
Explaining Abstract Counterexamples

Sagar Chaki
School of Computer Science,
Carnegie Mellon University

chaki@cs.cmu.edu

Alex Groce
School of Computer Science,
Carnegie Mellon University

agroce@cs.cmu.edu

Ofer Strichman
Technion, Haifa, Israel,

ofers@ie.technion.ac.il

ABSTRACT
When a program violates its specification a model checker
produces a counterexample that shows an example of un-
desirable behavior. It is up to the user to understand the
error, locate it, and fix the problem. Previous work intro-
duced a technique for explaining and localizing errors based
on finding the closest execution to a counterexample, with
respect to a distance metric. That approach was applied
only to concrete executions of programs. This paper extends
and generalizes the approach by combining it with predicate
abstraction. Using an abstract state-space increases scala-
bility and makes explanations more informative. Differences
between executions are presented in terms of predicates de-
rived from the specification and program, rather than spe-
cific changes to variable values. Reasoning to the cause of
an error from the fact that in the failing run x < y, but in
the successful execution x = y is easier than reasoning from
the information that in the failing run y = 239, but in the
successful execution y = 232. An abstract explanation is
automatically generalized.

Predicate abstraction has previously been used in model
checking purely as a state-space reduction technique. How-
ever, an abstraction good enough to enable a model checking
tool to find an error is also likely to be useful as an auto-
matically generated high-level description of a state space —
suitable for use by programmers. Results demonstrating the
effectiveness of abstract explanations support this claim.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification

General Terms
Verification

Keywords
model checking, predicate abstraction, fault localization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

counterexample

∆5 s

C

constraint solver

P + Spec

Model checker
counterexample

1

C

+ constraints

closest successful execution

BMC

S
2,3

4

finds closest successful execution
 as measured by distance metric

Figure 1: Error explanation with distance metrics.

1. INTRODUCTION
Moving from a trace demonstrating that a program does

not satisfy a specification to an understanding of what is
wrong with the program (or the specification) and how to fix
it is a difficult task. Recently, there has been a movement to
apply the model checking [11] technology traditionally used
to find errors to the problem of understanding and isolating
errors.

Error explanation describes any automated approach to
aiding a user in moving from a particular example of spec-
ification failure to an understanding of the essence of the
failure and, perhaps, to a correction for the problem. Fault
localization is the more specific task of identifying the faulty
core of a system.

This paper describes an extension to the distance metric
[24] based approach to error explanation and fault localiza-
tion [14]. The explanation method may be summarized as
follows (Figure 1):

1. Generate a counterexample C for a specification Spec
of a program P using a model checker.

2. Use bounded model checking (BMC) [7] to unwind the
transition relation of P to a finite bound1 and produce
a propositional formula S that represents exactly the
executions of P that do not violate Spec.

3. Extend S with variables and constraints representating
an optimization problem: find a satisfying assignment
that is as similar as possible to the counterexample C,
as measured by a distance metric on executions of P .

4. Solve the optimization problem from the previous step,
producing a successful execution with minimal dis-
tance from the counterexample.

1In earlier work [14], this value was typically the same as
the bound used to produce the counterexample C.

1 int main () {
2 int input1, input2, input3;

3 int least = input1;

4 int most = input1;

5 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;

9 if (least > input2)

10 most = input2; //ERROR!

11 if (least > input3)

12 least = input3;

13 assert (least <= most);

14 }

Figure 2: minmax.c

Value changed: input3#0 from 2147483615 to 0

Value changed: most#4 from 2147483615 to 0

line 8 function c::main

Value changed: least#2 from 2147483615 to 0

line 12 function c::main

Value changed: least#3 from 2147483615 to 0

Figure 3: Concrete ∆ values for minmax.c.

5. Present the differences (∆s) between the successful ex-
ecution and the counterexample as explanation and lo-
calization for the error.

The notion that these minimal differences serve to explain
(in a causal sense) the error is justified by an adaptation of
David Lewis’ counterfactual notion of causality [21]. For
Lewis, an effect e is dependent on a cause c at a world w iff
at all worlds most similar to w in which ¬c, it is also the
case that ¬e. Causality depends not on the impossibility of
¬c and e being simultaneously true in any possible world,
but on what happens when we alter w as little as possi-
ble to remove the (possible) cause c. When considering the
question “Was Larry slipping on the banana peel causally
dependent on Curly dropping it?” we do not, intuitively,
take into account worlds in which another alteration (such
as Moe dropping a banana peel) is introduced. That is to
say, in evaluating causal claims (whether in programming
or in everyday life) we do not introduce arbitrary unrelated
changes to conditions other than the potential cause. The
method for error explanation used in this paper is derived
[14] by:

• Replacing Lewis’ metrics for possible worlds with dis-
tance metrics for program executions.

