
From Scripts to Specifications

The Evolution of a Flight Software Testing Effort

Alex Groce
School of Electrical Engineering and Computer

Science
Oregon State University

Corvallis, OR
alex@eecs.oregonstate.edu

Klaus Havelund
Laboratory for Reliable Software

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA
klaus.havelund@jpl.nasa.gov

Margaret Smith
Software System Engineering

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA
margaret.h.smith@jpl.nasa.gov

The research described in this publication was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration. The first author was previously a member of the
Laboratory for Reliable Software at the Jet Propulsion Laboratory.

ABSTRACT
This paper describes the evolution of a software testing effort dur-
ing a critical period for the flagship Mars Science Laboratory rover
project at the Jet Propulsion Laboratory. Formal specification for
post-run analysis of log files, using a domain-specific language,
LOGSCOPE, replaced scripted real-time analysis. Log analysis ad-
dresses the key problems of on-the-fly approaches and cleanly sep-
arates specification and execution. Mining the test repository sug-
gested the inadequacy of the scripted approach, and encouraged
a partly engineer-driven development. LOGSCOPE development
should hold insights for others facing the tight deadlines and reac-
tionary nature of testing for critical projects. LOGSCOPE received
a JPL Mariner Award for “improving productivity and quality of
the MSL Flight Software” and has been discussed as an approach
for other flight missions. We note LOGSCOPE features that most
contributed to ease of adoption and effectiveness. LOGSCOPE is
general and can be applied to any software producing logs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications; D.2.5
[Software Engineering]: Testing and Debugging - Monitors, Trac-
ing

General Terms
Languages, Verification

Keywords
Testing, test infrastructure, development practices, runtime verifi-
cation, logs, temporal logic, space flight software, Python

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
One of the most difficult challenges in any large software de-

velopment project is system testing. Even when most modules are
well-specified, designed, and unit-tested, the integration of compo-
nents produces a myriad of new problems, and a degree of com-
plexity that is daunting to even experienced test engineers. One
critical problem that arises at this point in the life-cycle of a soft-
ware system is test evaluation and understanding. In part, this is
a problem of specification: even when the behavior of individual
modules is reasonably well specified, the expected behavior of the
full system may be difficult to define. The problem is also more
general than specification: in some cases, the emergent behavior
of components is sufficiently complex that simply understanding
what the system does in a particular test run is a problematic pre-
requisite to deciding if the software’s behavior is correct. More-
over, ability to understand emergent behavior depends on the de-
gree of visibility designed into the system.

This paper describes the evolution of the approach to test evalua-
tion and understanding used in a large-scale software testing effort
for the flight software (which executes in space and on the Martian
surface) of the Mars Science Laboratory, a major planetary rover
mission in development at NASA’s Jet Propulsion Laboratory [1].
We show how a test team, with the assistance of verification re-
searchers, moved from a purely script-based approach to test exe-
cution and evaluation to an approach using a formal specification
language and log analysis tool, LOGSCOPE, to evaluate tests and
aid test engineer understanding of system behavior. Although the
framework has been developed specifically to support a space mis-
sion, it is fully general, and can be applied to any system producing
logging information.

The goal of the Mars Science Laboratory (MSL) project is to
put the thus-far largest rover (the size of a compact car) on Mars
for continued exploration of Martian geology and climate, follow-
ing on from the highly successful Mars Exploration Rovers, Spirit
and Opportunity [12]. MSL is scheduled to launch in 2011. A
flight software team peaking at around 30 programmers develops
software for the Rover Compute Element (RCE), which controls
all stages of the integrated spacecraft, from launch to roving on
the Martian surface. Flight software is multi-tasking software that
executes on the RCE on a VxWorks operating system platform,
and provides much (but not all) of the embedded processing per-
formed on the spacecraft. A testing team of approximately 10 en-
gineers (the Flight software Internal Test, or FIT, team) is respon-
sible for functional testing of the flight software. During 2008, the
FIT team engaged members of JPL’s Laboratory for Reliable Soft-
ware (LaRS), a group specializing in automated software verifica-
tion technology research, charged with the design and development

of infrastructure for test automation. The LOGSCOPE tool was cre-
ated as a response to challenges faced by the FIT team, and is an
example of the often-sought marriage between formal methods re-
search and practical software problem-solving. The evolution de-
scribed in this paper was guided by research concepts (particularly
in the design of the core language) and the needs of test engineers,
as determined both by discussion and analysis of test library usage
patterns. The structure of the specification language was suggested
by a sketch of a log description, produced by a test team member.
The testing effort benefitted from a fortunate coincidence of engi-
neer needs with maturing research ideas.

1.1 Testing the MSL Flight Software
The MSL flight software produces rich log information, which is

stored in SQL data bases (one database per log). From the point of
view of a test engineer in the FIT team, testing the MSL software is
very similar to commanding the spacecraft from JPL ground opera-
tions. A test issues commands via the JPL ground control software,
which radiates the commands to the “spacecraft” (in the case of
testing, a workstation simulation or actual flight hardware in the
testbed). The ground system software then receives telemetry from
the spacecraft, producing a log of the test execution. A log is, in
essence, a sequence of (multiply) time-stamped events, where an
event can be one of several forms, corresponding to input to and
output from the system, as well as internal state transitions and state
readings. Each event is, in essence, a mapping from field names
to values (a record). There are four primary categories of events.
After an operations team on the ground issues (1) commands to
the spacecraft, the spacecraft responds to commands by changing
its state (transitions, which are not, themselves, visible). The re-
sponses (and autonomous behaviors) of the spacecraft are observed
via three kinds of telemetry: (2) EVRs (EVent Reports), essentially
printfs in flight software used to indicate state changes (3) EHA
channels that provide a snapshot of current spacecraft state and
(4) data products, the “outputs” of the spacecraft downlinked to
the ground, including engineering telemetry, images, and science
instrument data.

MSL flight software logs are usually far too large to be effec-
tively analyzed by humans (e.g., they will often contain hundreds
of thousands of events). Understanding a test execution involves
discriminating the important events relevant to a test from other
necessary spacecraft operations. For example, when testing com-
mands to fire pyros, the relatively small command sequence and re-
sponse must be evaluated against a background of spacecraft events
including initialization, communications, regular health and system
state updates, and (particularly in early stages of testing) “noise”
from faulty modules and health monitoring. All of this takes place
under considerable time pressure, both in terms of a tight sched-
ule for testing of each flight software release and, in many cases,
a very limited period of access to testbed flight hardware (often
scheduled during very late or very early hours). Simply configur-
ing and running the flight software or troubleshooting difficulties
with either the testbed installations or workstation simulation is of-
ten very time consuming, and time spent reading logs is time not
spent developing new tests, running tests, or communicating results
to flight software developers.

