
Randomized Differential Testing as a Prelude to Formal Verification

Alex Groce, Gerard Holzmann, and Rajeev Joshi
Laboratory for Reliable Software ∗

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109. USA

Abstract

Most flight software testing at the Jet Propulsion Labora-
tory relies on the use of hand-produced test scenarios and is
executed on systems as similar as possible to actual mission
hardware. We report on a flight software development effort
incorporating large-scale (biased) randomized testing on
commodity desktop hardware. The results show that use of
a reference implementation, hardware simulation with fault
injection, a testable design, and test minimization enabled a
high degree of automation in fault detection and correction.

Our experience will be of particular interest to develop-
ers working in domains where on-time delivery of software
is critical (a strong argument for randomized automated
testing) but not at the expense of correctness and reliability
(a strong argument for model checking, theorem proving,
and other heavyweight techniques). The effort spent in ran-
domized testing can prepare the way for generating more
complete confidence using heavyweight techniques.

1. Introduction

Every space mission generates a large amount of data,
which must be stored until it can be downlinked to Earth
for analysis (or display on NASA TV and websites). In re-
cent missions, JPL has relied on flash memory to store most
of this data, as flash uses little power and mass, no moving
parts, and has a high information density — making it ideal
for space mission use. For convenience and flexibility, most
of this data is stored in hierarchical file systems similar to
those used in standard operating systems. The data stored
is often irreplaceable (e.g., landing telemetry or images of
impact with a comet) or critical to spacecraft operation: it
is essential that flash file systems provide high reliability.

∗The work described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

JPL’s experience with commercial flash systems has not es-
tablished confidence that current commercial products pro-
vide this level of reliability. In particular, unexpected be-
havior of the flash file system left one of the Mars Explo-
ration Rovers in an uncontrolled state facing a critical low
power situation, and resulted in days of lost science activity
[15]. Flash in space operates in a hostile environment: solar
flares and radiation levels make hardware faults more likely.
File systems must survive the system reboots used as a fault
protection response without loss of data integrity.

The Laboratory for Reliable Software has been develop-
ing flash file system software for use in future space mis-
sions, with the goal of using the full array of available
software verification and validation technologies — ran-
domized testing, runtime monitoring, static analysis, model
checking, and theorem proving [3] — to establish confi-
dence in the correctness of this file system.

This paper describes our efforts with randomized differ-
ential testing, including our approach to hardware simula-
tion with fault injection, randomized test input generation,
design for testability, and automated test case minimiza-
tion. Our eventual goals encompass more formal, heavy-
weight approaches to correctness, but past experience (and
common sense) indicate that during the early stages of de-
velopment, when requirements and code are fluid and rich
in errors, systematic, disciplined testing with a high degree
of automation offers a much quicker path to finding many
bugs. The infrastructure and specification effort applied to
testing will pay off in more rigorous approaches (i.e., model
checking and theorem proving, as discussed below).

More importantly, the use of modern randomized test-
ing techniques offers an opportunity to improve the state-
of-practice in flight software development at JPL. Testing
efforts at JPL currently rely on nominal and stress testing
on actual flight hardware. This testing is essential to under-
stand behavior and performance in typical scenarios, but is
ineffective at exposing low-probability software errors. Ex-
perience shows that limited nominal scenarios seldom de-
scribe the full set of actual system behaviors, since what

Block 1

Block 2

Block 3

Block 4

Block 5

Block 0U U D D

U U U U

F

U U D D

R

R

R

R

F F

RR

R R

U

Figure 1. A typical flash configuration
U denotes used pages; F denotes free pages; D denotes
dirty pages with no-longer-valid data; R denotes reserve

blocks used to ensure that garbage-collection is possible.

may be considered “atypical” often does arise in practice.
This approach also results in heavy contention for expensive
flight hardware testbeds, threatening launch schedules. Bet-
ter hardware simulation and large-scale randomized testing
on developer workstation hardware offers the chance of ex-
posing subtle errors earlier, and is likely to prevent danger-
ous defects from reaching the launch pad. The review pro-
cess for our file system offers a chance for JPL’s software
developers and engineers to evaluate the effectiveness of our
approach and the applicability of similar methods in other
flight software. Of course, the most important product of
this work is (we hope) a much more reliable critical com-
ponent for operation in deep space missions, contributing to
our knowledge of the remote physical universe as well as to
the more earthly field of software engineering.

1.1. NAND Flash: Operational Character-
istics and Fault Modes

The two primary types of flash memory are NAND and
NOR flash [16]. Our efforts have focused on NAND, which
presents a greater challenge from the viewpoint of reliabil-
ity, since blocks may become bad at any time. In addition,
because NAND flash has higher density, it is typically the
primary storage medium for a mission’s data products, and
is therefore likely to undergo much heavier use than NOR
flash (which is typically used to store flight software bina-
ries, which are updated far less often). We are also currently
planning an extension of our design to NOR flash.

