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ABSTRACT
Although mutation analysis is considered the best way to
evaluate the effectiveness of a test suite, hefty computa-
tional cost often limits its use. To address this problem, var-
ious mutation reduction strategies have been proposed, all
seeking to reduce the number of mutants while maintaining
the representativeness of an exhaustive mutation analysis.
While research has focused on the reduction achieved, the
effectiveness of these strategies in selecting representative
mutants, and the limits in doing so have not been investi-
gated, either theoretically or empirically.

We investigate the practical limits to the effectiveness of
mutation reduction strategies, and provide a simple theoret-
ical framework for thinking about the absolute limits. Our
results show that the limit in improvement of effectiveness
over random sampling for real-world open source programs
is a mean of only 13.078%. Interestingly, there is no limit
to the improvement that can be made by addition of new
mutation operators.

Given that this is the maximum that can be achieved with
perfect advance knowledge of mutation kills, what can be
practically achieved may be much worse. We conclude that
more effort should be focused on enhancing mutations than
removing operators in the name of selective mutation for
questionable benefit.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging Test-
ing Tools

Keywords
software testing, statistical analysis, mutation analysis

1. INTRODUCTION
The quality of software is a pressing concern for the soft-

ware industry, and is usually determined by comprehensive
testing. However, tests are themselves programs, (usually)
written by human beings, and their quality needs to be mon-
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itored to ensure that they in fact are useful in ensuring soft-
ware quality (e.g., it is important to determine if the tests
are also a quality software system).

Mutation analysis [11, 36] is currently the recommended
method [5] for evaluating the efficacy of a test suite. It
involves systematic transformation of a program through the
introduction of small syntactical changes, each of which is
evaluated against the given test suite. A mutant that can
be distinguished from the original program by the test suite
is deemed to have been killed by the test suite, and the ratio
of all such mutants to the set of mutants identified by a test
suite is its mutation (kill) score, taken as an effectiveness
measure of the test suite.

Mutation analysis has been validated many times in the
past. Andrews et al. [4,5], and more recently Just et al. [32],
found that faults generated through mutation analysis re-
semble real bugs, their ease of detection is similar to that
of real faults, and most importantly for us, a test suite’s
effectiveness against mutants is similar to its effectiveness
against real faults.

However, mutation analysis has failed to gain widespread
adoption in software engineering practice due to its substan-
tial computational requirements — the number of mutants
generated needs to be many times the number of program
tokens in order to achieve exhaustive coverage of even first
order mutants (involving one syntactic change at a time),
and each mutant needs to be evaluated by a potentially full
test suite run. A number of strategies have been proposed
to deal with the computational cost of mutation analysis.
These have been classified [44] orthogonally into do faster, do
smarter, and do fewer approaches, corresponding to whether
they improve the speed of execution of a single mutant, par-
allelize the evaluation of mutants, or reduce the number of
mutants evaluated.

A large number of do fewer strategies — mutation re-
duction methods that seek to intelligently choose a smaller,
representative, set of mutants to evaluate — have been in-
vestigated in the past. They are broadly divided into oper-
ator selection strategies, which seek to identify the smallest
subset of mutation operators that generate the most useful
mutants [43,46], and strata sampling [1,9] techniques, which
seek to identify groups of mutants that have high similar-
ity between them to reduce the number of mutants while
maintaining representativeness and diversity [53, 54]. Even
more complex methods using clustering [19,37], static anal-
ysis [28, 34] and other intelligent techniques [48] are under
active research [20].

These efforts raise an important question: What is the

http://dx.doi.org/10.1145/2884781.2884787


actual effectiveness of a perfect mutation reduction strategy
over the baseline – random sampling – given any arbitrary
program?

We define the efficiency of a selection technique as the
amount of reduction achieved, and the effectiveness as
the selection technique’s ability to choose a representative
reduced set of mutants, that require as many test cases to
kill as the original set of mutants. The ratio of effectiveness
of a technique to that of random sampling is taken as the
utility of the technique.

We approach these questions from two directions. First,
we consider a simple theoretical framework in which to eval-
uate the improvement in effectiveness for the best muta-
tion reduction possible, using a few simplifying assump-
tions, and given oracular knowledge of mutation kills. This
helps set the base-line. Second, we empirically evaluate
the best mutation reduction possible for a large number of
projects, given post hoc (that is, oracular) detection knowl-
edge. This gives us practical (and optimistic) limits given
common project characteristics.

Our contributions are as follows:

• We find a theoretical upper limit for the effectiveness
of mutation reduction strategies of 58.2% for a uni-
form distribution of mutants — the distribution most
favorable for random sampling. We later show that for
real world programs, the impact of distribution is very
small (4.467%) suggesting that uniform distribution is
a reasonable approximation.

• We find an empirical upper limit for effectiveness through
the evaluation of a large number of open source projects,
which suggests a maximum practical utility of 13.078%
on average, and for 95% of projects, a maximum util-
ity between 12.218% and 14.26% (one sample u-test
p < 0.001)1.

• We show that even if we consider a set of mutants
that are distinguished by at least by one test (thus dis-
counting the impact of skew in redundant mutants) we
can expect a maximum utility of 17.545% on average,
and for 95% of projects, a maximum utility between
16.912% and 18.876% (one sample u-test p < 0.001).

What do our results mean for the future of mutation re-
duction strategies? Any advantage we gain over random
sampling is indeed an advantage, however small. However,
our understanding of mutant semiotics2 is as yet imperfect,
and insufficient to infer whether the kind of selection em-
ployed is advantageous. In fact, our current research [24]
shows that current operator selection strategies seldom pro-
vide any advantage over random sampling, and even strata
sampling based on program elements never achieves more
than a 10% advantage over pure random sampling. Our re-
sults suggest that the effort spent towards improving mutant
selection mechanisms should be carefully weighed against
the potential maximum utility, and the risks associated with
actually making things worse through biased sampling.
1We use the non-parametric Mann-Whitney u-test as it is
more robust to normality assumption, and to outliers. We
note that a t-test also gives similar results.
2Here semiotics is the relation between a syntactic change
and its semantic impact.