Prior to our involvement, test results (logs) had been analyzed
on-the-fly, during test execution, by the test execution scripts, with
properties coded in PYTHON as queries for telemetry matching
correct responses to commands issued. E.g., to test file uplink
a script might check for an increment to a “files stored” counter
(a telemetry channel), check another channel to determine if the
number of free bytes of NVM had decremented, watch for the ap-

pearance of an EVR indicating the file of the particular name had
been stored on NVM (non-volatile memory), and issue a command
to list the contents of the target directory, causing a data product
containing the filename to be generated and downlinked. Such
scripts are time consuming to produce and result in difficult-to-
read “specifications” that hinder communication, maintenance, and
specification-sharing and reuse. Hand-scripted analysis also sel-
dom provides any assistance in understanding a complex log, as
the effort required to generalize analysis beyond the minimum re-
quired for a specific test is too high: in practice, understanding
of test runs was largely obtained by slow, inefficient interaction
with the ground system GUI view of telemetry. Moreover, because
telemetry may arrive out-of-order due to different priorities, and is
not visible until the ground system database populates, scripts that
process telemetry tend to execute very slowly. While high levels of
human interaction were, perhaps, required in very early testing, to
improve understanding of the system, lack of automation resulted
in very slow test turn-around and inefficient use of limited hardware
testbed time.

These, and other problems, discussed below, motivated a (par-
tial to date) move towards post-execution analysis of test run logs,
using a separate, domain-specific language designed to facilitate
specification and understanding of completed test executions. Fig-
ure 1 shows how the specification-driven LOGSCOPE tool replaced
the portion of the script that evaluated a test. Test execution and
evaluation are now separated. A test engineer instead develops a
test script, which focuses only on commanding the flight software,
and a specification (or set of specifications), which describes cor-
rect behavior. A logging tool (named LOGMAKER) automatically
produces a complete log of test execution, which is “monitored”
(in a post-mortem fashion, after test execution is complete) with
respect to the specification(s) by the LOGSCOPE tool. The tool pro-
duces error traces for all specification violations, and a summary of
the test execution for the engineer to examine. Furthermore, vari-
ous statistics are produced to aid test understanding. A test engi-
neer may also use LOGSCOPE “in reverse”: as a learning tool to
automatically generate a specification from one or more execution
logs. The specification can subsequently be used for checking fu-
ture logs. The key point to take away is the separation between test
execution (which may be controlled by a test script, as usual, or
even performed by hand at the command console), and the analysis
of results, performed after a test run is complete. Previously, test
evaluation relied on script-controlled feedback between the flight
software and the ground operations software, significantly increas-
ing the amount of traffic and timing dependencies.

1.2 Contributions and Related Work
The contribution of this work is the story of injection of an au-

tomated formal methods approach to test evaluation into a NASA
flight mission’s testing process, and an analysis of how the test pro-
cess in question evolved from an approach relying purely on in-
teractive test scripts to a specification-based post-run log analysis
approach. The use of light-weight data mining of test scripts to fo-
cus infrastructure development effort by understanding actual test
engineer practices is a feature that may also be of interest to other
test teams. The LOGSCOPE language was originally introduced in
[4]. We refer readers to this publication and to [3] for further de-
tails of the syntax and semantics, and how this system relates to
other runtime verification approaches. LOGSCOPE is specifically
influenced by the RULER system [5, 6], but adds a user friendly
form of temporal logic, and integration with PYTHON, both criti-
cal to MSL requirements. The success of a temporal-logic-inspired
specification language might appear somewhat surprising, as state

ground so)ware 

MSL flight so)ware 
& Hardware 
(in simula9on  
or on Mars) 

SQL 
database 
of events 

commands  telemetry 

logmaker 

logscope 

log 

spec 

check  learn 

report 

Figure 1: Specification-based log analysis.

machines are often considered more acceptable for adoption in en-
gineering settings. It is our belief that the temporal pattern language
strikes a good balance between traditional temporal logic and reg-
ular expressions. Also relevant is the literature of log analysis in
testing, particularly the work of Andrews and Zhang [2]. The simi-
larities and critical differences between LOGSCOPE and other tem-
poral specification languages, including PSL [13], MCL [11], PDL
[8], and GIL [9] are described in our previous publications.

In previous work [7] we developed a PYTHON API for com-
manding and monitoring the space shuttle launch platform at Kennedy
Space Center during preparation of a launch. This work was part of
NASA’s Constellation Launch Control System (LCS) project, a part
of NASA’s Constellation project developing the replacement for the
space shuttle. The API has similarities to the PYTHON scripts de-
veloped for testing the MSL flight software. Monitoring was on-
line, synchronized with the launch preparation period, supporting
detection of property violations as they took place.

1.3 Paper Outline
The paper is organized as a presentation of three stages along the

road to the final LOGSCOPE system. Section 2 presents stage one:
how test scripts were written initially by test engineers. Section
3 presents stage two: the introduction of a specialized so-called
registry for recording events both prohibited and required as a con-
sequence of submitted commands during a test. Section 4 exam-
ines the registry solution and leads to the final specification-based
LOGSCOPE solution presented in Section 5. Section 6 provides
further details on how the LOGSCOPE specification language pre-
sented in the previous section evolved as an interaction between
test engineers and researchers.

2. STAGE ONE: AD HOC SCRIPTS
The primary concern in this paper in the transition from a script-

based imperative approach to execution evaluation to a declarative
approach based on a separate log-analysis tool. Before investigat-

ing the log-based approach, however, the FIT team first attempted
to improve test infrastructure support for script-based on-the-fly
evaluation of tests.

The testing approach used by the FIT team relies on a number
of layers of software mediating interaction with the MSL flight
code. First, the JPL ground control software system is responsible
for sending commands to and receiving telemetry from the space-
craft. Access to this system in scripts is provided by a PYTHON
library also produced by the ground systems team. The ground ac-
cess library provides only a low level interface to telemetry and
commanding, and is seldom directly called by test scripts. Another
PYTHON library, referred to as “the FIT tool,” provides a more con-
venient interface for issuing commands, receiving telemetry, and
other core test features. In addition to providing command and
telemetry features and limited test evaluation, the FIT tool auto-
matically labels and numbers test steps and produces an annotated,
readable “log” of test execution, including information as to steps
that fail or pass (in some cases, as in command dispatch, automati-
cally). While it lacks the detailed information of all test events re-
quired for analysis, this log (distinct from the ground systems log)
provides a readable record of test activity. In the remainder of the
paper, the term log refers to the ground systems log of a complete
test run, not the human-readable “log” produced by the FIT tool.