A NAND flash device consists of a set of pages, grouped
into larger units called blocks (see Figure 1). The basic op-
erations on a NAND device are: write to page, read a page,
and erase a block. Once a page has been written, it may
be read any number of times. In general it is impossible or
unwise to write to a page once it has been written to, until
it has been erased (since a write is actually an AND op-
eration). Erases are only possible at the block granularity.
Flash file systems must manage invalid and outdated pages

Compare
error codes

Compare
file systems

Check
invariants

tested system
Apply to

reference
Apply to

Choose POSIX
operation

[Inject a fault]

Compare
return values

Figure 2. Our inner test loop

and perform garbage collection, rather than relying on over-
writing old data.

NAND flash suffers from bad blocks: writes and erases
to portions of the device may fail, or suffer from a high
error rate. A list of initial bad blocks is provided by the
card manufacturer, but new bad blocks may appear during
operation. Managing the list of known bad blocks is a re-
quirement for a reliable flash file system. Flash blocks have
a limited lifetime of erases, and the probability that a block
will go bad increases as this threshold is approached. Ex-
tended mission life requires a strategy for wear-leveling to
prevent early failure of blocks.

Errors in page writes or corruptions of written bits due
to radiation (or reset during a write operation) are guarded
against by error detection and correction bits (EDAC) on the
hardware, but the file system must be robust in the presence
of uncorrectable errors.

1.2. Test Strategy

Our randomized test system repeatedly invokes the fol-
lowing strategy (see Figure 2):

1. Optionally inject a fault F (e.g., write failure or system
reset) into the hardware simulation layer.

2. Randomly choose a POSIX operation, P , and vector v
of parameters for the operation.

3. Apply P(v) to the tested system.

4. Check for failure due to injected faults, and take ap-
propriate actions (re-mount after a system reset, etc.).

5. Apply P(v) to the reference system, if injected faults
did not prevent the operation from taking place.

6. Compare return values and error codes for tested and
reference systems. Terminate with test failure if results
differ in unacceptable ways.

7. Compare file system contents and check invariants.

This is repeated until an error is detected or a maximum
test length has been exceeded. A test case (which consists
of a sequence of POSIX operations, non-POSIX file system
operations, and fault injections) begins with no interesting
content on the flash device and builds up an increasingly
complex set of directories and files (and thus written pages
on the device). The results we report describe the errors
found during billions of iterations of this core loop.

1.3. Overview of Results and Lessons
Learned

Testing continues to this day, and will continue into the
indefinite future, making all results provisional. This report
is focused on the first months of testing. At the end of this
period, testing was producing no failing test cases. To date,
the longest continuous run of successful tests includes over
3.5 billion randomly selected operations. We estimate that
mission usage for a year would produce no more than 50
million operations, selected from a more benign set (and
with far fewer expected faults) than in our randomized tests.

Figure 3 shows the defects discovered during each of the
first 25 weeks of testing. In the months since then, no de-
fects have been discovered by randomized testing. The la-
bels indicate important stages in testing. During the second
week of testing, the problematic rename operation was
added. During the fourth week of testing, bad block faults
were introduced into the mix. During the seventh week
of testing, a check for usage of bad blocks was strength-
ened, resulting in the large peak in the number of detected
errors (this particular check exposed many obscure, semi-
independent corner cases). Multi-partition operations were
tested once they were well-defined in requirements, around
the eighth week, and “stress” tests focusing on nominal op-
eration sequences were introduced during the tenth week.
Finally, read errors were introduced into the fault model
during the eighteenth week of testing. The graph shows
the expected curve of an initially large number of defects
discovered with each additional level of test thoroughness,
followed by a period of declining defects as the code sta-
bilizes and regressions prevent check-in of new errors (we
report defects in builds, not those discovered during devel-
oper regression checks before commit). The final weeks,

with no errors, point to the future: despite large numbers of
tests and coverage measures meeting our goals, the inability
to find errors does not establish that the software performs
as expected. Randomized testing cannot explore, even for
a small state space, all the interesting configurations of the
file system. As noted, we view randomized testing as a pre-
lude to a more rigorous specification and verification effort.

