATE
\+ ==> -
\+ ==> *
\+ ==> /
\+ ==> %
-([^>]) ==> +\1
-([^>]) ==> *\1
-([^>]) ==> /\1
-([^>]) ==> %\1
([^/*])([^/*]) ==> \1+\2
([^/*])([^/*]) ==> \1-\2
([^/*])([^/*]) ==> \1/\2
([^/*])([^/*]) ==> \1%\2
([^/])/([^/]) ==> \1+\2
([^/])/([^/]) ==> \1-\2
([^/])/([^/]) ==> \1*\2
([^/])/([^/]) ==> \1%\2
% ==> +
% ==> -
% ==> *
% ==> /
!= ==> ==
!= ==> <=
!= ==> >=
!= ==> >
!= ==> <
== ==> !=
== ==> <=
== ==> >=
== ==> >
== ==> <
>= ==> ==
>= ==> !=
>= ==> <
>= ==> >
<= ==> ==
<= ==> !=
<= ==> <
<= ==> >
< ==> >
< ==> ==
([^-])> ==> \1<
([^-])> ==> \1==
-([^>]) ==> \1
(\D)(\d+)(\D) ==> \g<1>0\3
(\D)(\d+)(\D) ==> \g<1>1\3
(\D)(\d+)(\D) ==> \g<1>-1\3
(\D)(\d+)(\D) ==> \1\2+1\3
(\D)(\d+)(\D) ==> \1\2-1\3
&& ==> ||
\|\| ==> &&
! ==>
([^&])&([^&]) ==> \1|\2
([^|])\|([^|]) ==> \1&\2
(^\s*)(\S+.*)\n ==> \1\2\n\1break;\n
".+" ==> ""

Figure 1: Universal mutation rules for all languages

may be dangerous to mutate, such as a network or file system oper-
ation, but there is interest in mutating other aspects of computation.
The example rule file makes the structure of a mutation rule clear:
the left hand side of a mutation is a regular expression (regexp),
using Python’s notation for regexps; the right hand side (across
the ==>) is a Python regular expression replacement string, which
can use \1, \2, etc. to include groups from the regexp that matched.
Under this scheme, most mutations are simple to define, and the
only major limitation for common mutation operators is that the
approach does not handle deletion of multiple-line statements.

2 EXAMPLE USAGE
The tool can easily be installed using Python’s pip package man-
agement system:

% pip install universalmutator

The module is pure Python and depends on no modules other
than built-in Python libraries, so it should be usable on almost any
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system that supports Python 2.7+.Mutationwith TCE of a particular
language, of course, may depend on having that language’s compiler
available (e.g., swiftc is used to compile swift code).

To mutate a source file, use the command:
% mutate <sourcefile>

If the source file extension is one of those supported (currently
.c, .cpp, .java, .py, and .swift), the tool will automatically deter-
mine the rules to use and generate a set of mutants. For example, if
<sourcefile> is avltree.c, it will generate avltree.mutant.0.c,
avltree.mutant.1.c, and so forth. For Swift and Python files, the
tool will also attempt to compile each mutant, and only generate
mutant files for mutants that (1) compile without syntax errors
and (2) do not produce equivalent object files to either the original
source code or another already-generated mutant. Because the use
of a linker, include paths, and compiler directives makes it difficult
to automatically check C and C++ files for successful compilation2,
the tool also supports a mode where the user provides a compilation
command to be used to check for valid mutants, e.g.:

% mutate foo.c --cmd "clang -c MUTANT -I ."

where MUTANT will be replaced by the name of a generated tempo-
rary file for the mutant, clang will be used as the compiler, and the
current directory will be used as an include path. Constructing a
TCE checker to compare C and C++ object files is non-trivial, due
to build complexities and object formats that include timestamps,
so we allow users to write Python handlers that perform that task
in a project- and compiler-specific way.

To analyze the generatedmutants, provide the tool both the name
of the source file to be mutated and the command to run to process
the mutants. For example, the complete process for performing
mutation analysis on the TSTL [15, 18] Python testing tool’s AVL
tree example from scratch is:
$ pip install tstl
$ git clone https://github.com/agroce/tstl
$ cd tstl/examples/AVL
$ tstl avlnew.tstl
$ mutate avl.py
$ analyze_mutants avl.py "ulimit -t30; tstl_rt -t 10"

The mutate tool will generate 799 valid mutants, 493 invalid
mutants (e.g., changing an if into a pass in a failed statement dele-
tion), and 17 redundant mutants equivalent either to one of the valid
mutants or the original avl.py. Running analyze_mutants will
produce a pair of files, notkilled.txt and killed.txt, contain-
ing names of mutants for which the tstl_rt command (which runs
TSTL’s random tester, with a timeout of 10 seconds, here run with
a ulimit of 30 seconds to catch mutants producing non-termination)
returned an error code of zero or non-zero, respectively. Ten sec-
onds of random testing kills 386 of the mutants, but 413 survive.

The analyze_mutants tool optionally takes a third argument,
the name of a file containing mutants to ignore. This lets users write
their own code to prune mutants without having to remove the
mutant files. The universalmutator provides an additional tool,
check_covered <sourcefile> <coveragefile> <outfile> that
scans all mutants of sourcefile, determines their location (recall that
for us all mutants will correspond to a single line of sourcefile),
and then outputs a file (outfile) containing all mutants not present
2This difficulty is a significant contrast to languages like Python or Swift, where even
a file that is part of a large project is often easily re-compiled by itself, without any
extra options or configuration.

in coveragefile. The expected format for coveragefile is a list
of line numbers, delimited by whitespace, starting from 1; the op-
tional --tstl argument also allows the tool to process internal
coverage reports from the tstl testing tools. Of the 413 surviv-
ing mutants, 67 are in code not covered during even 5 minutes of
random testing, mostly test code not part of the actual AVL class.