Our research is also an endorsement of the need for further
research into new mutators. It suggests that addition of new
mutators and then randomly sampling the same number of
mutants as that of the original set, is only subject to a similar
maximum disadvantage ( 0.189×100

1−0.189
= 23.268% upper limit for

95% projects), while having essentially no upper bound on
advantage due to increase in effectiveness.

The asymmetry between improvement obtained by opera-
tor removal and operator addition is caused by the difference
in population from which the random comparison sample is
drawn. For operator selection, the perfect set remaining
after removal of operators is a subset of the original popu-
lation. Since the random sample is drawn from the original
population, it can potentially contain a mutant from each
strata in the perfect set. For operator addition, the new
perfect set is a superset of the original population, with as
many new strata as there are new mutants (no bounds on
the number of new strata). Since the random sample is con-
structed from the original population, it does not contain
the newly added strata.

Our results suggest a higher payoff in finding newer cate-
gories of mutations, than in trying to reduce the mutation
operators already available.

In the interests of easy replication, our research is orga-
nized and reproducible using Knitr. The raw Knitr source
of our paper along with the R data set required to build the
paper, and the instructions to do so, are available [23].

2. RELATED WORK
According to Mathur [39], the idea of mutation analysis

was first proposed by Richard Lipton, and formalized by
DeMillo et al. [17] A practical implementation of mutation
analysis was done by Budd et al. [10] in 1980.

Mutation analysis subsumes different coverage measures [9,
40,45]; the faults produced are similar to real faults in terms
of the errors produced [15] and ease of detection [4,5]. Just
et al. [32] investigated the relation between mutation score
and test case effectiveness using 357 real bugs, and found
that the mutation score increased with effectiveness for 75%
of cases, which was better than the 46% reported for struc-
tural coverage.

Performing a mutation analysis is usually costly due to the
large number of test runs required for a full analysis [31].
There are several approaches to reducing the cost of mu-
tation analysis, categorized by Offutt and Untch [44] as:
do fewer, do smarter, and do faster. The do fewer ap-
proaches include selective mutation and mutant sampling,
while weak mutation, parallelization of mutation analysis,
and space/time trade-offs are grouped under the umbrella
of do smarter. Finally, the do faster approaches include
mutant schema generation, code patching, and other meth-
ods.

The idea of using only a subset of mutants was conceived
along with mutation analysis itself. Budd [9] and Acree [1]
showed that even 10% sampling approximates the full muta-
tion score with 99% accuracy. This idea was further explored
by Mathur [38], Wong et al. [50, 51], and Offutt et al. [43]
using Mothra [16] for Fortran.

A number of studies have looked at the relative merits of
operator selection and random sampling criteria. Wong et



al. [50] compared x% selection of each mutant type with op-
erator selection using just two mutation operators and found
that both achieved similar accuracy and reduction (80%).
Mresa et al. [41] used the cost of detection as a means of
operator selection. They found that if a very high muta-
tion score (close to 100%) is required, x% selective mutation
is better than operator selection, and, conversely, for lower
scores, operator selection would be better if the cost of de-
tecting mutants is considered.

Zhang et al. [54] compared operator-based mutant selec-
tion techniques to random sampling. They found that none
of the selection techniques were superior to random sam-
pling. They also found that uniform sampling is more ef-
fective for larger programs compared to strata sampling on
operators3, and the reverse is true for smaller programs. Re-
cently, Zhang et al. [53] confirmed that sampling as few as
5% of mutants is sufficient for a very high correlation (99%)
with the full mutation score, with even fewer mutants having
a good potential for retaining high accuracy. They inves-
tigated eight sampling strategies on top of operator-based
mutant selection and found that sampling strategies based
on program components (methods in particular) performed
best.

Some studies have tried to find a set of sufficient mutation
operators that reduce the cost of mutation but maintain
correlation with the full mutation score. Offutt et al. [43]
suggested an n-selective approach with step-by-step removal
of operators that produce the most numerous mutations.
Barbosa et al. [8] provided a set of guidelines for selecting
such mutation operators. Namin et al. [42, 47] formulated
the problem as a variable reduction problem, and found that
just 28 out of 108 operators in Proteum were sufficient for
accurate results.

Using only the statement deletion operator was first sug-
gested by Untch [49], who found that it had the highest cor-
relation (R2 = 0.97) with the full mutation score compared
to other operator selection methods, while generating the
smallest number of mutants. This was further reinforced by
Deng et al. [18] who defined deletion for different language
elements, and found that an accuracy of 92% is achieved
while reducing the number of mutants by 80%.

A similar mutation reduction strategy is to cluster similar
mutations together [20,27], which has been attempted based
on domain analysis [28] and machine learning techniques
based on graphs [48].

In operator and mutant subsumption, operators or mu-
tants that do not significantly differ from others are elimi-
nated. Kurtz et al. [35] found that a reduction of up to 24
times can be achieved using subsumption alone, even though
the result is based on an investigation of a single program,
cal. Research into subsumption of mutants also includes
Higher Order Mutants (HOM), whereby multiple mutations
are introduced into the same set of mutants, reducing the
number of individual mutants by subsuming component mu-
tants. HOMs were investigated by Jia et al. [29, 30], who
found that they can reduce the number of mutants by 50%.