We describe the experience of a group of model checking
and formal methods researchers with randomized testing:
the effectiveness of randomized testing at bug-finding es-
tablishes a challenging baseline for more heavyweight tech-
niques. We also note that the features that we believe made
randomized testing effective — design for testability, avail-
ability of a reference implementation, and well understood
fault model — should make model checking and theorem
proving easier. In a sense, the evaluation of our experience
is impossible at this point: the real question is whether im-
portant errors remain in the code, undetected by our testing.
In another sense, the chief lesson is that, even when the goal
is full correctness, and resources and interest are available
to pursue this goal, randomized testing is worth pursuing.
Testing and formal verification are not in conflict: both ben-
efit from the same attention to design for error exposure and
the use of as much tool-based automation as possible. The
difficulty of model checking (and theorem proving) makes
randomized testing attractive, when software actually has to
be delivered. Moreover, though the uncertainty of random-
ized testing makes heavyweight techniques attractive when
correctness and reliability really matter, randomized testing
is crucial for actually checking the C code that will be used
in flight, as the more heavyweight techniques do not, in our
experience, scale to the C implementation of a system as
complex as a flash file system. Despite the promise of our
experience with a somewhat simpler flash storage system
(see Section 7), when model checking or proving theorems
for the full file system we have been forced to concentrate
on design models and small modules, rather than the full
implementation.

2. Related Work

McKeeman first described the use of randomized differ-
ential testing for C compilers [9]. His domain was essen-
tially static: a test case was randomly generated based on
some model of valid inputs, and output was compared for a
variety of systems (C compilers). We report on differential
testing in a more reactive context: the results from POSIX
operations on the reference system were used to influence
our choice of future operations. In one sense, we report on
an easier task: constructing valid, interesting random se-
quences of POSIX operations proved easier than construct-
ing random C programs satisfying various semantic or syn-
tactic properties. In another sense, we report on a more dif-

 0

 10

 20

 30

 40

 50

 5 10 15 20 25

D
ef

ec
ts

Week of Testing

Defects

 0

 10

 20

 30

 40

 50

 5 10 15 20 25

D
ef

ec
ts

Week of Testing

(primarily POSIX
divergences)

(primarily fault
interactions)

(integrity/functionality losses
distributed over entire test period)

Rename

Bad blocks

Check for use
of bad blocks

Multi-partition

Stress/model tests Read errors

Figure 3. Results for the first 25 weeks of testing

ficult task, in that fault injection considerably complicated
the issue of test evaluation — the reference system was not
subjected to any faults.

In the long-term, we hope to use the methods and in-
frastructure developed in our testing efforts to support more
thorough and formal verification of the file systems before
they are used in flight. We believe the reference implemen-
tation and hardware simulation will be equally useful for
model-driven verification [6] using the SPIN model checker
[4]. Yang et al. describe previous efforts to find serious
errors in file systems via model checking with CMC [11],
and note the utility of testing as a prelude (or postscript) to
model checking [17].

3. Hardware Simulation with Fault Injection

The most critical element in testing was a simulator for
the flash hardware. Software simulation enabled efficient
testing and full control over fault injection.

The simulator is implemented as a library, matching the
function signatures of the actual hardware driver. In ad-
dition to the core functions provided by the real hardware
driver, it provides initialization and configuration (flash de-
vices of arbitrary size can be used in testing) and fault in-
jection hooks. Effort invested in building a good simulation
layer for testing has paid off in more rigorous approaches,

as well: the flash simulator has been essential for model
checking a flash storage module (see Section 7), providing
a backtrackable “flash device” for use in model-driven ver-
ification [6].

3.1 Bad Block Faults

The simplest faults to inject are write and erase failures.
The failure of a block of flash memory is exhibited as a fail-
ure of a write or erase call after a trap is set via a countdown
mechanism, forcing the nth write (or erase) to fail.

3.2 Read Failures

Sometimes a write call returns success but fails to actu-
ally write to the page. The failure manifests itself when a
read call is issued for that page. For critical data, the simu-
lator (and driver) provide a verified-write call, which writes
to a page and immediately reads back the data to confirm
that the write worked. Read faults are injected using the
same countdown mechanism as write and erase failures.

3.3 System Resets

System resets are simulated by placing the hardware into
a reset mode in which all write and erase operations fail. A

trap is set with a countdown, as with other faults. The file
system software continues to operate after a “reset” but is
unable to make changes to the flash state. Eventually, when
control returns from the file system to the test driver, the
in-memory structures of the file system are cleared and re-
initialized. It would be possible to directly return control to
the test harness from within the driver; we continue execu-
tion for two reasons: (1) to obtain useful information from
return values (such as the number of bytes successfully writ-
ten by a write call) and (2) to check for sane behavior in
the presence of complete hardware failure.

4. Differential Testing: Oracle via Reference
Implementation

The most difficult challenge in randomized testing is de-
termining if the tested system is behaving correctly. Gener-
ating a useful set of random inputs is challenging (though
even pure “fuzz” can expose errors [10]), but determining
whether a test run that does not crash the tested system has
performed correctly over the inputs is even more difficult.
Limited ability to detect faults may be derived from sys-
tem invariant checks and assertions or runtime monitoring
of temporal logic properties, but full functional correctness
is often difficult to encode as a specification. A working im-
plementation is a very useful “specification” for functional
correctness. Differential testing works by comparing the
behavior of a tested system to another implementation of
similar functionality. Every divergence, in theory, exposes
an error in either the tested system or the reference system.