• Finding a maximally similar execution in which the
effect e does not hold, in order to automatically produce
causes for an error.

Previously [14], the counterexample and successful execu-
tion were both concrete executions produced by the bounded
model checker CBMC [20] and the explain tool [15]. ∆s be-
tween successful and failing runs were presented as changes
at the level of the C type system, e.g. x = 2147483615 vs.
x = 255.

Many successful software model checking projects, such as
SLAM, BLAST, and MAGIC [6, 17, 8] have been based on

Control location deleted (step #5):

10: most = input2

{most = [$0 == input2]}

Predicate changed (step #5):

was: most < least

now: least <= most

Predicate changed (step #5):

was: most < input3

now: input3 <= most

Predicate changed (step #6):

was: most < least

now: least <= most

Action changed (step #6):

was: assertion failure

Figure 4: Abstract ∆ values for minmax.c.

predicate abstraction [13] and counterexample-guided ab-
straction refinement (CEGAR) [10]. Rather than model
checking a representation of the concrete state-space of a
system, these tools check properties of conservative abstrac-
tions of programs, and refine the abstractions until either the
program is shown to satisfy its specification or a counterex-
ample is generated. The CEGAR framework for verifying a
program P with specification Spec consists of three steps:

1. Abstract: Create a (finite-state) abstraction A(P)
which safely abstracts P by construction.

2. Verify: Check if A(P) |= Spec holds. That is, de-
termine whether the abstracted program satisfies the
specification of P . If it does, P must also satisfy the
specification, and the program is successfully verified.
If A(P) does not satisfy the specification, a counterex-
ample C is generated. C may be spurious: not a valid
execution of the concrete program P . If C is not spu-
rious, P does not satisfy its specification.

3. Refine: If C is spurious, refine A(P) in order to elimi-
nate C, which represents behavior that does not agree
with the actual program P . Return to step 12.

SLAM, BLAST, and MAGIC use abstraction because con-
crete state-spaces are often intractably large (or infinite).
The reduced state-spaces produced by predicate abstraction
have not, typically, been viewed as useful objects for human
examination. They are artifacts of the verification process,
used for refuting or proving a property of a system and then
discarded. These automatically generated abstractions are
usually more complex and less intuitive than those produced
by humans, and the state-spaces are still generally too large
to be presented directly to users.

Abstract error explanation, described in detail in Sections
3, 4, and 5 is a selective use of automatically generated pred-
icate abstractions. Even though the abstracted program
may not be useful or interesting to a user, the differences
in predicate values between successful and faulty executions
of a program may be very useful and interesting.

2This process may not terminate, as the problem is in gen-
eral undecidable.

As a motivating example, consider the program in Fig-
ure 2. The uninitialized values input1, input2, and in-

put3 represent nondeterministically chosen inputs in both
MAGIC and explain. Figure 3 shows the concrete expla-
nation of the error produced by the explain tool [14]. The
concrete explanation consists of a set of changes to program
variable values: in the counterexample (not shown), input3
has a value of 2147483615; if that value is altered to 0, the
other variable values change as shown and the assertion is
not violated.

Figure 4 shows the explanation produced by MAGIC us-
ing abstract ∆s3. The explanation consists of a set of atomic
changes to the counterexample produced by MAGIC. In the
counterexample, line 10 (the line with the error) is executed.
In the most similar successful execution, line 10 is not exe-
cuted (a control location in the counterexample is deleted –
an explanation may also show an insertion, in which a guard
that was not satisfied in the counterexample becomes true in
the successful execution). The change in control flow does
not result from a change in predicate values; the abstrac-
tion is imprecise, and so the guard (least > input2) is a
nondeterministic choice. The change in control flow forces a
change in predicate values: if least > input2, then input2

is assigned to most. Given that least > input2 and most

= input2, it follows that least > most, which will cause
the assertion on line 13 to be violated. If the guard is false
and the assignment does not take place, the abstraction is
precise enough to prove the invariant least <= most4, pre-
venting the assertion failure action. Actions are events
that might appear in a specification, such as calls to obtain
locks, function return values, and assertion violations [8].