Ammann et al. [3] observe that the set of minimal mutants
corresponding to a minimal test suite has the same cardi-
nality as the test suite, and provides a simple algorithm
for finding both a minimal test suite and a corresponding

3The authors choose a random operator, and then a mu-
tant of that operator. This is in effect strata sampling on
operators given equal operator priority.

minimal mutant set. Their work also suggests this minimal
mutant set as a way to evaluate the quality of a mutation
reduction strategy. Finally, Ammann et al. also found that
the particular strategies examined are rather poor when it
comes to selecting representative mutants. Our work is an
extension of Ammann et al. [3] in that we provide a theo-
retical and empirical bound to the amount of improvement
that can be expected by any mutation reduction strategy.

In comparison with previous work [53, 54] our analysis
is backed by theory and compares random sampling to the
limit of selection. That is, the results from our study are ap-
plicable to techniques such as clustering using static analy-
sis, and even improved strata sampling techniques. Further,
we are the first to evaluate the effectiveness of non-adequate
test suites (Zhang et al. [53] evaluates only the predictive
power of non-adequate test suites, not effectiveness). Fi-
nally, previous research [53, 54] does not compare the effec-
tiveness of the same number of mutants for sampling and
operator selection, but rather different operator-selections
with samples of increasing size such as 5%, 10% etc. We be-
lieve that practitioners will be more interested in comparing
the effectiveness achieved by the same numbers of mutants.

3. THEORETICAL ANALYSIS
The ideal outcome for a mutation reduction strategy is to

find the minimum set of mutants that can represent the com-
plete set of mutants. A mutation reduction strategy accom-
plishes this by identifying redundant mutants and grouping
them together so that a single mutant is sufficient to rep-
resent the entire group. The advantage of such a strategy
over random sampling depends on two characteristics of the
mutant population. First, it depends on the number of re-
dundant mutants in each group of such mutants. Random
sampling works best when these groups have equal numbers
of mutants in them (uniform distribution), while any other
distribution of mutants (skew) results in lower effectiveness
of random sampling. However, this distribution is dependent
on the program being evaluated. Since our goal is to find
the mean advantage for a perfect strategy for an arbitrary
program, we use the conservative distribution (uniform) of
mutants for our theoretical analysis (we show later that the
actual impact of this skew is less than 5% for real world
mutants).

The next consideration regards the minimum number of
mutants required to represent the entire population of mu-
tants. If a mutant can be distinguished from another in
terms of tests that detect it, then we consider both to be
distinguishable from each other in terms of faults they rep-
resent, and we pick a representative from each set of indis-
tinguishable mutants. Note that, in the real world, the pop-
ulation of distinguishable mutants is often larger than the
minimum number of mutants required to select a minimum
test suite4 able to kill the entire mutant population. This is

4A minimum test suite with respect to a set of mutants is the
smallest test suite that can kill all mutants in the set, and
a minimal test suite is a test suite from which no further
tests can be removed without decreaseing mutation score.
Our approach tries to approximate the actual minimum test
suite using the greedy algorithm that has an approximation
bound of k · ln(n) where k is the true minimum, and n is the
number of elements. Since we have a strong bound on the
approximation, and since the algorithm is robust in practice,
we use the minimal computed by the greedy algorithm as a



because while some mutants are distinguishable from others
in terms of tests that detect them, there may not be any
test that uniquely kills them5. Since this is external to the
mutant population, and also because such a minimum set
of mutants does not represent the original population fully
(we can get away with a lower number only because the test
suite is inadequate), we assume that distinguishable mutants
are uniquely identified by test cases. We note however, that
having inadequate test suites favors random sampling, and
hence lowers the advantage for a perfect mutation reduc-
tion strategy, because random sampling can now miss the
mutant without penalty. We derive the limits of mutation
reduction for this system using the best strategy possible,
given oracular knowledge of mutant kills.
Impact of deviations of parameters:
Skew: The presence of skew reduces the effectiveness of ran-
dom sampling, and hence increases the utility of the perfect
strategy.
Distinguishability: Any distinguishable mutant that is not
chosen by the strategy (due to not having a unique detecting
test case) decreases the effectiveness of the selection strat-
egy, decreasing its utility.

Before establishing a theoretical framework for utility of
mutation reduction strategies, we must establish some ter-
minology for the original and reduced mutant sets and their
related test suites.
Terminology: Let M and Mstrategy denote the original
set of mutants and the reduced set of mutants, respectively.
The mutants from M killed by a test suite T are given by
kill(T,M) (We use Mkilled as an alias for kill(T,M)). Sim-
ilarly the tests in T that kill mutants in M are given by
cover(T,M).

kill : T×M→ M
cover : T×M→ T

The test suite Tstrategy can kill all mutants in Mstrategy.
That is, kill(Tstrategy,Mstrategy) = Mstrategy. If it is mini-
mized with respect to the mutants of the strategy, we denote
it by Tmin

strategy.
Two mutants m and m′ are distinguished if the tests that

kill them are different: cover(T, {m}) 6= cover(T, {m′}).
We use Muniq

killed to denote the set of distinguished mutants
from the original set such that ∀m,m′∈Mcover(T, {m}) 6=
cover(T, {m′}).

The utility (Ustrategy) of a strategy is improvement in ef-
fectiveness due to using that strategy compared to the base-
line (the baseline is random sampling of the same number6

of mutants). That is,

Ustrategy =

∣∣∣∣∣kill(Tmin
strategy,M)

kill(Tmin
random,M)

∣∣∣∣∣− 1

proxy for the minimum test suite.
5 Consider the mutant×test matrix (1 implies the test kills
the mutant) {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}. While all the mu-
tants are distinguishable, just two test cases are sufficient to
kill them all.
6For the rest of the paper, we require that efficiency of ran-
dom sampling is the same as that of the strategy it is com-
pared to, i.e. |Mstrategy| = |Mrandom|.

Note that Tmin
strategy is minimized over the mutants selected

by the strategy, and it is then applied against the full set
of mutants (M) in kill(Tmin

strategy,M).

