
Topsy-Turvy: A Smarter and Faster Parallelization of
Mutation Analysis

Rahul Gopinath
Oregon State University

gopinath@eecs.orst.edu

Carlos Jensen
Oregon State University

cjensen@eecs.orst.edu

Alex Groce
Oregon State University
agroce@gmail.com

ABSTRACT
Mutation analysis is an effective, if computationally expen-
sive, technique that allows practitioners to accurately eval-
uate the quality of their test suites. To reduce the time and
cost of mutation analysis, researchers have looked at paral-
lelizing mutation runs — running multiple mutated versions
of the program in parallel, and running through the tests
in sequence on each mutated program until a bug is found.
While an improvement over sequential execution of mutants
and tests, this technique carries a significant overhead cost
due to its redundant execution of unchanged code paths.
In this paper we propose a novel technique (and its imple-
mentation) which parallelizes the test runs rather than the
mutants, forking mutants from a single program execution
at the point of invocation, which reduces redundancy. We
show that our technique can lead to significant efficiency
improvements and cost reductions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging Test-
ing Tools

Keywords
software testing, mutation analysis, parallelization

1. INTRODUCTION
Mutation analysis involves the systematic injection of syn-

tactic faults (mutants) into a piece of software, and the qual-
ity of a test suite is judged by its ability to find these mu-
tants. The mutation adequacy score characterizes the ability
of a test suite to find real bugs [15].

The biggest problem with mutation analysis is the high
latency and computational requirements [16]. We propose a
solution. When cheap forking system call is available (such
as in Unix), postpone mutant creation until the execution
of the specific point of code where the mutation has taken
place. A simple source code transformation can allow each
encounter of a mutation point to result in a fork. The par-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884787

ent process continues execution of the test case, and marks
that particular point as having already been mutated. The
forked child replaces the particular mutation point with the
mutation, and ignores all other mutation points. Thus the
parent process simply spawns the mutants that it comes
across, but not until the mutant is executed, reducing re-
dundant execution. One advantage of such a procedure is
that it can amortize test setup costs. The setup costs of
unit tests can be very high. Bell et al. [2] found, in a study
of 1,200 large open source projects, that, for most (81% of
projects with more than 1000 tests or 71% of projects with
more than 1 million LOC) large applications, initialization
steps alone are on average 7.18 times as costly as the test
execution alone.

Our approach removes the need for separate compilation
of mutants, and achieve finer grained coverage-based filter-
ing of mutants than what is available for most tools.

2. RELATED WORK
According to Mathur [27], the idea of mutation analysis

was first proposed by Richard Lipton, and formalized by De-
Millo et al. [9] A practical implementation of mutation anal-
ysis was produced by Budd et al. [3] in 1980. While mutation
analysis belongs to the class of embarrassingly parallel prob-
lems [11, 13], the actual parallel and distributed implemen-
tation of mutation analysis tools has lagged in practice [8].
Delahaye et al. [8] found that of the eight available muta-
tion tools for Java, Jester [30], Jumble [14], MAJOR [17],
and MuJava [22] did not provide any parallelization; Bacte-
rio [24], Javalanche [34], Judy [23], and PIT [7] can paral-
lelize on the same computer, and only Judy has support for
distributed evaluation of mutants.

Previous efforts at parallelizing mutation analysis include
early work by Krauser et al. [20] who investigated paralleliza-
tion in an NCube, mutant unification based approaches [28,
29, 32, 33] on vector processing (SIMD) systems (limited to
mutations that can be vectorized), and work using MIMD
machines [4, 5, 19, 31] that allowed concurrent execution of
mutants. Fleyshgakker et al. [10, 36], Just et al. [18], and
Ma et al. [21] showed that the state information after exe-
cution of mutation used intelligently (lazy mutant analysis)
can lead to savings in executions by using only representa-
tive mutants. Zapf [37] provided the first implementation
for a distributed interpreter for the Mothra mutation sys-
tem — MedusaMothra. Mateo et al. [25] found that parallel
execution with dynamic ranking is the best distribution al-
gorithm.

A related time-reduction technique is the mutant schemata [1,

http://dx.doi.org/10.1145/2884781.2884787

def avg(a, b)
return (a + b)/2

end

def avg(x, y)
return µ(:a, µ(:b, x, y, +), 2, /)

end

Figure 1: The original and mutated program average

def test avg eq()
` avg(1, 1) = 1

end

def test avg neq()
` avg(2, 0) = 1

end

Figure 2: The test suite for program average

24, 26, 35] approach, where all mutants are encoded into a
single meta-mutant, and the mutant is chosen by a runtime
flag.