3 EXTENDING THE MUTATOR
The parser-free nature of universalmutator makes it easy to use
in ways that might not easily work with a more traditional mu-
tation tool. For example, it can handle files that are “almost” in
some known-to-the-tool language just as well as files actually in
the language, which would usually be rejected by a parser-based
tool. Model checking and testing tools, such as TSTL and Spin [19],
embed other languages in test harnesses (Python for TSTL, C for
Spin’s PROMELA language). In these cases one just mutates the ap-
propriate file, after telling the mutator what language it is “written
in.” Some mutants may be invalid, but these will just be rejected by
the language tools and discarded.

However, in some cases simply using an existing language’s rules
to mutate something close to that language is not all that is needed.
One may want to add a new mutant, for a project, or one may
need to define basic mutation operators for a novel programming
language with unusual syntax. In both cases, the solution is simple:
just write a new .rules file, and either add it to the mutate call,
or, if there is a real need to go outside the box, and the universal
mutation rules no longer apply, use the language none and explicitly
note the rule file(s) to be used.

Because of the regexp style of defining operators, one can write
a quick, clumsy rule if one wants to try an experimental operator
out and see how well it works, or refine it further. For instance,
one might think that changing while loops into if statements is a
promising idea for a mutation operator3. This does not represent a
common human error, probably, but can check test suites to make
sure they are good at investigating loop iterations beyond running
zero or one or more times. A quick-and-dirty sketch of the rule
might look like:

while ==> if

This version of the rule will largely suffice. It will, of course,
replace while strings in function names, but perhaps this is not
enough of a problem to matter. If one does eventually decide that
the rule needs refining (for instance, when working with a large
project where there are dozens of methods on a timed event class
named with the pattern whileFoo), one can ensure that while is a
word on its own, using Python’s regexp:

while(\W) ==> if\1

This rule forces the character after the while to be something that
shows the while is not part of a valid identifier, in most languages.
We capture it using the parentheses and reproduce the same char-
acter in the replacement using the \1 back-reference.

Another use for the same mechanism is to avoid mutating code.
For instance, imagine testing a large project with many warning
messages, always consisting of the use of a WARNINGmacro. The sys-
tem tests do not make use of these warnings, and so they end up as a

3We added this one to the universal rules file, after writing about it here.
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Table 1: Java mutation results

Subject PIT Major universalmutator
Gen Kill MS Gen Kill MS Gen Kill MS

Triangle 45 44 97.78% 130 130 93.53% 188 184 97.87%
FizzBuzz 111 92 82.88% 244 202 82.79% 203 176 86.70%

large set of equivalent mutants, modifying the strings, deleting the
statements, and modifying numeric constants or arithmetic opera-
tors in the warnings. Annotating all of these with DO_NOT_MUTATE
is inconvenient and hurts program readability. Instead, one can just
add a nowarnings.rules to every mutate call:

WARNING ==> DO_NOT_MUTATE

4 EVALUATION
As a simple evaluation of the capabilities of our approach, we com-
pared the mutants generated by universalmutator to those gener-
ated by Andrews’ tool [5], used in papers on mutation-based model
checking of C programs [14] and mutations as a tool for improving
Linux kernel test suites [3]. The mutants generated by our tool
were a superset of those generated by Andrews’ tool for the 8 C
files used in these papers. Most importantly, the actual mutants
used to drive fixes to the model-checking harnesses or the Linux
kernel test suite were produced by both tools.

We also applied our tool to an ongoing effort to test the pyfakefs
file system [1], using TSTL [15, 18], and confirmed that our mutants
were equally useful for test suite evaluation and improvement as the
mutants produced by muupi [24], a much more complex, AST-based
tool specialized for Python.

Finally, we compared our results to PIT (ver. 1.2.5-SNAPSHOT) [6]
andMajor (ver. v1.3.2) [22] for both the classic pedagogical Triangle
example and an interview-quiz GitHub project, FizzBuzz4. We used
all the default mutation operators for both PIT and Major. Specifi-
cally, here are the commands we used to perform mutation testing
using universalmutator for Triangle:
$ mkdir mutants
$ mutate src/main/java/triangle/Triangle.java --mutantDir mutants
...
$ analyze_mutants src/main/java/triangle/Triangle.java "mvn test" \

--mutantDir mutants

Table 1 shows the experimental results. For each tool on each
subject, we show the number of generated mutants (column “Gen”),
the number of killed mutants (column “Kill”), and the mutation
score (column “MS”). From the table, we can observe that all three
tools provide similar mutation scores, demonstrating usefulness of
our tool for Java, even without any ability to parse Java (or any Java-
specific rules beyond the erasure of the synchronized keyword)
or handle multi-line constructs.

5 CONCLUSION
While most mutation tools either attempt to parse a source file or
operate at the bytecode level, this paper proposes another possi-
bility: we present universalmutator, a multi-language tool based
on simple regular-expression defined transformations of source as
un-parsed text. The advantages of the approach are its simplicity
of extension, ability to work on files that do not actually parse, and

4https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

the ease with which it supports adding mutation support for new
programming languages. As future work, we plan to extend the ease
of use of the tool, further integrate it with popular build environ-
ments, and add new languages, such as Rust. universalmutator
is open-source and publicly available on GitHub at https://github.
com/agroce/universalmutator.
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