This follows the traditional evaluation of effectiveness,
which goes as follows: start with the original set of mutants,
and choose a subset of mutants according to the strategy.
Then select a minimized set of test cases that can kill all
the selected mutants. This minimized test suite is evaluated
against the full set of mutants. If the mutation score ob-
tained is greater than 99%, then the reduction is deemed to
be effective. Note that we compare this score against the
score of a random set of mutants of the same size, in order
to handle the case where the full suite itself is not mutation
adequate (or even close to adequate). Our utility answers
the question: does this set of mutants better represent the
test adequacy criteria represented by the full set of mutants
than a random sample of the same size, and if so, by how
much?

The strategy that can select the perfect set of represen-
tative mutants (the smallest set of mutants such that they
have the same minimum test suite as the full set) is called
the perfect strategy, with its utility denoted by Uperfect

7.
We now show how to derive an expression for the max-

imum Uperfect for the idealized system with the following
restrictions.

1. We assume that we have an equal number of redundant
mutants for each distinguished mutant.

From here on, we refer to a set of non-distinguished mu-
tants as a stratum, and the entire population is referred to as
the strata. Given any population of detected mutants, the
mutation reduction strategy should produce a set of mu-
tants such that if a test suite can kill all of the reduced
set, the same test suite can kill all of the original mutant
set (remember that Tstrategy kills all mutants in Mstrategy).
Hence,

kill(Tperfect,M) = kill(T,M)

The quality of the test suite thus selected is dependent on
the number of unique mutants that we are able to sample.
Since we have supposed a uniform distribution, say we have
x elements per stratum, and total n mutants. Our sample
size s would be p × k where k is the number of strata, p
is the number of samples from each stratum, and is a nat-
ural number; i.e. the sample would contain elements from
each stratum, and those would have equal representation.
Note that there will be at least one sample, and one strata:
i.e., s ≥ 1. Since our strata are perfectly homogeneous by
construction, in practice p = 1 is sufficient for perfect rep-
resentation, and as we shall see below, ensures maximal ad-
vantage over random sampling.

Next, we evaluate the number of different (unique) strata
expected in a random sample of the same size s.
Let Xi be a random variable defined by:

Xi =

{
1 if strata i appears in the sample

0 otherwise.

Let X be the number of unique strata in the sample, which
is given by: X =

∑k
i=1Xi, and the expected value of X (con-

7Where unambiguous, we shorten the subscript such as p
for perfect, and r for random.



sidering that all mutants have equal chance to be sampled)
is given by:

E(X) = E(

k∑
i=1

Xi) =

k∑
i=1

E(Xi) = k × E(X1)

Next, consider the probability that the mutant 1 has been
selected, where the sample size was s = p× k:

P [Xi = 1] = 1−
(
k − 1

k

)pk

The expectation of Xi:

E(X1) = 1× P (Xi = 1)

Hence, the expected number of unique strata appearing in
a random sample is:

k × E(X1) = k − k ×
(
k − 1

k

)pk

We already know that the number of unique strata appear-
ing in each strata-based sample is k (because it is perfect,
so each strata is unique). Hence, we compute the utility as
the difference divided by the baseline.

Umax =
k −

(
k − k ×

(
k−1
k

)pk)
k − k ×

(
k−1
k

)pk =
1

( k
k−1

)pk − 1
(1)

This converges to8

lim
k→∞

1

( k
k−1

)pk − 1
=

1

ep − 1
(2)

and has a maximum value when p = 1.

Umax =
1

e− 1
≈ 58.2% (3)

Note that this is the mean improvement expected over ran-
dom sampling for uniform distribution of redundant mutants
in strata (and with oracular knowledge). That is, individ-
ual samples could still be arbitrarily advantageous (after all,
the perfect strata sample itself is one potential random sam-
ple), but on average this is the expected gain over random
samples.

How do we interpret this result? If you have a robust set
of test cases that is able to uniquely identify distinguishable
mutants, then given an arbitrary program, you can expect
a perfect strategy to have at least a mean 58.2% advantage
over random sample of the same efficiency in terms of effec-
tiveness. However, if the program produces redundant mu-
tants that are skewed, then the advantage of perfect strat-
egy with oracular knowledge will increase (depending on the
amount of skew). Similarly, if the tests are not sufficient
to identify distinguishable mutants uniquely, we can expect
the advantage of the perfect strategy to decrease. Finally,
strategies can rarely be expected to come close to perfection
in terms of classifying mutants in terms of their behavior
without post hoc knowledge of the kills. Hence the advan-
tage held by such a strategy would be much much lower (or
it may not even have an advantage).

8While we can expect k to be finite for mutation testing, we
are looking at the maximum possible value for this expres-
sion.

Table 1: PIT Mutation Operators. The (*) operators were
added or extended by us.

IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove non-void method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI* Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS* Replace switch labels with default (thus removing them)
RC* Replace boolean conditions with true
DC* Replace boolean conditions with false
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Figure 1: Distribution of number of mutants and test
suites. It shows that we have a reasonable non-biased
sample with both large programs with high mutation

scores, and also small low scoring projects.

4. EMPIRICAL ANALYSIS
The above analysis provides a theoretical framework for

evaluating the advantage a sampling method can have over
random sampling, with a set of mutants and test suite con-
structed with simplifying assumptions. It also gives us an
expected limit for how good these techniques could get for
a uniform distribution of mutants. However, in practice, it
is unlikely that real test suites and mutant sets meet our as-
sumptions. What advantage can we expect to gain with real
software systems, even if we allow our hypothetical method
to make use of prior knowledge of the results of mutation
analysis? To find out, we examine a large set of real-world
programs and their test suites.

Our selection of sample programs for this empirical study
of the limits of mutation reduction was driven by a few over-
riding concerns. Our primary requirement was that our re-
sults should be as representative as possible of real-world
programs. Second, we strove for a statistically significant
result, therefore reducing the number of variables present
in the experiments for reduction of variability due to their
presence.