3. ALGORITHM
Given a program, we first generate the AST of the sub-

ject program and replace each instance of an operator to
be mutated with a call to a mutation decision procedure.
This procedure takes a unique id that identifies the mu-
tant instance, the operands, and the operator. For instance,
Figure 1 shows a simple program for computing the aver-
age of two numbers. The dynamic-mutant we produce after
modifying the AST is shown in Figure 1. Note that unlike
a traditional meta-mutant, there is little extra compilation
required here. Each operator is translated directly into a
method call. The tests are all executed separately. That is,
for the tests given in Figure 2, each test in the test suite is ex-
ecuted independently (possibly on different machines — our
approach does not interfere with traditional test suite paral-
lelization). The call to avg from each test calls µ(id, a, b, op)
in turn. On a call to µ, the procedure µ checks if the cur-
rent process is the parent process (procedure parent?). If
it is, it checks if the current mutant (variable id) has al-
ready been spawned (procedure has?), in which case, the
dynamic-mutant returns the original result for the operator.
If not, it iterates through all valid first-order mutations of
that operator (e.g. for +, we iterate through −, ∗, /,% etc.).
For each mutation, we fork off a child, mark the particular
mutant id as serviced, and return the result. When the child
is forked for the first time, the mutant id is associated with
the mutant chosen for that child, which is never changed.

1 def µ(id, a, b, op)
2 if parent?
3 return op(a, b) if has?(id)
4 mutations(op).each do |o|
5 fork
6 if child?
7 set(id , o)
8 return o(a, b)
9 end

10 end
11 set(id , op)
12 return op(a, b)
13 else
14 o = get(id) || op
15 return o(a, b)
16 end
17 end

Figure 3: The forking mutants algorithm. Variable muta-
tions is a key map of all valid operator replacements.

●● ●● ●● ●●
●
●

●

●

0

10

20

30

40

100 10,000 1,000,000
Size

R
un

tim
e

(S
ec

on
ds

)

type

●

●

dynmutant

traditional

Figure 4: Comparison of traditional and dynamic-mutants
total runtime against the problem size (x axis).

4. EVALUATION
For the initial evaluation of our technique, we tested the

implementation of a simple primality checker. The unit tests
for this program require first verifying results for the trivial
conditions (0, 1, 2), and then making sure that the program
does not fail for large prime and composite numbers. The
setup of the program requires creating two large numbers,
one prime and other composite. The cost of creating num-
bers with these specific properties is high, simulating the
complex overhead of test setup typical in large real-world
projects. The total run time (without considering paral-
lelization) of the traditional mutation technique and for our
approach, plotted against the size of primes checked in unit
tests, are shown in Figure 4. The figure shows that while ini-
tially the traditional mutation technique holds some advan-
tage, that advantage vanishes as the size of the numbers to
be checked increases (and with it, setup time). The advan-
tage of our approach is that, once the threshold is crossed,
the small penalty in runtime is compensated by the reduc-
tion of redundancy in mutant execution. We expect that our
approach can, obtain some advantage over traditional muta-
tion analysis in many cases, even ignoring opportunities for
parallelization, due to the high cost of test setup.

5. CONCLUSION
We propose a novel mutation analysis strategy of eval-

uating individual test cases separately, with mutants be-
ing forked off only when the execution hits the particular
mutated expression. Our strategy is extremely simple, and
can be implemented easily. Next, like the mutant schemata
method, the strategy is only dependent on a source trans-
form, and hence directly applicable to any language, by pro-
viding the µ call in a library, and is particularly trivial to
implement in languages that support macros or dynamic re-
flection. Due to the trivial AST modification required, the
compilation time required is much less than the traditional
schemata method, and comparable to the time taken for the
original source. Since mutants are forked off only when their
corresponding original instruction is in the execution path,
test selection is obtained for free. This is potentially im-
portant, and as Delahaye et al. [8] and Coles [6] note, very
few mutation tools provide automatic test selection using
coverage (note that we do not even require prior coverage
information). Note that forking, where it is available, can
be very cheap with copy-on-write semantics, and no extra
memory is required unless a particular variable is modified.
Hence our technique will always be cheaper than the tradi-
tional parallelization technique. Finally, our strategy lends
itself to distributed execution of individual tests, and with a
trivial modification, distributed execution of sets of mutants.
The parallelization of mutant evaluation is automatic. Our
implementation and tests are available [12].

6. REFERENCES
[1] O. Baruch and S. Katz. Partially interpreted schemas

for csp programming. Science of Computer
Programming, 10(1):1–18, 1988.

[2] J. Bell and G. Kaiser. Unit test virtualization with
vmvm. In International Conference on Software
Engineering, pages 550–561, New York, NY, USA,
2014. ACM.

[3] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward. Theoretical and empirical studies on using
program mutation to test the functional correctness of
programs. In ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 220–233.
ACM, 1980.

[4] C. Byoungju and A. P. Mathur. High-performance
mutation testing. The Journal of Systems and
Software, 20(2):135–152, 1993.

[5] B. Choi, A. Mathur, and B. Pattison. Architecture of
pmothra: A tool for mutation baaed testing on the
hypercube. In Symposium on Software Testing,
Analysis, and Verification, 1989.

[6] H. Coles. Java mutation systems comparison.
http://pitest.org/java mutation testing systems/.