The abstract explanation is produced much more quickly5

and highlights precisely the nature of the error. The most
similar successful execution avoids performing the assign-
ment at line 10, which ensures that the assertion holds: the
fault is clearly localized to line 10, and the predicates pin-
point the nature of the problem. The concrete explanation,
in contrast, presents changes to input values that do not im-
mediately indicate the nature of the problem. The control
flow is unchanged, in part because of the distance metric’s
comparison of values from non-executed code.

Because software model checkers use conservative abstrac-
tions, a non-spurious counterexample can be produced from
even a very coarse abstraction of a program. However, the
search algorithms used typically have no bias in favor of
non-spurious counterexamples, and will often first discover
a spurious counterexample if an abstraction is too coarse.
The difficulty of finding the needle of a non-spurious error
path in a haystack of unrealistic behaviors is why predicate
abstraction is used in place of the less expensive analysis of
control flow alone. That the likelihood of generating a non-
spurious counterexample increases as the abstraction more
closely captures the real behavior of the system is a primary
motivation behind the CEGAR approach. The success of
recent software model checking projects has shown that in
many cases a “good” abstraction can be found in the ter-
ritory between the control flow graph (CFG) of a program
and its full concrete state-space. This paper proposes that

3Output is slightly simplified for readability.
4The other predicate change is a result of least being equal
to input3 at this point.
5The SAT instances are much smaller, as the 32-bit integers
in the concrete case are replaced by a few predicates.

these “good” abstractions, which are provided “for free” by
efficient verification tools, can also be used to improve pro-
gram understanding and provide effective fault localization
and debugging assistance. Results produced by an imple-
mentation of error explanation for the MAGIC tool [8] are
presented in Section 7 as evidence of this claim.

2. RELATED WORK
The most closely related work is the original presenta-

tion of error explanation based on distance metrics for pro-
gram executions [14]. That work was inspired in part by the
transformation analysis used by the JPF model checker’s er-
ror explanation facilities [16]. Error explanation via model
checking has also been presented for the SLAM model checker
[5] and (in more hardware-oriented work) by Jin, Ravi, and
Somenzi [19]. The latter techniques do not use a notion of
most-similar executions.

In a larger context, Zeller’s delta debugging [26], which ex-
trapolates between failing and successful test cases to find
more similar executions (with respect to inputs only), sug-
gested the general notion of comparing executions with re-
spect to atomic changes. Delta-debugging for deriving cause-
effect chains [25] makes use of program state, but requires
additional user choice of comparison points and guarantees
neither minimality by a distance metric nor validity of exe-
cution traces.

Renieris and Reiss [22] use distance metrics to select sim-
ilar failing and successful test cases to compare in order to
perform fault localization. They also present a quantitative
method for evaluating fault localization methods.

This paper extends the concrete distance metric approach
[14] to handle abstract executions of programs and proper-
ties expressed in LTL, resulting in significant improvements
in both the distance metric used and the expressiveness of
explanations over earlier work.

3. ABSTRACT ERROR EXPLANATION
The explanation approach shown in Figure 1 can be used

by a predicate abstraction and CEGAR based model checker,
with the following three changes:

• S, the formula representing executions of the program,
is produced by unwinding the transition relation of the
abstract program A(P) to a finite depth.

The first difference presents challenges when encoding the
distance metric. Previous explanation metrics relied on a
static single assignment (SSA) [3] encoding of execution.
SSA provided a means to avoid the issue of alignment, i.e.
which states of the successful execution should be compared
to which states of the counterexample. In SSA, all execu-
tions are represented by a set of assignments to the same
variables, and states are in a sense only implicit. SSA intro-
duced a serious drawback, however: the distance metric was
computed over values from all possible control flow paths. In
some cases, a weak explanation was produced because the
executions produced very similar values in portions of the
control flow not executed in either the successful execution
or the counterexample. The distance metric presented in
Section 4 relies on alignments to avoid this counter-intuitive
and questionable comparison over purely “hypothetical” val-
ues.

Another issue raised in unwinding the abstract transition
relation is the choice of an unwinding depth. In the CBMC
approach [14], the original counterexample is produced by
bounded model checking, and the bound used to discover
a counterexample can be reused in explanation. Further-
more, in CBMC this bound determined an upper limit for
unrollings of loops, rather than a total number of steps. The
depth used for abstract explanations limits the total num-
ber of steps in the successful execution. In practice, using a
depth equal to the number of steps in the counterexample
plus a small constant factor (to allow for previously untaken
control branches) appears to suffice for most programs.