At the time LaRS became involved in MSL testing, the FIT tool
provided only very simple methods for issuing commands. In gen-
eral, the tool supported a purely synchronous approach to testing:
issue a command, and wait until all expected telemetry arrives be-
fore proceeding to another command. Given the varying response
times to different commands and the frequent need to repeatedly
check for expected changes in spacecraft state, many scripts were
forced to introduce very long delays between commands and clutter
test execution steps with repeated queries for expected but variably
timed spacecraft state changes.

Figure 2 shows a (simplified) portion of code, typical of such
FIT test scripts during the first stage of the testing effort. This code

old_val_0001 = FIT.get_eha("CMD-0001",timeout=60)
old_val_0007 = FIT.get_eha("CMD-0007",timeout=60)
old_val_0009 = FIT.get_eha("CMD-0009",timeout=60)
...
FIT.send_fsw_command("DRILL_DMP")
FIT.pause("Press <ENTER> to continue test.")
FIT.wait_eha("CMD-0004", eha_dn=FIT.get_opcode("DRILL_DMP"),

timeout=60)
FIT.wait_eha("CMD-0007",eha_dn=old_val_0007+1,timeout=60)
val_0001 = FIT.get_eha("CMD-0001",timeout=60)
if (val_0001 > old_val_0001):

FIT.fail("Dispatch failure")
val_0009 = FIT.get_eha("CMD-0009",timeout=60)
if (val_0009 > old_val_0009):

FIT.fail("Validation failure")
FIT.wait_data_product("DrillAll",1,None)

Figure 2: Original FIT approach to test evaluation.

issues one command to flight software, DRILL_DMP, using the FIT
library call send_fsw_command. This call pauses test execution
until certain standard responses to command execution (command
dispatch and command success EVRs) have been received in the
telemetry stream, using default timeout values (which can be over-
ridden during the call to send_fsw_command). The script then in-
cludes a manually controlled pause, so that the test engineer can
continue the script once the GUI display of ground telemetry shows
that responses to the command have arrived. Such manual pauses
were common in early test scripts, in order to avoid multiple queries
for telemetry responses with variable arrival time. The script then
receives and evaluates values for four command-related channels,
CMD-0004, CMD-0007, CMD-0001 and CMD-00091. In this case, the
test waits until new values arrive for two channels, CMD-0004 and
CMD-0007, with the test failing if (1) no values arrive within 60
seconds or (2) the values received do not match the specified “dn”
(data numbers), respectively the opcode of the command issued,
and the previous value of the command channel incremented by
one. The second check uses a previously stored value for the chan-
nel, old_val_0007, captured at some prior point (shown at the top
of the example code) during the test. For channels CMD_0001 and
CMD_0009, the script uses a get_eha call rather than waiting for
a new value. This call returns the last value for the channel to ap-
pear in the telemetry stream, however far back in test execution that
value may have been. In this case, the assumption is that enough
time has passed that current values for these channels will be avail-
able, and there is no need to wait for another periodic update. These
channels store counts for two different forms of command failure.
Explicit PYTHON code compares the obtained values to previous
values, and fails the test (with an appropriate error message) if ei-
ther channel has incremented. Finally, the script waits until a data
product, the file produced by the DRILL_DMP command, arrives on
the ground.

The key point to observe is that this script is both slow and brit-
tle. Both problems derive from the generally synchronous nature
of the library calls: the test script may spend many seconds wait-
ing for telemetry to arrive, and if the expected order and timing of
events is off, it may miss critical events, or make use of outdated
channel values when evaluating results (e.g., consider the case in
which the latest value of CMD_0001 is delayed and does not arrive

1The details of channelized telemetry are quite complex: channel
values in the telemetry stream are sometimes automatically pro-
duced when the channel value changes, and at other times produced
as part of a periodic general downlink of current channel values, as
defined by a fairly rich set of criteria.

old_val_0001 = FIT.get_eha("CMD-0001",timeout=60)
old_val_0007 = FIT.get_eha("CMD-0007",timeout=60)
old_val_0009 = FIT.get_eha("CMD-0009",timeout=60)
...
FIT.send_fsw_command_and_proceed("DRILL_DMP")
FIT.register_EHA("CMD_0007", eha_dn = old_val_007+1,

timeout=60)
FIT.register_EHA_negative("CMD_0001", eha_dn = old_val_0001+1,

timeout=60)
FIT.register_EHA_negative("CMD_0009", eha_dn = old_val_0009+1,

timeout=60)
FIT.register_data_product("DrillAll",1,None)

Figure 3: Using the registry.

until after the get_eha call). The variance in delays is such that a
manual delay has been introduced (a call of FIT.pause), prevent-
ing automated test execution without human involvement.

3. STAGE TWO: THE REGISTRY
In order to address the need for asynchronous interaction with

telemetry, the FIT tool infrastructure team added support for an
event registry, a database of expected or prohibited events, updated
from the test script as calls to certain functions in the FIT library
registry API when commands were issued. The FIT tool would
then automatically query the registry at each step of a test, to check
whether prohibited events had occurred (indicating failure, to be
reported) or whether expected events had occurred (indicating suc-
cess, that could now be discharged). Rather than pausing test exe-
cution after each command, a script could now issue a command,
register the telemetry related to success and failure, and proceed.

Figure 3 shows a similar script, now using registry calls in place
of synchronous telemetry queries. The key differences are:

1. The send_fsw_command call has been replaced by the asyn-
chronous call send_fsw_command_and_proceed. This call
issues the DRILL_DMP command and places all the standard
required events, including dispatch, success, and the require-
ment that CMD-0004 update to contain the command’s op-
code, in the registry. Test execution immediately proceeds to
the next step, without waiting for these events to occur.

2. Expressing checks for what events to appear or not appear
in the telemetry stream is now simply a matter of registering
these in the registry.

We call this script similar to the first example, rather than equiv-
alent because the semantics is potentially slightly different: some
tests may pass in this case that fail in the previous case, and vice-
versa, due to the precise intricacies of timing (when the registry
queries telemetry vs. the original script).