[7] H. Coles. Pit mutation testing. http://pitest.org/.

[8] M. Delahaye and L. du Bousquet. A Comparison of
Mutation Analysis Tools for Java. International
Conference on Quality Software, pages 187–195, July
2013.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, 1978.

[10] V. Fleyshgakker and S. Weiss. Efficient mutation
analysis: A new approach. ACM SIGSOFT
International Symposium on Software Testing and
Analysis, pages 185–195, 1994.

[11] G. C. Fox, R. D. Williams, and G. C. Messina.
Parallel computing works! Morgan Kaufmann, 2014.

[12] R. Gopinath. Forking mutants.
https://github.com/vrthra/forking-mutants.

[13] L. Inozemtseva, H. Hemmati, and R. Holmes. Using
fault history to improve mutation reduction. In ACM
SIGSOFT Symposium on The Foundations of
Software Engineering, pages 639–642. ACM, 2013.

[14] S. Irvine, T. Pavlinic, L. Trigg, J. Cleary, S. Inglis,
and M. Utting. Jumble java byte code to measure the
effectiveness of unit tests. In
TAICPART-MUTATION, pages 169–175, Sept 2007.

[15] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649–678, 2011.

[16] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25
years of testing technique experiments. Empirical
Software Engineering, 9(1-2):7–44, 2004.

[17] R. Just. The major mutation framework: Efficient and
scalable mutation analysis for java. In ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 433–436.
ACM, 2014.

[18] R. Just, M. D. Ernst, and G. Fraser. Efficient
mutation analysis by propagating and partitioning
infected execution states. In Proceedings of the 2014

International Symposium on Software Testing and
Analysis, pages 315–326. ACM, 2014.

[19] E. Krauser, A. Mathur, and V. Rego. High
performance software testing on simd machines. IEEE
Transactions on Software Engineering, 17(5):403–423,
May 1991.

[20] E. Krauser and A. P. Mathur. Program testing on a
massively parallel transputer based system. In
International Symposium on Mini and Microcomputers
and their Applications, pages 67–71, 1986.

[21] Y.-S. Ma and S.-W. Kim. Mutation testing cost
reduction by clustering overlapped mutants. Journal
of Systems and Software, 2016.

[22] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an
automated class mutation system. Software Testing,
Verification and Reliability, 15(2):97–133, 2005.

[23] L. Madeyski and N. Radyk. Judy - a mutation testing
tool for java. Software, IET, 4(1):32–42, Feb 2010.

[24] P. R. Mateo and M. P. Usaola. Mutant execution cost
reduction: Through music (mutant schema improved
with extra code). In International Conference on
Software Testing, Verification and Validation, pages
664–672. IEEE, 2012.

[25] P. R. Mateo and M. P. Usaola. Parallel mutation
testing. Software Testing, Verification and Reliability,
23(4):315–350, 2013.

[26] P. R. Mateo and M. P. Usaola. Reducing mutation
costs through uncovered mutants. Software Testing,
Verification and Reliability, 2014.

[27] A. P. Mathur. Foundations of Software Testing.
Addison-Wesley, 2012.

[28] A. P. Mathur and E. W. Krauser. Modeling mutation
and a vector processor. In International Conference on
Software Engineering, pages 154–161. IEEE, 1988.

[29] A. P. Mathur and E. W. Krauser. Mutant unification
for improved vectorization. Purdue University, West
Lafayette, Indiana, Technique Report SERC-TR-14-P,
1988.

[30] I. Moore. Jester-a junit test tester. In Second
International Conference on Extreme Programming
and Flexible Processes in Software Engineering, pages
84–87, 2001.

[31] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K.
Khambekar. Mutation testing of software using a
mimd computer. In in 1992 International Conference
on Parallel Processing. Citeseer, 1992.

[32] V. Rego and A. P. Mathur. Concurrency enhancement
through program unification: a performance analysis.
Journal of Parallel and Distributed Computing,
8(3):201–217, 1990.

[33] V. J. Rego and A. P. Mathur. Exploiting parallelism
across program execution: a unification technique and
its analysis. IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on,
1(4):399–414, 1990.

[34] D. Schuler and A. Zeller. Javalanche: Efficient
mutation testing for java. In ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, pages 297–298, 2009.

[35] R. H. Untch, A. J. Offutt, and M. J. Harrold.
Mutation analysis using mutant schemata. In ACM

http://pitest.org/java_mutation_testing_systems/
http://pitest.org/
https://github.com/vrthra/forking-mutants

SIGSOFT International Symposium on Software
Testing and Analysis, pages 139–148, New York, NY,
USA, 1993. ACM.

[36] S. N. Weiss and V. N. Fleyshgakker. Improved serial
algorithms for mutation analysis. ACM SIGSOFT
Software Engineering Notes, 18(3):149–158, 1993.

[37] C. Zapf. Medusamothra: A distributed interpreter for
the mothra mutation testing system. Master’s thesis,
Clemson Univ, 1993.