We chose a large random sample of Java projects from
Github [22]9 and the Apache Software Foundation [6] that
use the popular Maven [7] build system. From an initial
1, 800 projects, we eliminated aggregate projects, and projects
without test suites, which left us with 796 projects. Out of

9Github allows us access only a subset of projects using their
search API. We believe this should not confound our results.
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Figure 2: Subsumption rate between operators. Note that
subsumption is not a symmetrical relation. No operators
come close to full subsumption. This suggests that none

of the operators studied are redundant.

these, 326 projects compiled (common reasons for failure in-
cluded unavailable dependencies, compilation errors due to
syntax, and bad configurations). Next, projects that did not
pass their own test suites were eliminated since the analy-
sis requires a passing test suite. Tests that timed out for
particular mutants were assumed to have not detected the
mutant. The tests that completely failed to detect any of
the mutants were eliminated as well, as these were redun-
dant to our analysis. We also removed all projects with
trivial test suites, leaving only those that had at least 100
test cases. This left us with 39 projects. The projects are
given in Table 2.

We used PIT [13] for our analysis. PIT was extended to
provide operators that it was lacking [2] (accepted into main-
line). We also ensured that the final operators (Table 1) were
not redundant. The redundancy matrix for the full operator
set is given in Figure 2. A mutant m1 is deemed to subsume
another, say m2 if any tests that kills m1 is guaranteed to
kill m2. This is extended to mutation operators whereby the
fraction of mutants in o1 killed by test cases that kills all
mutants in o2 is taken as the degree of subsumption of o1 by
o2. The matrix shows that the maximum subsumption was
just 43% — that is, none of the operators were redundant.
For a detailed description of each mutation operator, please
refer to the PIT documentation [14]. To remove the effects
of random noise, results for each criteria were averaged over
ten runs. The mutation scores along with the sizes of test
suites are given in Figure 1.

It is of course possible that our results may be biased
by the mutants that PIT produces, and it may be argued
that the tool we use produces too many redundant mutants,
and hence the results may not be applicable to a better tool
that reduces the redundancy of mutants. To account for this
argument, we run our experiment in two parts, with similar
procedures but with different mutants. For the first part, we
use the detected mutants from PIT as is, which provides us
with an upper bound that a practicing tester can expect to

Table 2: The projects mutants and test suites
Project |M | Mkilled Muniq

killed |T | |Tmin|
events 1171 702 59 180 33.87
annotation-cli 992 589 110 109 38.97
mercurial-plugin 2069 401 102 138 61.77
fongo 1461 1209 175 113 70.73
config-magic 1188 721 204 112 74.55
clazz 5242 1583 151 140 64.00
ognl 21852 12308 2990 114 85.43
java-api-wrapper 1715 1304 308 125 107.04
webbit 3780 1981 325 147 116.93
mgwt 12030 1065 168 101 90.65
csv 1831 1459 411 173 117.97
joda-money 2512 1272 236 173 128.48
mirror 1908 1440 532 301 201.21
jdbi 7754 4362 903 277 175.57
dbutils 2030 961 207 224 141.53
cli 2705 2330 788 365 186.24
commons-math1-l10n 6067 2980 219 119 109.02
mp3agic 7344 4003 730 206 146.79
asterisk-java 15530 3206 451 214 196.32
pipes 3216 2176 338 138 120.00
hank 26622 7109 546 171 162.88
java-classmate 2566 2316 551 215 196.57
betwixt 7213 4271 1198 305 206.35
cli2 3759 3145 1066 494 303.86
jopt-simple 1818 1718 589 538 158.37
faunus 9801 4809 553 173 146.11
beanutils2 2071 1281 465 670 181.00
primitives 11553 4125 1365 803 486.71
sandbox-primitives 11553 4125 1365 803 488.56
validator 5967 4070 759 383 264.35
xstream 18030 9163 1960 1010 488.25
commons-codec 9983 8252 1393 605 444.69
beanutils 12017 6823 1570 1143 556.67
configuration 18198 13766 4522 1772 1058.36
collections 24681 8561 2091 2241 938.32
jfreechart 99657 32456 4686 2167 1696.86
commons-lang3 32323 26741 4479 2456 1998.11
commons-math1 122484 90681 17424 5881 4009.98
jodatime 32293 23796 6920 3973 2333.49

experience, now, using an industry-accepted tool. For the
second part, we choose only distinguishable mutants [3] from
the original set of detected mutants. What this does is to
reduce the number of samples from each stratum to 1, and
hence eliminate the skew in mutant population. Note that
this requires post-hoc knowledge of mutant kills (not just
that the mutants produce different failures, but also that
available tests in the suite can distinguish between both),
and is the best one can do for the given projects to enhance
the utility of any strategy against random sampling. We
provide results for both the practical and more theoretically
interesting distinguishable sets of mutants. Additionally, in
case adequacy has an impact, we chose the projects that had
plausible mutation-adequate test suites, and computed the
possible advantage separately.

4.1 Experiment
Our task is to find the Uperfect for each project. The

requirements for a perfect strategy are simple:

1. The mutants should be representative of the full set.
That is,

kill(Tp,M) = kill(T,M)

2. The mutants thus selected should be non-redundant.
That is,

∀m∈Mpkill(Tp,Mp \ {m}) ⊂ kill(Tp,Mp)



The minimal mutant set suggested by Ammann et al. [3] sat-
isfies our requirements for a perfect strategy, since it is rep-
resentative — a test suite that can kill the minimal mutants
can kill the entire set of mutants — and it is non-redundant
with respect to the corresponding minimal test suite.