However, the second version of the test is considerably simpler
(at least on the surface; we will return to this issue later) than the
first version, and is to some extent less brittle. It is also much faster:
there is no manual pause, and the registered events can succeed or
fail in the background while other commands are issued and results
evaluated. In addition to the features shown here, the registry sup-
ports explicit barriers, forcing test execution to pause until certain
critical events are discharged from the registry (useful, for example,
when one command’s results are pre-requisites for issuing another
command).

The registry approach was developed in close cooperation with
test engineers, as a response to their needs as execution time be-
came a driving concern. During the requirements-gathering stage,

it became clear that the registry would be a fairly complex system,
with a non-trivial semantics, due to the need to handle a wide vari-
ety of timeout and ordering issues in different testing sub-domains.

Once registry functionality was implemented, the infrastructure
team expected to receive bug reports, feature requests, and calls for
help. Surprisingly, while the FIT team acknowledged the release
and asked a few simple questions, there was very little response.
The development and preliminary testing of the registry code had
suggested a different story. The high variability in event timing had
made setting timeout parameters for expiration of registry events a
difficult art. In some cases, the developer’s unit test scripts failed
occasionally due to missing telemetry, which required an exami-
nation of the GUI displays of events to confirm that the expected
messages were not present in the logs, rather than missed by the
low-level tools or improperly handled by the registry code. While
registry development was not difficult, the delivered state of the
tool was not expected to immediately meet all engineer needs.

The semantics of registry events was considerably more compli-
cated than at first apparent. In order to understand tests using the
registry it was important to know the answers to numerous ques-
tions not visible in the test script code itself. In particular, the order-
ing of events was non-trivial. Consider the case of a simple chan-
nel (EHA) value added to the registry. Is the check for CMD-0007
satisfied by any appearance of the desired value in the telemetry
stream? This is not the case. Rather, the registered event is only
satisfied if the value appears in the stream after the last command
issued by flight software, since test evaluation concerns itself with
responses to commands. Unfortunately, when a command is issued
this is a ground event, and there is no uniform timestamp to provide
a (partial) ordering of command issue with respect to spacecraft
events. The registry uses the dispatch event on the spacecraft as a
canonical timestamp for the command event. Similarly, a user must
understand the semantics of a registry timeout: is a timeout with re-
spect to test execution time, or spacecraft event time? This question
is particularly complicated when tests execute on the workstation
simulation, in which case test time may proceed at a rate six times
faster than “wall-clock” time. The FIT tool development team ex-
pected to hear many variations of these, and other questions from
test engineers as they began to use the registry.

Why were users either not encountering these problems, or not
requesting assistance with them, and demanding a more detailed set
of examples and semantic documentation? Discussions in meetings
continued to produce minor feature requests for the registry, but
did not suggest significant frustration with the state of the tools. It
seemed possible but unlikely that the greater knowledge of the test
engineers made the timeout problem and other troubleshooting less
onerous.

4. RE-EXAMINING THE REGISTRY

4.1 Mining The Tests
The lack of help requests and bug reports for the registry code

left the infrastructure team with sufficient time to turn to a long-
overdue refactoring and tightening of the FIT tool code. FIT team
management agreed that an overhaul to remove duplicated func-
tions, improve documentation, check for exposure of “hidden” in-
ternal functionality, and generally improve the readability and main-
tainability of the core tool code was in order. However, the refactor-
ing would need to attempt to minimize impact on in-use test scripts;
breaking legacy scripts no longer frequently executed was accept-
able, but for the test areas currently underway, work would need to
be postponed or designed around current usage patterns.

The infrastructure team hypothesized that the largest barrier to

Calls for FIT._print:
WARNING: Internal use only!
throughput.py: FIT._print ("Radiate commands.")

Calls for FIT.barrier:
downlink2.py: FIT.barrier(timeout=60,failTest=True)

Calls for FIT.register_EHA:
fvs.py: FIT.register_EHA("CMD-056", delta=3,

timeout=200)
Calls for FIT.register_EVR:

throughput.py: FIT.register_EVR("UPLINK_RECV")
pyros.py: (indirect) FIT.send_fsw_cmd

("FIRE_PYRO,11",
extra_EVR="PYRO_FIRE",
timeout=False)

...

Figure 4: Sample output of mined usage from the repository.

tool readability was a large weight of (nearly) dead code. In order
to plan the refactoring process, and confirm this hoped-for preva-
lence of easily removed code, the team wrote a tool to analyze the
entire repository of test script code from all engineers. For each
function in the FIT tool code base, the analysis reported all calls
in all test scripts, as shown in Figure 4. The tool also reported
calling chains, noting functions that were called through other FIT
functions, and reported on internal-use-only functions improperly
called in test scripts. The infrastructure team was able to remove
a moderate number of unused (mostly older) functions, and alerted
one test engineer of an alternative public function to call in place of
an internal pretty-print function. The most important information,
however, was the full set of calls to registry functions, remarkable
in two ways:

1. There were very few calls to registry functions. More than
half of the available functions were never called; all but three
were called at most twice in the entire repository.

2. The functions that were called were the simplest functions,
and were called without any optional arguments (including
timeouts), resulting in the simplest possible behavior.

4.2 Limitations of the Registry
In general, test engineers were using the registry to code up sim-

ple post-processing of events without timeouts, rather than exploit-
ing its ability to provide asynchronous on-the-fly evaluation of test
results. Why? Discussion with individual developers revealed two
primary reasons and one secondary problem:

1. Timing and ordering of events: Events are not downlinked
to the ground system in chronological order. Different events
have different priorities, and the “Earth receive time” order-
ing of two events will often be the opposite of their event
times on the spacecraft. Test engineers were, even when us-
ing the registry, forced to introduce lengthy delays after test
steps (resulting in even slower tests) or build very compli-
cated logic to “recreate” a linear chronology of events, in
order to avoid confusion of similar responses to different
commands. The registry’s “automatic” ordering of events
by registration of command execution was too simplistic to
handle the out-of-order arrival of command responses. Paus-
ing long enough to allow telemetry from one command to
arrive before proceeding with potentially confused test oper-
ations proved brittle, as timeouts fluctuated with each code
release. Asynchrony alone simply did not address the prob-
lem of constructing an unambiguous event ordering. It was

easiest for engineers to make very simple registry calls, en-
sure that all events were discharged by test termination, and
handle oddly ordered events or delays long enough to indi-
cate bugs by hand or with ad hoc code for (essentially) post-
processing the event log.