We used heavily-tested and widely available file systems,
including the Solaris file system, Cygwin, and EXT3 and
tmpfs on Linux, as reference implementations. Most tests
compared results to tmpfs, which was the fastest of these
implementations.

4.1 Hashing the File Systems

Instead of performing a full comparison of all file con-
tents at each stage of testing, we opted to compute a hash
H over each file system. H is based on directory structure,
file names, and file sizes. It does not take file contents into
account. We use a hash for two reasons:

1. It is expensive to perform a complete comparison of
file system contents after each operation, but an ap-
proach based on sampling would result in late detec-
tion of errors. When an operation is not applicable to
the reference system, a hash allows us to avoid exam-
ining the reference .

2. A hash provides history that direct comparison does
not: we can determine if an operation changes flash

state (other than file contents) by comparing hashes
before and after the operation, without keeping a more
detailed history of contents.

4.2 Comparison in the Presence of Faults

The primary challenge in differential testing was han-
dling faults injected into the flash system. In the first week
of testing, most effort was spent in dealing with ambigui-
ties of the POSIX standard. In particular, handling the in-
stances where Linux (or Solaris) gave a different, undesired,
error code, producing spurious divergences, was a substan-
tial one-time effort. After this was completed, most devel-
opment in the testing framework was devoted to fault han-
dling.

Injecting bad blocks was easiest, as in most cases, a bad
block should not cause an operation to fail. Most write and
erase failures are not visible to an observer. The exceptions
are (very rarely) when the number of bad blocks detected
while trying to complete an operation exceeds a threshold,
forcing the file system to fail that operation and return a spe-
cial error condition, or when space is exhausted on the flash
system due to bad blocks. Space-usage computations there-
fore take into account a conservative approximation of the
number of pages unavailable for writing due to bad blocks.

When read errors are injected, determining which differ-
ences in behavior indicate software defects becomes more
difficult. It is impossible for the flash file system to per-
fectly mimic the reference system when pages committed to
the flash hardware may not actually be present. For testing
with read errors, we relaxed the requirement that file con-
tents match those on the reference system. Directory con-
tents were required to match, as the use of verified writes
(see Section 3.2) allows the file system to ensure correct
storage of metadata.

The test harness checked a strong atomicity claim for re-
sets: an operation in progress at the time of reset must either
complete or leave visible system state unchanged (except in
the case of multi-page writes, as noted below). This allows
us to handle all resets with a simple algorithm, applied after
every call to the flash file system (in the context of some
operation P(v)):

1. Call into the simulation layer to determine if reset
mode has been triggered. If not, continue normally
(no special handling for reset is needed; apply the op-
eration to the reference as usual).

2. Turn off reset mode (since it will cause all write and
erases to fail) and reinitialize the flash file system.

3. Compute a new hash H for the flash file system.

4. If H′ �= H, apply P(v) to the reference system.

5:: - (creat /gamma) = 0 *success*
6::(rename /gamma /gamma) *EBUSY*
7::(rename /gamma /gamma) *EBUSY*
8::(truncate /gamma offset 373) *EOPNOTSUPP*
9::(rmdir /gamma) *ENOTDIR*

10::(unlink /gamma) *success*
11::(open /gamma RDWR(2)) *ENOENT*
12::(open /gamma RDWR|O APPEND(1026)) *ENOENT*
13::(open /gamma O RDONLY|O CREAT|O EXCL) *success*
14::(rmdir /gamma) *ENOTDIR*
15:: (creat /alpha) = 2 *success*
16::(idle compact 0 0) *success*
17::(idle compact 0 1) *success*
18:: (read 0 (399 bytes) /gamma) *EBADF*
19::(rmdir /gamma) *ENOTDIR*
20:: (write 0 479 /gamma) Wrote 479 bytes to FLASH

. . .

Scheduling reset in 1...

195::(rename /delta/gamma/alpha /gamma) *ENOENT*
196::(read -9999 400 /delta/gamma/alpha) *EBADF*
197::write of page 7 block 1 failed on reset trap

(creat /delta/gamma/delta)

Reset event took place during this operation.

(mount) fs Block 4 bad -- hardware memory
success
ENOSPC

Note: Not comparing results/error codes due to reset.
Clearing file descriptors and open directories...

198::(write -9999 320 /delta/gamma/delta) *EBADF*
199::(rmdir /delta) *EROFS*

Figure 4. Portions of a typical test scenario

5. Special case: if P is a write call, perform P(v′) on
the reference system, where v′ replaces the amount-to-
be-written with the amount-of-bytes written returned
from the call to P(v) on the flash file system.