Ammann et al. [3] observed that the cardinality of a min-
imal mutant set is the same as the cardinality of the corre-
sponding minimal test suite. That is,

|Mmin
perfect| = |MinTest(T,M)| = |Tmin

all |

Finding the true minimal test suite for a set of mutants is
NP-complete10. The best possible approximation algorithm
is Chvatal’s [12], using a greedy algorithm where each iter-
ation tries to choose a set that covers the largest number of
mutants. This is given in Algorithm 1. In the worst case,
if the number of mutants is n, and the smallest test suite
that can cover it is k, this algorithm will achieve a k · ln(n)
approximation. We note that this algorithm is robust in
practice, and usually gets results close to the actual mini-
mum k (see Figure 3). Further, Feige [21] showed that this is
the closest approximation ratio that an algorithm can reach
for set cover so long as NP 6= P 11.

Since it is an approximation, we average the greedily esti-
mated minimal test suite size over 100 runs. The variability
is given in Figure 3, ordered by the size of minimal test suite.
Note that there is very little variability, and the variability
decreases as the size of test suite increases. All we need now
is to find the effectiveness of random sampling for the same
number of mutants as produced by the perfect strategy.

Algorithm 1 Finding the minimal test suite

function MinTest(Tests,Mutants)
T ← Tests
M ← kill(T,Mutants)
Tmin ← ∅
while T 6= ∅ ∨M 6= ∅ do

t← random(max
t
|kill({t},M)|)

T ← T \ {t}
M ← kill(T,Mutants)
Tmin ← Tmin ∪ {t}

end while
return Tmin

end function

Next, we randomly sample |Mmin
perfect| mutants from the

original set Mrandom, obtain the minimal test suite of this
sample Tmin

random, and find the mutants from the original set
that are killed by this test suite kill(Tmin

random,M), which is
used to compute the utility of perfect strategy with respect
to that particular random sample. The experiments were re-

10This is the Set Covering Problem [3] which is NP-
Complete [33].

11 We avoided the reverse greedy algorithm given by Ammann
et al. [3] for two reasons. First, while the approximation
ratio of the greedy algorithm is at most k·ln(n) where k is the
actual minimum, that of reverse greedy is much larger [26]
(if any). Secondly, the number of steps involved in reverse
greedy is much larger than in greedy when the size of minimal
set is very small compared to the full set. We also verified
that the minimum frequency of kills of the set of mutants by
the minimal test suite was 1. A larger minimum frequency
indicates that at least that many tests are redundant, which
is a rare but well-known problem with the greedy algorithm.
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Figure 4: The figure plots utility (y-axis) against the
average minimal test suite size (log10). Bubble size

represents the magnitude of detected mutants (log10). The
figure suggests that there is no correlation between utility

and average minimal test suite size.

peated 100 times for each project, and averaged to compute
Uperfect for the project under consideration.

5. RESULTS

5.1 All Mutants
Our results are given in Table 3. We found that the

largest utility achieved by the perfect strategy was 17.997%,
for project faunus, while the lowest utility was 1.153%, for
project joda-money. The mean utility of the perfect strat-
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Table 3: The maximum utility achievable by a perfect
strategy for each project

Project |kill(T,M)| |kill(Tr,M)| Uperf

events 702 662.97 0.06
annotation-cli 589 529.51 0.11
mercurial-plugin 401 342.91 0.17
fongo 1209 1052.99 0.15
config-magic 721 640.91 0.13
clazz 1583 1402.39 0.13
ognl 12308 11426.09 0.08
java-api-wrapper 1304 1148.52 0.14
webbit 1981 1793.96 0.10
mgwt 1065 949.96 0.12
csv 1459 1282.93 0.14
joda-money 1272 1257.55 0.01
mirror 1440 1252.50 0.15
jdbi 4362 3914.73 0.11
dbutils 961 854.83 0.12
cli 2330 2069.84 0.13
commons-math1-l10n 2980 2527.66 0.18
mp3agic 4003 3620.41 0.11
asterisk-java 3206 2754.69 0.16
pipes 2176 1884.73 0.16
hank 7109 6200.08 0.15
java-classmate 2316 1969.76 0.18
betwixt 4271 3809.19 0.12
cli2 3145 2760.66 0.14
jopt-simple 1718 1546.21 0.11
faunus 4809 4078.22 0.18
beanutils2 1281 1141.73 0.12
primitives 4125 3565.83 0.16
sandbox-primitives 4125 3563.85 0.16
validator 4070 3616.71 0.13
xstream 9163 8307.12 0.10
commons-codec 8252 7455.50 0.11
beanutils 6823 6071.53 0.12
configuration 13766 12359.89 0.11
collections 8561 7392.63 0.16
jfreechart 32456 28171.19 0.15
commons-lang3 26741 22742.46 0.18
commons-math1 90681 81898.25 0.11
jodatime 23796 20491.96 0.16

Table 4: The maximum utility achievable by a perfect
strategy for each project using distinguishable mutants
Project |kill(T,M)| |kill(Tr,M)| Uperf

events 59 49.15 0.20
annotation-cli 110 93.68 0.18
mercurial-plugin 102 80.95 0.26
fongo 175 145.13 0.21
config-magic 204 171.60 0.19
clazz 151 129.24 0.17
ognl 2990 2835.77 0.05
java-api-wrapper 308 259.87 0.19
webbit 325 280.89 0.16
mgwt 168 140.60 0.20
csv 411 349.30 0.18
joda-money 236 230.76 0.02
mirror 532 444.17 0.20
jdbi 903 783.99 0.15
dbutils 207 170.60 0.21
cli 788 688.05 0.15
commons-math1-l10n 219 177.86 0.23
mp3agic 730 639.01 0.14
asterisk-java 451 372.25 0.21
pipes 338 288.41 0.17
hank 546 465.52 0.17
java-classmate 551 450.46 0.22
betwixt 1198 1055.30 0.14
cli2 1066 903.30 0.18
jopt-simple 589 514.36 0.15
faunus 553 467.03 0.18
beanutils2 465 392.30 0.19
primitives 1365 1155.09 0.18
sandbox-primitives 1365 1155.01 0.18
validator 759 647.36 0.17
xstream 1960 1691.84 0.16
commons-codec 1393 1192.29 0.17
beanutils 1570 1341.04 0.17
configuration 4522 3934.21 0.15
collections 2091 1750.05 0.19
jfreechart 4686 3910.15 0.20
commons-lang3 4479 3663.98 0.22
commons-math1 17424 15139.90 0.15
jodatime 6920 5801.10 0.19