2. Difficult to read and re-use scripts: A key motivation for
the event registry was that it integrated with the idea of tests
as scripts with logic, looping, and other programming lan-
guage features, and the FIT toolkit as a “Swiss army knife”
for MSL software testing. Unfortunately, test scripts that
were readable when their task was limited to commanding
the spacecraft became almost impossible to follow when test
execution was interlaced with test evaluation. Even the very
simple form of registry use found in scripts sometimes dou-
bled the amount of text found in a simple commands-only
script, by mixing commands with required event responses
and channel value queries. Many properties were used in
more than one script, but coded up differently in each case
because of the need to take the context of a command into
account. Examination of the source repository mining re-
sults made it particularly clear that the registry approach and
ad hoc post-processing forced engineers to continually re-
invent the wheel, as multiple scripts by the same engineer
(much less different engineers) would often feature subtly
different implementations of the same behavioral specifica-
tion.

3. The registry was overly complex: Understanding the usage
of the more complex features of the registry required adding
a number of new concepts to a test engineer’s understanding
of test execution. In addition to tracking the commands sent
to the flight system and the telemetry received from the sys-
tem, it was now necessary to understand the synchronization
of registry checks, barriers, a set of timeouts (some explicit
and some implicit), and different methods used for handling
events and channels in the registry. The registry functions all
provided numerous (optional) arguments, some with fairly
complex implications for testing. Even the developer of the
registry found the library difficult to use. The lack of ques-
tions was only due to a general inability to even begin using
the more semantically involved registry features.

These problems are not particularly tied to the MSL flight soft-
ware. The first problem appears in any distributed system in which
constructing an event timeline is non-trivial, and the second prob-
lem is a general observation about test case readability and code
re-use. The registry system failed in part because it was designed
and adopted just as engineers (most of whom were new to the MSL
testing task) began to face more complex testing tasks: the needs
of testing forced the development of a stop-gap solution before the
problem was well understood. While each engineer, in isolation,
might feel that the registry was not solving the key problems of
testing, the problems were not insurmountable. An apparent (un-
spoken) general assumption was that, while the registry might not
precisely fit my testing task, it was solving problems for other en-
gineers, and at least tests were now executing much faster. Only
looking at the complete body of test code made it evident that the
registry was (other than, perhaps the problem of test speed) not
solving the critical problems of evaluation and understanding. We
believe that similar very lightweight data mining may be useful to
other teams facing usability problems in a testing context; because
test software is not an external deliverable item, or subject to inde-
pendent quality assurance, it is often difficult to discover usability

look:DRILL_DMP\
evr(CMD_DISPATCH,positive)\
evr(CMD_COMPLETED_SUCCCESS,positive)\
evr(CMD_COMPLETED_FAILURE,negative)\
chan(id:CMD-0004,positive,contains opcode

of last immediate command)\
chan(id:CMD-0007,positive)\
chan(id:CMD-0001,negative)\
chan(id:CMD-0009,negative)\
prod(name:DrillAll,1,*)

Figure 5: The DRILL_DMP specification mock-up.

or design failures in test infrastructure code, unless test engineers
can discover more widespread usage patterns. Individual engineers
are often resourceful enough to work around tool limitations, and
may easily assume that problems are specific to their particular tests
only. Such “universal workarounds” may become common practice
without ever being discussed at group meetings or codified in test
infrastructure documentation. Only the actual test code embodies
the actual practice of engineers.

Due to the inherent problems of on-the-fly evaluation and the
shortcomings of the registry library, users were, in the more com-
plicated and automated tests, hand-scripting post-test analysis of all
telemetry (ad-hoc construction of very limited logs). A few checks
were routinely performed online, but complex analysis was often
delayed until the test was complete, when chronological confusion
could be partially avoided by simply counting expected responses.
In some cases, engineers were still hand-examining telemetry after
test execution.

FIT team management (also active in writing tests), test engi-
neers, and LaRS all concluded that building numerous test-specific
“log analysis” systems was not an effective use of team time, and
that simply improving the registry tool and clarifying its semantics
would not address the first two problems. After a series of team
meetings and discussions, informed by the LaRS team’s research
interest in log analysis, a test engineer produced a specification
mock-up, a starting point for LOGSCOPE, shown in Figure 5.

The text represents a property to be checked: when a DRILL_DMP
command is observed in the log, then the events tagged positive
should follow in any order, and the events tagged negative should
not occur. For example, the following evr (event report) events
should follow: a report of the dispatch (CMD_DISPATCH) of the
command; a report of the success (CMD_COMPLETED_SUCCCESS) of
the command. Additionally, there should not be an evr reporting
failure (CMD_COMPLETED_FAILURE) of the command. This event
set is followed by requirements on samplings of the state (channel
events). For example, there should be a sampling of state vari-
able CMD-0004 that contains the opcode of the last immediate com-
mand (obviously at this point the precise syntax was not fully de-
termined). Finally, the flight software should downlink a DrillAll
product (a prod event) to ground informing about the status of the
drill. This mock-up is, of course, a new version of the specification
embedded in our previous test script examples! This specification
is very different in style from the previous versions: it declares the
contents of a final log, to be examined after test execution, rather
than providing a recipe for querying the system during test execu-
tion. The details of commanding the spacecraft are left to a test
script, and the details of constructing an event order and collecting
relevant telemetry are delegated to another tool, no longer the re-
sponsibility of the test engineer. By specifying contents of a final
log, after all events have been downlinked to the ground, the new

approach sidesteps the difficult and confusing issue of attempting
to produce a canonical ordering of events on-the-fly. Any on-the-fly
ordering of events is inherently unstable, so only post-test analysis
of a unified log can really solve the ordering problem.

Using the example mock-up specification in Figure 5 as inspira-
tion, we designed the LOGSCOPE specification language, and im-
plemented a system for monitoring log files against such specifi-
cations. This language and monitoring system will be briefly pre-
sented in Section 5. The final specification language resulted from
an interaction with the test engineers, as will be explained in Sec-
tion 6. Starting with a syntax and informal semantics designed by
the test team ensured that the language would be usable; enhancing
the resulting language with concepts from formal methods research
ensured that the language would be expressive enough to meet fu-
ture testing needs.

Top MSL flight software management suggested that a specification-
based approach would also be useful to developers outside the test
team2, and introduced us to the ground software team responsible
for defining the logging system. This made it possible for us to
move from querying the ground system or parsing logs produced
by the ground software to directly using the SQL event databases
used by ground software. This allowed us to, e.g., filter events
through SQL queries. After an initial trial run, in which the LaRS
team replicated hand-scripted results of random command execu-
tions, showing the suitability of log analysis for basic testing tasks,
FIT team members began use of prototype versions of LOGSCOPE,
replacing hand-scripted post-test evaluation code, as described in
more detail in sub-section 5.5.