6. Otherwise, if H′ = H, continue to the next operation
in the test sequence.

4.3. Choosing Operations and Parameters

The details of selecting P(v) are complex, but the ba-
sic principles are somewhat similar to those suggested by
Pacheco et al. for testing object-oriented libraries using
feedback-directed random testing [13]. The results of past
POSIX operations are used to extend the test in choosing
random parameters (file descriptors and pathnames) for new
operations — the use of feedback helps to strike a balance
between choosing “interesting” operations likely to modify
system state and thorough random testing for unexpectedly
state-altering operations. Figure 4 shows part of a typical
test run (for one configuration – to stress different functional
scenarios, we make use of four different configurations, de-
signed to produce different mixes of POSIX operations and
faults.)

Choosing operations in this manner — on-the-fly, while
keeping a loose history of generated files and directories,
balances complete randomness (operations no human is

likely to intentionally produce) with high probability of al-
tering file system state. The details and exact probabilities,
including such subtleties as how often to format the flash
partition, are in no way optimal; they are an adaptation
to changing test results, an educated guess at an optimiza-
tion problem impossible to solve (as we wish to optimize
for error-detection, and do not have the computational re-
sources to explore the space of strategies in any depth).

5. Design for Testability

The reference implementation made it possible to do
large-scale randomized testing, by providing a (partial) test
oracle. The ability to determine whether a test execution re-
vealed any errors was only part of successful testing, how-
ever: possibly more important is the ability to actually
“flush out” errors present in the software. Compliance with
the POSIX-like interface enables the first; for the second re-
quirement, we made a conscious effort to design the system
to be testable [14].

5.1. Assertions

The heavy use of assertions [2] made it possible to reveal
errors even when future actions of the test driver prevented
a faulty system state from causing observable failure (con-
sider a format chosen just after a file system corruption),
or simply failed to reveal a failure as a mismatch with the
reference system. The aggressive placement of assertions
was critical enough to the development effort to be included
in one of the authors’ list of ten essential rules for coding
safety-critical software, published in IEEE Computer [5].

5.2. Downwards Scalability

Errors are often caused by complex interactions between
multiple resource and boundary conditions (often called the
“corner cases”). Stress testing typically reveals some of
these errors by exceeding expected limits in system resource
use (memory, storage, etc.) or parameters, but often fails
to explore the complex interactions of boundary conditions
that programmers have failed to consider. Model checking
and randomized testing are unlikely to reach the resource-
exhaustions that can only be produced by long system ex-
ecutions. Model checking faces the state-space explosion
problem, and randomized testing is unlikely to generate
only resource consumptions without resource releases. One
way to expose such errors is to change the resource limita-
tions, by scaling the system downwards — for instance, for
a flash file system, by testing on simulated hardware with
few blocks, few pages per block, and small page sizes. The
diminished size makes it possible to reach complex corner-

case combinations of used/bad/free blocks and relative page
positions with small test cases requiring few fault injections.

Experience with applying model-driven verification [6]
on the flash file system used on a previous JPL mission re-
vealed that some commercial systems impose hard limits
on downwards scalability, failing to operate on unrealisti-
cally small hardware. In contrast, our file systems were
tested from early stages on very small systems as well as
real-life configurations. For testing, we typically used a
configuration with 6 blocks of flash memory, 4 pages per
block, and 200 bytes per page (32 bytes for header infor-
mation and 168 for data) (see Figure 1) for most partitions,
much smaller than the flight hardware (2,048 blocks of 32
4-kilobyte pages). Smaller configurations made it difficult
to perform more than a handful of operations before running
out of space, while larger configurations were not as effec-
tive for exposing corner-case errors. It is always possible
that errors exist that can only be detected on a larger flash
configuration (or smaller). We rely on the “folk version” of
the small model property, invoked in bounded model check-
ing [1], protocol verification, and other fields: it is typically
the case that correctness for a sufficiently large small con-
figuration implies correctness for all larger configurations.
In any case, the goal of testing is to expose bugs, not to
prove correctness.

5.3. Designing System Behavior for Testa-
bility

In a few cases, the choice of system behavior was mo-
tivated primarily by testability requirements. In particular,
the rename operation requires multiple directory updates,
and introduces the possibility of duplicate entries in direc-
tories. Competing designs were proposed for dealing with
the possibility of duplicates: some allowed the test driver
to predict whether a rename operation interrupted by a sys-
tem reset would result in a state prior to or after the rename.
These designs were preferred because of their testability:
they made strong guarantees about the behavior of rename,
beyond those strictly required for correctness.