Table 5: The correlation of utility for all mutants, killed
mutants, mutation score, and minimal test suite size, based

on both full set of mutants, and also considering only
distinguished mutants

R2
all R2

distinguished

M -0.02 -0.03
Mkill -0.03 -0.01

Mkill/M -0.02 -0.00
Tmin -0.01 -0.02

egy was 13.078%. A one sample u-test suggests that 95% of
projects have maximum utility between 12.218% and 14.26%
(p < 0.001). The distribution of utility for each project is
captured in Figure 6. Projects are sorted by average mini-
mal test suite size.

One may wonder if the situation improves with either test
suite size or project size. We note that the utility Up has low
correlation with total mutants, detected mutants (shown in
Figure 5), mutation score, and minimal test suite size (shown
in Figure 4). The correlation factors are given in Table 5.

An analysis of variance (ANOVA) to determine significant
variables affecting Uperfect suggests that the variability due
to project is a significant factor (p < 0.001) and interacts

with kill(Trandom,M) strongly.

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.682 with the
Uperfect, and the combined terms have a correlation of 0.9995
with Uperfect.

5.2 Distinguishable Mutants
Our results are given in Table 4. We found that the

largest utility achieved by the perfect strategy was 26.159%,
for project mercurial-plugin, while the lowest utility was
2.283%, for project joda-money.

The mean utility of the perfect strategy was 17.545%. A
one sample u-test showed that 95% of projects have a max-
imum utility between 16.912% and 18.876% (p < 0.001).

The utility distribution for each project is captured in
Figure 7. The projects are sorted by the average minimal
test suite size.

This situation does not change with either test suite or
project size.

The utility Up has low correlation with total mutants, de-
tected mutants, mutation score, and minimal test suite size.
The correlation factors are given in Table 5.

An analysis of variance (ANOVA) to determine significant
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Figure 6: Using all mutants.
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Figure 7: Using distinguished mutants.
Distribution of mean utility using distinguished mutants across projects. The projects are ordered by the cardinality of

mean minimal test suite. The red line indicates the mean of all observations.

variables affecting Uperfect found that the variability due
to project is a significant factor (p < 0.001) and strongly
interacts with kill(Trandom,M).

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.734 with the
Uperfect, and the combined terms have a correlation of 0.9994
with Uperfect.

5.3 Adequate Mutants
Finally, one may ask if adequacy has an impact on the

effectiveness of selection strategies. Following the industry
practice of deeming well-tested projects adequate after dis-
counting equivalent mutants [47,52–54], we chose large well
tested projects that had at least 10, 000 mutants and a mu-
tation score of at least 70% (in the range of similar stud-
ies above) which were deemed adequate. We evaluated the
utility for configuration, commons-lang3, commons-math1,
jodatime and found that they have a mean maximum utility
of 13.955%. These same projects have a distinguished mean
maximum utility of 17.893%. This suggests that adequacy
does not have a noticeable impact on the effectiveness of
selection strategies.

6. DISCUSSION
Mutation analysis is an invaluable tool that is often diffi-

cult to use in practice due to hefty computational require-
ments. There is ongoing and active research to remedy
this situation using different mutation reduction strategies.
Hence, it is important to understand the amount by which
one can hope to improve upon the simplest baseline strategy
for reduction — pure random sampling.

Our theoretical analysis of a simple idealized system finds
a mean improvement of 58.2% over random sampling for a
mutation reduction strategy with oracular knowledge of mu-
tation kills given a uniform distribution of mutants. This
serves as an upper bound of what any known mutation re-
duction strategy could be expected to achieve (under the
assumption that the mutant distribution is reasonably close
to uniform).

Our empirical analysis using a large number of open source
projects reveals that the practical limit is much lower, how-
ever, on average only 13.078% for mutants produced by PIT.

Even if we discount the effects of skew, by using only distin-
guished mutants, the potential improvement is restricted to
17.545% on average.

It is important to distinguish the different questions that
the theory and empirical analysis tackle. The theoretical
limit shows the best that can be done by a perfect mutation
strategy given the worst distribution of mutants one may
encounter. On the other hand, the empirical analysis finds
the average utility of a perfect strategy without regard to
the distribution of mutants in different programs. However,
given that the effects of skew were found to be rather weak
(only 4.467%) the theoretical bound is reasonable for the
empirical question too.

The empirical upper bounds on gain in utility are surpris-
ingly low, and call into question the effort invested into im-
proving mutation reduction strategies. Of course, one can
still point out that random sampling is subject to the va-
garies of chance, as one can get arbitrarily good or bad
samples. However, our results suggest that the variance
of individual samples is rather low, and the situation im-
proves quite a bit with larger projects — e.g. the variance
of commons-math1 is just 0.397%. Hence the chances for
really bad samples are very low in the case of projects large
enough to really need mutant reduction, and drop quickly
as the number of test cases increases. One may wonder if
the adequacy of test suites has an impact, but our analysis
of projects with adequate test suites suggests that there is
very little difference due to adequacy (Uperfect =13.955%).
In general, using accepted standard practices for statistical
sampling to produce reasonably-sized random mutant sam-
ples should be practically effective for avoiding unusually
bad results due to random chance. The added advantage
is that random sampling is easy to implement and incurs
negligible overhead.