5. STAGE THREE: LOGSCOPE
The LOGSCOPE system allows us to separate commanding of

the flight software from the specification of its expected behavior.
Commanding is performed using PYTHON test scripts as before,
whereas the specification of expected behavioral properties is now
expressed in the LOGSCOPE specification language. The PYTHON
test script will in principle just consist of code that submits com-
mands to the flight software. The following script submits the drill
dump command:

FIT.send_fsw_command_and_proceed("DRILL_DMP")

Running the script will cause the flight software to attempt an exe-
cution of the command, while the ground system stores execution
events in an SQL database created for the run. The LOGSCOPE
system takes as input the execution log extracted from the database,
and a formal specification of the expected contents of the log file
(possibly represented in several different files), and produces a re-
port enumerating every violation of the specification.

5.1 The Log
A run of the drill dump command could result in a log of the form

illustrated in Figure 6, expressed as a PYTHON sequence (list), the
format in which logs are processed by LOGSCOPE. The log con-
tains a sequence of events, each represented by a PYTHON dictio-
nary: a mapping from fields to values (a record using traditional
programming terminology). Each event has a OBJ_TYPE field, indi-
cating what kind of event it is: a command (COMMAND) representing
input to the system, an event report (EVR) representing some inter-
nal transition, a state variable/channel change (CHANGE), or a prod-
uct (PRODUCT) representing output from the system. Each event
2The FIT tool itself was already used by some developers and hard-
ware testbed team members.

also has a canonical time stamp, Time. Commands and event re-
ports have a command number so that event reports can be related
to the commands that cause them. Each change event indicating a
change of state variable carries the old value (the field Dn_old) as
well as the new value (the field Dn).

log =
[

{
"OBJ_TYPE" : "COMMAND",
"Time" : 3700393,
"Stem" : "DRILL_DMP",
"Number" : "1",
"Type" : "FSW" },
{
"OBJ_TYPE" : "EVR",
"Time" : 5030468,
"Dispatch" : "DRILL_DMP",
"message" : "Dispatched DRILL_DMP",
"Number" : "1" },
{
"OBJ_TYPE" : "CHANGE",
"Time" : 22736937,
"Id" : "CMD-0004",
"Dn" : 42,
"Dn_old" : 41 },
{
"OBJ_TYPE" : "CHANGE",
"Time" : 44937474,
"Id" : "CMD-0009",
"Dn" : 101,
"Dn_old" : 100 },
{
"OBJ_TYPE" : "PRODUCT",
"Time" : 320378725,
"Name" : "DrillAll",
"message" : "drill product",
"Count" : 1 },
{
"OBJ_TYPE" : "EVR",
"Time" : 320378950,
"Success" : "DRILL_DMP",
"message" : "Completed DRILL_DMP",
"Number" : "1" }

]

Figure 6: Example log.

In addition to fields present in the original database, the log cre-
ation tool annotates events with derived fields that ease readability
and specification. Field IDs from the MSL database begin in low-
ercase, while derived fields (e.g., Dispatch) begin in uppercase.
The Time field, used to order events, is the most critical derived
field. Events that take place on the spacecraft include a spacecraft
event time scet that establishes a canonical order. However, com-
mand events originate from the ground, and include only a ground
transmission time. The log maker establishes a uniform chronol-
ogy for a log by extracting the time a command is actually dis-
patched on the spacecraft from the EVR notifying ground of the
dispatch. This leads to a feedback between logging and telemetry
design on the spacecraft (in that as the spacecraft changes its notifi-
cations, we modify our logging system, and as we change our log-
ging, engineers may learn more about needed telemetry). In fact,
use of our tool by test engineers has increased the MSL software
team’s awareness of ambiguities in timing of events originating on
the spacecraft, suggesting that improved synchronization is needed
between modules responsible for different types of telemetry. The
timestamp on a channel value may derive from the beginning of a
pass over all channels, while the value for a channel is stored later,
leading to instances of a command’s effect apparently taking place

before the command was issued. While very rare, such a timeline
is very confusing for test engineers and developers.

To LOGSCOPE, a log is simply an ordered list of records with
named fields. All MSL-specific aspects of the log are encapsulated
in the logging tool, making later tools in the chain easily adapt-
able to any system producing such a log. This approach is ap-
plicable to operating systems, web servers, and any other systems
producing event-based logs. Even when a system produces logs
in a purely textual format, a translation into such a canonical for-
mat may be critical to maintenance of a log analysis framework:
adapting hand-built regular expressions to changes in logging out-
put is time-consuming and error-prone (indeed, it has some of the
worst features of hand-scripted imperative evaluation). Construct-
ing specifications that largely rely on derived fields encapsulates all
parsing and interpretation of log events in one maintainable, inde-
pendent tool.

5.2 The Specification
The example LOGSCOPE specification of what it means for a

log to be well-formed consists of two properties, a general prop-
erty that is expected to hold for all command executions, and a
drill-command specific property. The two properties together rep-
resent the properties checked in test scripts shown in earlier sec-
tions, although now logically representing the correct versions of
these properties, and not the formulations engineered for easy im-
plementation in scripts. The LOGSCOPE specification in its entirety
is presented in Figure 7.

{: import FIT :}

pattern DISPATCH_SUCCESS :
COMMAND{Stem: st, Number : nr} =>
[
EVR{Dispatch:st, Number:nr},
!EVR{Failure:st, Number:nr},
EVR{Success:st, Number:nr}
]
upto COMMAND{Type:"FSW"}

pattern DRILL_CONSEQUENCES :
COMMAND{Stem:"DRILL_DMP"} =>
{

[
CHANGE{Id:"CMD-0004", Dn:dn}

where
{: dn == FIT.get_opcode("DRILL_DMP") :},

CHANGE{Id:"CMD-0007", Dn_old:dn_old, Dn:dn}
where
{: dn == dn_old + 1 :},

PRODUCT{Name:"DrillAll", Count:1}
],
!CHANGE{Id:"CMD-0001"},
!CHANGE{Id:"CMD-0009"}

}

Figure 7: LogScope specification.

The specification starts with the import of the FIT PYTHON li-
brary, within special {: ... :} brackets. The FIT library pro-
vides, among other features, the function get_opcode, also used
in the scripts presented earlier. This function is called in the spec-
ification. Note that it is generally permitted to introduce arbitrary
PYTHON definitions (imports, variables, functions, classes, objects)
in between {: ... :} brackets and refer to these within the prop-
erties in special where-clauses, as shown in Figure 7. This feature
makes the specification language flexible and powerful, a key cri-
teria for acceptance by the test team.