6. Automated Test-Case Minimization

The randomized approach was very successful in discov-
ering errors during the early stages of testing. This very
success posed a problem: on a typical day, testing would
produce hundreds (or thousands) of failing test cases, rep-
resenting several independent errors. Due to randomization,
few (if any) of these test cases succinctly exposed a failure:
most test cases contained hundreds of unnecessary opera-
tions, obscuring a small number of critical fault injections
and file system operations. For example, between 10:00
AM and 8:00 PM, on February 22nd, 2006, the test driver

generated 610 failing test cases, ranging in length from 12
steps to 1,011 steps, with average length of 520 steps. De-
livering this mass of indigestible material to a developer
would have been counterproductive.

The solution was to present only minimized test cases
for inspection and debugging. As each failing test case
was generated, delta-debugging [18] was applied to pro-
duce a minimized test case. Unfortunately, in early stages
of testing, large errors resulting from complex causes of-
ten proved to contain an embedded instance of a different,
simpler error. Because certain simple errors proved difficult
to fix and obscured more important problems, we modified
Zeller’s delta debugging scripts to use simple heuristics for
preserving the cause of error — e.g., requiring that the fail-
ing POSIX operation remain unchanged, and only consider-
ing assertion failures to be valid minimizations of assertion
failures.

Hand inspection (based on searching for similar failing
operations and/or asserts) was used to construct an approxi-
mate breakdown of the errors by their different causes. One
minimized test from each set was delivered to the devel-
oper, and the original test cases (and minimizations) were
re-executed after fixes for the proposed errors were deliv-
ered. In some cases, it was necessary to re-minimize a
long test case because the first minimized version no longer
failed due to the fixes for other errors. The process was iter-
ated until all original and minimized test cases succeeded.

For the February 22nd tests, the final set of representa-
tives derived from the minimizations of the 610 test cases
consisted of 17 tests, ranging in length from 1 step to 93
steps, with an average length of 30. In all cases these tests
were shorter than the shortest test in the original set of 610
exhibiting the same failure. The average length of a mini-
mized test case for the full February 22nd set was 39 steps
— a 92.5% reduction over the original test cases. Our expe-
rience confirms the results of previous research indicating
that automatic minimization is critical in randomized test-
ing [8]. Performing a similar classification by hand over the
original set of test cases would have required much more
developer effort, as the operational patterns indicating dif-
ferent failures would have been difficult or impossible to
extract from the noise of other operations. We expect that
minimization would also assist automated statistical error
classification approaches [19].

7. Reuse of the Test Framework

In addition to the flash file system, we have been devel-
oping two other systems for potential mission use. The first
of these is a RAM file system, similar in interface to the
flash file system, but operating on system memory. This
system poses an interesting challenge, since one of the re-
quirements is to be reliable across a “warm” system reset.

In a warm reset, the software is restarted, and all data (and
code) on the program stack is cleared, but any data on the
heap (which stores the contents of the RAM file system) is
not cleared, though it may be corrupted (for instance, the
last word being written at the time of the warm reset may
have not been written completely). In this case, the memory
for the file system needs to be recovered, even after the soft-
ware has been terminated and re-started in mid-operation.
The second effort is to produce a low-level interface for ma-
nipulation of raw data on the flash memory, accessed as an
array, rather than as a file system.

In both cases, we reused the framework developed for
testing the flash file system. Our experience has been that
initial efforts to develop an effective test system pay off in
re-use on similar projects. The significant differences (fault
model and injection in the case of the RAM file system, and
reference suitability in the case of the low-level flash inter-
face) were less important than the similarities. For the RAM
file system, the strategy adopted for simulating system re-
sets in the flash file system was not available: “writes” are
modifications to main memory, assignment statements and
memcpy calls in C. Replacing all such calls with macros
or function calls would decrease code readability and re-
duce system performance. We used CIL [12] to rewrite the
source to instrument each global memory access with a call
to a function that checked for reset (and decremented a re-
set counter if reset was pending). The check for reset
function optionally corrupted the location of the last write
and returned control (via setjmp) to the test driver, in the
event of a reset trap. Overhead was less than 1% for this
instrumentation. Randomized testing exposed a very low-
probability error in which a reset at a particular byte-offset
in a memcpy resulted in an incorrect file name due to a
checksum collision. For the low-level interface, we imple-
mented our own array-based reference implementation. Our
hardware simulation layer was reused in model-driven ver-
ification of the low-level storage module using SPIN [6]
(model-checking exposed a subtle flaw undetected by our
randomized testing efforts).

Adapting our infrastructure to the (non-POSIX) interface
of another flash file system at the request of a flight project
was a relatively low-effort task, and the test framework
has demonstrated the ability to detect important problems
with this independently-developed file system, for which we
have not received source code. This experience increases
our confidence that the framework developed may be gen-
eralized to other testing applications.