We note that our framework is applicable not only to se-
lective mutation, but also to mutation implementors looking
to add new mutators. Say a mutation implementor has a
perfect set of mutation operators such that their current set
of mutants does not have any redundant mutants (practi-
cally infeasible given our shallow understanding of mutant
semiotics). Even if we consider the addition of a new set of
random mutants that do not improve the mutation set at
all, in that they are redundant with respect to the original



set (rare in practice, given that we are introducing new mu-
tants), the maximum disadvantage thus caused is bounded
by our limit (18.876% upper limit for 95% of projects). How-
ever, at least a few of the new mutants can be expected to
improve the representativeness of a mutation set compared
to the possible faults. Since we can’t bound the number of
distinguishable mutants that may be introduced, there is no
upper bound for the maximum advantage gained by adding
new mutation operators. Adding new operators is especially
attractive in light of recent results showing classes of real
faults that are not coupled to any of the operators currently
in common use [32].

Our previous research [25] suggests that a constant num-
ber of mutants (a theoretical maximum of 9, 604, and 1,000
in practice for 1% accuracy) is sufficient for computing muta-
tion score with high accuracy irrespective of the total num-
ber of mutants. This suggests that sampling will lead to
neither loss of effectiveness nor loss of accuracy, and hence
addition of new mutation operators (and sampling the re-
quired number of mutants) is potentially a very fruitful en-
deavour.

7. THREATS TO VALIDITY
While we have taken care to ensure that our results are

unbiased, and have tried to eliminate the effects of random
noise. Random noise can result from non-representative
choise of project, tool, or language, and can lead to skewed
strata and bias in empirical result. Our results are subject
to the following threats.
Threats due to approximation: We use the greedy algo-
rithm due to Chvatal [12] for approximating the minimum
test suite size. While this is guaranteed to be H(|M |) ap-
proximate, there is still some scope for error. We guard
against this error by taking the average of 100 runs for each
observation. Secondly, we used random samples to evaluate
the effectiveness of random sampling. While we have used
100 trials each for each observation, the possibility of bias
does exist.
Threats due to sampling bias: To ensure representa-
tiveness of our samples, we opted to use search results from
the Github repository of Java projects that use the Maven

build system. We picked all projects that we could retrieve
given the Github API, and selected from these only based on
constraints of building and testing. However, our sample of
programs could be biased by skew in the projects returned
by Github.
Bias due to tool used: For our study, we relied on PIT.
We have done our best to extend PIT to provide a reason-
ably sufficient set of mutation operators, ensuring also that
the mutation operators are non-redundant. Further, we have
tried to minimize the impact of redundancy by considering
the effect of distinguished mutants. There is still a possi-
bility that the kind of mutants produced may be skewed,
which may impact our analysis. Hence, this study needs to
be repeated with mutants from diverse tools and projects in
future.

8. CONCLUSION
Our research suggests that blind random sampling of mu-

tants is highly effective compared to the best achievable
bound for mutation reduction strategies, using perfect knowl-
edge of mutation analysis results, and there is surprisingly

little room for improvement. Previous researchers showed
that there is very little advantage to current operator selec-
tion strategies compared to random sampling [53,54]. How-
ever, the experiment lacked direct comparison with random
sampling of the same number of mutants. Secondly it was
also shown that current strategies fare poorly [3] when com-
pared to the actual minimum mutant set, but lacked com-
parison to random sampling. Our contribution is to show
that there is a theoretical limit to the improvement that any
reduction strategy can have irrespective of the intelligence
of the strategy, and also a direct empirical comparison of
effectiveness of the best strategy possible with random sam-
pling.

Our theoretical investigation suggests a mean advantage
of 58.2% for a perfect mutation reduction strategy with orac-
ular knowledge of kills over random sampling given an arbi-
trary program, under the assumption of no skew in redun-
dant mutants. Empirically, we find a much lower advan-
tage 13.078% for a perfect reduction strategy with oracular
knowledge. Even if we eliminate the effects of skew in redun-
dant mutant population by considering only distinguished
mutants, we find that the advantage of a perfect mutation
reduction strategy is only 17.545% in comparison to random
sampling. The low impact of skew (4.467%) suggests that
our simplifying assumptions for theoretical analysis were not
very far off the mark. The disparity between the theoretical
prediction and empirical results is due to the inadequacies
of real world test suites, resulting in a much smaller mini-
mum mutant set than the distinguishable mutant set. We
note that mutation reduction strategies routinely claim high
reduction factors, and one might expect a similar magnitude
of utility over random sampling, which fails to materialize
either in theory or practice.

The second takeaway from our research is that a researcher
or an implementor of mutation testing tools should consider
the value of implementing a mutation reduction strategy
carefully given the limited utility we observe. In fact, our
research [24] suggests that popular operator selection strate-
gies we examined have reduced utility compared to random
sampling, and even strata sampling techniques based on pro-
gram elements seldom exceed a 10% improvement. Given
that the variability due to projects is significant, a testing
practitioner would also do well to consider whether the mu-
tation reduction strategy being used is suited for the partic-
ular system under test (perhaps based on historical data for
that project, or projects that are in some established sense
similar). Random sampling of mutants is not extremely far
from an empirical upper bound on an ideal mutation reduc-
tion strategy, and has the advantage of having little room
for an unanticipated bias due to a “clever” selection method
that might not work well for a given project. The limit re-
ported here is based on using full knowledge of the mutation
kill matrix, which is, to say the least, difficult to attain in
practice.

Perhaps the most important takeaway from our research
is that it is possible to improve the effectiveness of mutation
analysis, not by removing mutation operators, but rather
by further research into newer mutation operators (or new
categories of mutation operators such as domain specific op-
erators for concurrency or resource allocation). Our research
suggests that the maximum reduction in utility due to ad-
dition of newer operators is just 23.268%, while there is no
limit to the achievable improvement.
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