The specification consists of two properties, or patterns as they
are called, DISPATCH_SUCCESS and DRILL_CONSEQUENCES. Each
pattern is of the form: event => consequence, with the informal
interpretation that if the event to the left of => is observed in the
log, then the consequence must be observed in the remainder of the
log. The property DISPATCH_SUCCESS expresses that if a command
with a name (stem) st and number nr is observed, then:

1. an EVR must be observed, indicating a dispatch of the com-
mand with name st and number nr. Note that the command
event binds the variables st and nr to actual values in the
log, and these now become constraints in the consequence.

2. subsequently, no EVR event indicating failure of that com-
mand should be observed (! is negation).

3. finally an EVR indicating success of that command should be
observed.

The square brackets [...] indicate that the ordering matters: the
dispatch should come before the success, and there should be no
failure in between the two. The consequence of the command is
checked upto the next flight software command, at which point
missing events are reported as violations. The upto constraint lim-
its the scope of a property.

The DRILL_CONSEQUENCES pattern states that after a drill com-
mand (a command where the field Stem has the value "DRILL_DMP")
there should:

1. in order (indicated by the inner [...] brackets):

(a) occur an update (change) to the state variable/channel
named CMD-0004, where the new value (the value dn
of the Dn field) should be equal to the value of the
PYTHON expression: FIT.get_opcode("DRILL_DMP").
The E where {: P :} clause allows an event E to be
constrained by the PYTHON predicate P.

(b) occur an update to the CMD-0007 state variable such
that its new value is an increment of its old value.

(c) occur a drill dump product.

2. be no updates in the remainder of the log to the state vari-
ables CMD-0001 and CMD-0009. The { ... } brackets at the
outermost level indicate that there is no ordering imposed
among the two event negations and the ordered [...] se-
quence.

5.3 Specification Visualization
LOGSCOPE patterns are translated to data parameterized automata,

as described in [3, 4]. This automaton language forms a subset of
the more general rule-based RULER language [5, 6, 4]. These au-
tomata can be visualized using GraphViz [10]. Figure 8 shows
the visualization of the automaton for the second property. The in-
terpretation should be self-explanatory with the following remarks:
states can be parameterized with data, downwards arrow pointed
states indicate non-final states that have to be left before the end
of the log is reached, black states are error states, and the upwards
pointed triangle represents an AND-node: all the sub-trees have to
lead to success. The visualization of the automata generated from
LOGSCOPE patterns turned out to be very useful as a mechanism
for test engineers to understand the exact meaning of their patterns.
We find that using a textual, as opposed to graphic, language makes
it easier for testers who are often experienced coders to quickly for-
mulate properties (and to auto-generate them from other sources,
such as spreadsheets and engineering files), but that visualization is
critical for quick understanding of specification semantics.

Figure 8: Automaton for DRILL_CONSEQUENCES.

5.4 Running LogScope
The application of LOGSCOPE to the log in Figure 6 and the

specification in Figure 7 causes two violations the DRILL_CONSEQUENCES
property to be detected, both stemming from the fact that a change
occurred to the state variable CMD-0009 (which was not allowed -
error 1) instead of to the state variable CMD-0007 (which was re-
quired - error 2). The error message for error 1 is shown in Fig-
ure 9. The error message indicates that a CHANGE of state variable
CMD-0009 was observed while the monitor was in state S7 (see Fig-
ure 8). An error trace consisting of events involved in the error is
listed. These are the events that caused the monitor to transition
between its states; the error trace excludes events not relevant for
the error.

*** violated: by event 4 in state:

state S7 {
CHANGE{Id : "CMD-0009"} => error

}
with bindings: {}

by transition 1 :
CHANGE{’Id’: "CMD-0009"} => error

--- error trace: ---

COMMAND 1 {
OBJ_TYPE := "COMMAND"
Stem := "DRILL_DMP"
Type := "FSW"
Number := "1"
Time := 3700393

}

CHANGE 4 {
Dn := 101
OBJ_TYPE := "CHANGE"
Dn_old := 100
Id := "CMD-0009"
Time := 44937474

}

Figure 9: Error message.

As additional information, LOGSCOPE prints out some statisti-
cal information for each property describing what events that were

evaluated in order to determine its correctness. In the case of the
DRILL_CONSEQUENCES property it concerns one command and two
change events:

Statistics {
COMMAND :

{’Stem’: ’DRILL_DMP’} -> 1
CHANGE :

{’Dn’: 42, ’Id’: ’CMD-0004’} -> 1
{’Id’: ’CMD-0009’} -> 1

}

5.5 Testing the MSL Software
As discussed above, the first trial of LOGSCOPE, initiated at the

request of MSL software management, checked the behavior of an
enhanced version of the command dispatch and success protocol
shown above, for commands issued in randomly generated groups
of 400. This was an attempt to duplicate the results of a hand-coded
basic command system regression pre-dating the LOGSCOPE tool.
Using LOGSCOPE enabled us to experiment with a more thorough
specification of command behavior, leading to the discovery of a
previously unknown fault in flight software that resulted in dupli-
cated success EVRs.

The next major application, generation of a specification from
tests of the power module, was initiated by a test engineer. The
test engineer replaced previously unreliable on-the-fly queries to
the ground software with code to generate a specification for each
tested behavior, producing hundreds of custom specifications for
as many flight software calls. Enabling this automatic generation
was a primary motivation for some language features, including
upto scopes. Again, log analysis revealed several faulty behaviors
in the power and command modules, and increased awareness of
subtle issues with the timing of channel telemetry. Test engineers
responsible for the file verification system (FVS, used when ground
uplinks files to the spacecraft) and the PYRO system (used to fire
pyros) also replaced hand-scripted test code with LOGSCOPE spec-
ifications and helped to design (and then used) a concrete learning
facility in the case of the PYRO subsystem. Concrete learning gives
LOGSCOPE the ability to take a test and generate a specification
from the test, abstracting away the precise timing of events but pre-
serving ordering.

Developing the tool in collaboration with the test engineers (and
the larger MSL flight software team) has maximized LOGSCOPE’s
utility, and can serve as a model for the introduction of formal spec-
ification methods in other software efforts. More importantly, it
seems clear that the tool can improve the test team’s productivity
and result in better-tested flight software, as suggested by the inter-
est of some JPL managers in using this approach for other projects,
and the receipt of the Mariner Award.