8. Errors Exposed by Testing

No experience report of testing would be complete with-
out some discussion of the kinds of errors discovered. The
file system errors exposed can be grouped into three cat-

egories, in order of increasing criticality: POSIX diver-
gences, errors in handling hardware faults, and major file
system integrity losses. Figure 3 shows a “history” of the
defects discovered during testing. Our final regression set
consists of 255 test cases.

8.1. POSIX Divergences

The first week of testing exposed a number of incor-
rect POSIX error codes. The only difficulty in resolv-
ing these was in differentiating between genuine errors and
cases where POSIX allowed multiple possible return codes.
These errors were very quickly eliminated, and during the
remainder of development few were re-introduced (in two
occasions, a rewrite of parameter-checking code did pro-
duce a new POSIX divergence).

8.2. Fault Interactions

Hardware fault interactions that did not compromise file
system integrity were a heavily-populated category of er-
rors, responsible for the majority of errors between the
fourth week of testing and the 13th week. Most of these
errors consisted of the file system incorrectly managing its
internal list of bad blocks — either attempting to write to
a bad block or failing to use space on a good block due to
an erroneous assumption that it was bad. This functionality
was the source of considerable difficulty in testing, as it is
not part of the reference system.

8.3. File System Integrity/Functionality
Losses

A substantial number of the errors discovered involved
a loss of file system integrity or functionality. These errors
were almost all very low-probability scenarios, involving
well-placed system resets and precise flash configurations,
but of very high severity. We estimate the probability of dis-
covering any of these errors using standard JPL hardware
testbed procedures to be very slim indeed. Scenarios in-
cluded complete loss of the file system, loss of file contents
(for a file not involved in the operation causing the error, in
some cases), null pointer dereference, inability to unmount
the file system, and abortion of file system operation due to
an incorrect assertion about system state.

These errors justify the testing effort — at a low cost,
critical errors in implementation or design were exposed
that would likely have been impossible to detect by more
conventional testing approaches. Even if certain errors
could have been discovered in the testbed, a very subtle,
low-probability error exposing design issues may be left
in place as a known problem. The cost of fixing the er-
ror would be so high, and the uncertainty introduced by

a late-stage design modification so great, that the error
would likely be deemed “unfixable.” Our randomized test-
ing framework exposed over 100 such faults during the test
period. While some of these would have been revealed by
normal testing, and some would have been discovered dur-
ing review of the design, we believe that a large number
would have made their way into delivered software, lurking
as potential threats to mission success.

9. Test Coverage

Over our current regression set, statement coverage of
the file system ranges from a low of 62.60% on the file
containing “extra” functionality not covered by mission re-
quirements to 89.06% coverage on the file containing core
algorithms for manipulating pages on flash, the most crit-
ical component of the system. Coverage over 10,000 ran-
dom tests produces lower coverage numbers, as would be
expected (20% lower for non-core functionality, but only
3% lower for page manipulation) . Coverage for 100,000
random tests is roughly unchanged from that for 10,000 ran-
dom tests.

We are not particularly concerned with these coverage
numbers. Our interest in coverage focuses on the actual
source statements covered. In particular, we performed
hand reviews of the coverage measures for each statement
of source code, and established that all statements not cov-
ered fell into two categories:

• Defensive coding: Most non-covered code has the
structure shown in Figure 5. Certain conditions are
not expected to occur during execution, but cannot be
proven impossible. During testing, assertions detect
these violations of expected behavior. During oper-
ation, it is not reasonable for the file system to sim-
ply abort operation; the file system must take action to
prevent file system corruption and return an error in-
dicating the anomaly. In every such case not covered
during testing, failure of the assertion guard would in-
dicate an error in the file system, or at least in our un-
derstanding of system invariants. Lack of coverage is
therefore a sign of reliability. We do plan to cover the
“impossible” code via software fault injection in order
to ensure that the defensive actions work properly, but
this is a low priority sanity check.

• Trivial parameter checking: The remainder of the
code not covered during random testing consists of
checks for minimal requirements on input parameters
to POSIX calls (e.g., that the read buffer is not NULL
or a request for a negative number of bytes, as in Fig-
ure 6). Producing trivially incorrect input parameters
is a bad use of randomized testing: the behavior of the
code in such cases does not depend on the system state

and does not change the system state. Whether testing
or model checking, introducing transitions that do not
alter state is an ineffective approach to bug-hunting.

Of course, “trivial” parameter checking is occasionally
incorrect, missing, dependent on system state, or capa-
ble of modifying system state. We plan to use bounded
model checking [7] or other static analysis to discharge
the assumption of triviality for each such parameter
check.

10. Test Status and Conclusions

As noted in our overview, testing continues. To date, we
have a sequence of over 3.5 billion operations with no de-
tected divergences from expected behavior. This exceeds
expected mission lifetime use by a considerable amount.
We plan to continue testing. Unfortunately, no amount of
randomized testing can establish software correctness. This
leads into our plans for the future, which build on the (min-
imal) confidence in correctness established by our testing
efforts.

10.1. Future Work

The most important future work, from JPL’s perspec-
tive, is that we will continue to test mission file systems,
including a likely re-design of our implementation to meet
requirements for smaller memory footprint for large flash
devices, and will extend our efforts to other software devel-
opment efforts where differential testing is possible. More
interesting from a research perspective are efforts to use the
testing framework as a basis for more formal verification.

The “technology transfer” effort would require the defi-
nition of a language for generating test inputs, a framework
for comparing aspects of tested and reference system behav-
ior, and an easy-to-use method for handling fault-induced
differences. An early effort in this direction relies on gen-
erating programs to generate tests, a convenient framework
for the developers who are most likely to use such a system.

As formal verification researchers, our primary interest
at this point is to go beyond the reliability established by
randomized testing and improve our confidence that the file
system is actually correct. Model-driven verification is a
natural next step: in a sense, model driven verification can
be seen as systematic testing guided by state-space cover-
age. For large state-spaces such as the file system, complete
coverage may be impossible, but coverage of well-designed
state-space abstractions can provide much more confidence
in correctness than random exploration. Our experience
with model checking and testing the low-level flash stor-
age module suggests that considerable effort can be saved
by reusing nondeterministic drivers for both purposes, and

531914: 780: if (!FS ASSERT((dp->type & FS G) == FS G))
#####: 781: { fs handle condition(dp->type);
#####: 782: FS SET ERR(EEASSERT);

-: 783: }

Figure 5. Defensive coding in the file system
The numbers on the left indicate statement coverage over a large set of randomized tests. In this case, the conditional on line
780 was executed over 500,000 times, but was never satisfied (0 is indicated by ##### in the tool to simplify searching for
un-executed lines).

15007634: 1844: if (want < 0 || b in == NULL)
#####: 1845: { fs i release access(Lp);
#####: 1846: FS SET ERR(EINVAL);
#####: 1847: return FS ERROR;

-: 1848: }

Figure 6. Trivial parameter checking in the file system

confirms our suspicions that model-driven verification may
find some errors that escape randomized testing. The ability
to detect defects (not) discovered during randomized testing
will serve as a useful measure of abstraction effectiveness,
and the simulation layer will be directly re-usable. Our final
goal is to use our experience to help others make a smooth
transition from low-effort randomized testing in early devel-
opment to rigorous abstraction-based model checking and
the use of theorem provers and bounded model checkers to
establish invariants before use in mission-critical situations.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 193–207,
1999.

[2] L. A. Clarke and D. S. Rosenblum. A historical perspec-
tive on runtime assertion checking in software development.
ACM SIGSOFT Software Engineering Notes, 31(3):25–37,
May 2006.

[3] J. Erickson and R. Joshi. Proving correctness of a Flash
filesystem in ACL2. Unpublished manuscript in preparation,
2006.

[4] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[5] G. J. Holzmann. The power of ten: Rules for developing
safety critical code. IEEE Computer, 39(6):95–97, June
2006.

[6] G. J. Holzmann and R. Joshi. Model-driven software verifi-
cation. In SPIN Workshop on Model Checking of Software,
pages 76–91, 2004.

[7] D. Kroening, E. M. Clarke, and F. Lerda. A tool for check-
ing ANSI-C programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 168–176, 2004.

[8] Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. In International Symposium on Software Relia-
bility Engineering, pages 267–276, 2005.

[9] W. McKeeman. Differential testing for software. Dig-
ital Technical Journal of Digital Equipment Corporation,
10(1):100–107, 1998.

[10] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 105(33(12)):32–44, 1990.

[11] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill.
CMC: A pragmatic approach to model checking real code.
In Symposium on Operating System Design and Implemen-
tation, 2002.

[12] G. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transforma-
tion of C programs. In International Conference on Com-
piler Construction, pages 213–228, 2002.

[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. In International Confer-
ence on Software Engineering, 2007. To appear.

[14] B. Pettichord. Design for testability. In Pacific Northwest
Software Quality Conference, October 2002.

[15] G. Reeves and T. Neilson. The Mars Rover Spirit Flash
anomaly. In IEEE Aerospace Conference, 2005.

[16] Various. A collection of NAND Flash appli-
cation notes, whitepapers and articles. Avail-
able at http://www.data-io.com/NAND
/NANDApplicationNotes.asp.

[17] J. Yang, P. Twohey, D. Engler, , and M. Musuvathi. Using
model checking to find serious file system errors. In Op-
erating System Design and Implementation, pages 273–288,
2004.

[18] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183–200, 2002.

[19] A. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken.
Statistical debugging: Simultaneous identification of multi-
ple bugs. In International Conference on Machine Learning,
2006.