6. FROM MOCK-UP TO LOGSCOPE
The following is a concise narrative of LOGSCOPE’s evolution

from the original mock-up specification in Figure 5, provided by
engineers.

6.1 The Mock-up
In the original script a property conceptually has the following

form: event ⇒ consequence, meaning: if an event occurs in the
log at a certain position, then the remainder of the log shall match
the pattern indicated by the consequence. The consequence itself
is a list of events, each indicated via an event argument as either
positive (shall occur) or negative (shall not occur). There is no in-
tended ordering of the events — it is essentially an ∧ (and) of event
constraints. Events can carry arguments with some informal indi-
cation of a relation between arguments (as in: ‘contains opcode

of last immediate command’). Parameters can be referred to
by name (as in ‘id:CMD-0007’), although some parameters are re-
ferred to by position (as ‘1’ and ‘*’ in: ‘prod(name:DrillAll,1,*)’,
the last argument indicating a parameter of no interest).

6.2 LogScope Version 1
The first version of the LOGSCOPE language introduced the dis-

tinction between ordered and unordered consequences, using square
brackets to represent an ordered collection of events (including
negated events), and curly brackets to represent un-ordered col-
lection (a logical ∧ essentially) corresponding to the original in-
tention in the mock-up. The distinction is common in temporal
logic and regular expressions, although our use of brackets enclos-
ing a list of events for ordered as well as un-ordered is less tradi-
tional. The uniformity might make specification writing easier. We
avoided the general temporal operators (such as always, eventually
and until) as they are not “engineer-friendly.” The sequencing op-
erator [. . .] (inspired by regular expressions) seems easier to use
than the nested until expressions of temporal logic. Note, however,
that there is no need for expressing “don’t care” constraints for
events in between events of interest. Hence we can write ‘[e1,e2
]’ instead of ‘e1;true*;e2’. We only allowed negation of events,
with a prefix operator replacing the positive and negative arguments
in the mock-up to be better aligned with logic. Event parameters
were formalized, and only referenced by name, in order to handle
“big” events with many parameters. During the initial design en-
gineers also asked for the possibility to express certain constraints
on the values of fields, such as testing whether a bit in a bit-field
was set or not. Special indexing constructs were introduced to han-
dle this. Properties were finally translated into parameterized state
machines, which themselves could be used for specification. This
translation as well as the data parameterization was inspired by the
RULER system [5, 6]. A parameterized automaton is really a sim-
plified RULER system.

6.3 LogScope Version 2
After the first version engineers asked for two critical improve-

ments. The first was the ability to limit the scope of a property,
e.g., to express that some events should or should not occur un-
til some other event (typically the issuing of another command).
This lead to the upto construct. The second was the ability to test
that a string value of a parameter contained a particular substring.
We introduced a general solution for testing and relating contents
of parameters: the where construct, which calls a PYTHON predi-
cate, and furthermore allows PYTHON program text to be defined in
specifications. This was a generalization of the indexing construct
mentioned above. An option for executing PYTHON code with side
effects when certain events occur was also introduced, inspired by
early requests to be able to count and perform various statistics.

7. CONCLUSIONS
A central message of this paper is that automated post-run log

analysis using formal specifications can be a light-weight approach
to introducing formal methods in a software development effort
even when engineers are wary of the time commitment required
by formal approaches. Using logs already produced by the soft-
ware makes such an entry much easier, as additional code instru-
mentation is not required. The LOGSCOPE specification language
appeared easy to learn and was sufficient for expressing many real-
istic properties of a very complex software system. The language
is general since it is based on the simple assumption that a log is a
sequence of events, where an event is a named record: this can be
made to hold for essentially any system. Future work includes fur-

ther development of the LOGSCOPE language and tools, as well as
additional applications. Concerning the specification language, our
aim is to integrate with the RULER language [5, 6, 4] and optimize
the way in which the monitoring algorithm handles data values.

Thanks are due to members of the MSL team, including Chris Delp, Dave Hecox,
Gerard Holzmann, Rajeev Joshi, Cin-Young Lee, Alex Moncada, Cindy Oda, Glenn
Reeves, Lisa Tatge, Hui Ying Wen, Jesse Wright, and Hyejung Yun.

8. REFERENCES
[1] http://mars.jpl.nasa.gov/msl.
[2] J. H. Andrews and Y. Zhang. General test result checking

with log file analysis. IEEE Transactions on Software
Engineering, 29(7):634–648, 2003.

[3] H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal
analysis of log files. AIAA Journal of Aerospace Computing,
Information and Communications, 2010. To appear.

[4] H. Barringer, K. Havelund, D. Rydeheard, and A. Groce.
Rule systems for runtime verification: A short tutorial. In
S. Bensalem and D. Peled, editors, Proc. of the 9th
International Workshop on Runtime Verification (RV’09),
volume 5779 of LNCS, pages 1–24. Springer, 2009.

[5] H. Barringer, D. Rydeheard, and K. Havelund. Rule Systems
for Run-Time Monitoring: from Eagle to RuleR. In Proc. of
the 7th International Workshop on Runtime Verification
(RV’07), volume 4839 of LNCS, pages 111–125, Vancouver,
Canada, 2007. Springer.

[6] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems
for run-time monitoring: from Eagle to RuleR. Journal of
Logic and Computation, doi: 10.1093/logcom/exn076, 2008.

[7] M. Bennett, R. Borgen, K. Havelund, M. Ingham, and
D. Wagner. Development of a prototype domain-specific
language for monitor and control systems. In IEEE
Aerospace Conference, Big Sky, Montana, March 2008.

[8] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze.
Using symbolic execution for verifying safety-critical
systems. In European Software Engineering
Conference/Foundations of Software Engineering, pages
142–151, 2001.

[9] L. Dillon, G. Kutty, L. Moser, P. M. Melliar-Smith, and Y. S.
RamaKrishna. A graphical interval logic for specifying
concurrent systems. 3(2):131–165, 1994.

[10] GraphViz. http://www.graphviz.org.
[11] R. Mateescu and D. Thivolle. A model checking language

for concurrent value-passing systems. In The 15th
international symposium on Formal Methods (FM 2008),
volume 5014 of LNCS. Springer, May 2008. Turku, Finland.

[12] S. Squyres. Roving Mars: Spirit, Opportunity, and the
Exploration of the Red Planet. Hyperion, 2005.

[13] M. Vardi. From Church and Prior to PSL. In 25 Years of
Model Checking: History, Achievements, Perspectives, 2008.