• Solutions to the optimization problem, corresponding
to abstract executions, may represent spurious behav-
iors, requiring multiple iterations to find a non-spurious
most-similar successful execution.

When a spurious successful execution is generated, a block-
ing clause is added to the formula S to force generation of
a different successful execution. The hypothesis is that in
order to generate a non-spurious counterexample, the model
checker will typically find a “good enough” abstraction to
ensure that this process will converge rapidly. Experimen-
tal results support this conclusion in most cases. It is also
possible to reuse the CEGAR abstraction refinement pro-
cess at this stage in order to remove the spurious behavior,
treating a spurious successful execution in the same manner
as a spurious counterexample. However, this necessitates
an expensive recomputation of the transition relation and
counterexample.

• The ∆s are in terms of different control flow and pred-
icate values rather than concrete variable values.

Finally, and most importantly, the changes necessary to
avoid (or induce) error are presented as ∆s of predicates
of variables, rather than concrete values. The abstraction
refinement process used to find a counterexample automat-
ically, as a side-effect, produces a high-level model of the
behavior of the program. With concrete explanations, the
user must generalize to the logical causes of error from the
overly specific values in the ∆s. An abstract (but non-
spurious) counterexample or successful execution, however,
may represent many concrete behaviors of a program. The
predicates necessary to find a non-spurious path will provide
a description of the logical difference between these sets of
concrete executions. As a simple example, a concrete ∆
might indicate that in the counterexample x had the value
of 47 and in the closest successful execution x had the value
of 91. An abstract ∆, on the other hand, might state that in
the counterexample, x < y and in the successful execution,
x >= y. It is easy to see which explanation is more likely
to capture the underlying essence of the erroneous behavior.
The abstract ∆ not only generalizes the constraint on x, but
introduces the information that this constraint is relative to
y. This claim relies on the assumption that in order to find a
non-spurious counterexample, refinement will typically have
to produce an abstraction that effectively captures important
aspects of a program’s behavior.

b

0

1

2

3

4

5

6

0

1

2

3

4

5

a

Given the alignments shown, step 3 of a cannot be aligned
with steps 0, 4, or 5 of b because alignments must be unique.
Additionally, 3 cannot be aligned with 1, 2, 3, or 6 because
alignments are not allowed to cross.

Figure 5: Alignments for executions.

4. A DISTANCE METRIC FOR ABSTRACT
EXECUTIONS

The distance metric used for explanations is dependent on
the representation of program executions. For the MAGIC
tool, an execution is an ordered sequence of state-action
pairs: {(s0, α0), (s1, α1), . . . (sn, αn)}. We will refer to a
state-action pair as a step. Each state, s, is composed of
a control location c(s) and a predicate valuation p(s). Pred-
icate valuations are vectors of values for the predicates as-
sociated with a particular control location. In the MAGIC
abstraction framework, different predicates may be tracked
at different control locations [9]. For all states with the same
control location, however, p(s) will have the same size.

As an example, consider the control location at line 3 in
Figure 2, int least = input1. In the abstraction used to
generate the counterexample, for any state in which c(s) =
3 (using the line number to represent the unique control
location), |p(s)| = 3. The components of p(s) are values
for distinct predicates. We write pi(s) to refer to the ith
component of p(s). p1(s) restricts the relationship of input1
to input3. The possible values are: (input1 < input3),
(input3 < input1), and (input3 = input1). The second
and third components relate input1 to input2 and input2

to input3.
The distance metric d will be defined with respect to two

executions, a and b. We will assume that a is the counterex-
ample, for the sake of convenience (the metric is symmetric).
We will use a superscript notation (e.g. sai) to distinguish
states, actions, and control locations of a and b.

4.1 Alignment
The distance metric will be based on comparison of states

and actions. An obvious approach would be to compare the
ith step of a with the ith step of b. The two executions,
however, may be of different lengths — if any changes in
control flow are necessary to avoid the error, this will almost
certainly be the case. In order to properly compare a and b,
it is necessary to determine an alignment [24] mapping steps
in a to steps in b. We will define alignment as a relation
between elements of a and b, such that if align(i, j), the ith
step of a should be compared with the jth step of b:

Definition 4.1 (alignment, align(i, j)).

align(i, j) =

1 if c(sai) = c(sbj)
∧ ∀k 6= j . align(i, k) = 0
∧ ∀` 6= i . align(`, j) = 0
∧ ∀m > i, n < j . align(m,n) = 0
∧ ∀m < i, n > j . align(m,n) = 0

0

where i, `,m < |a| and j, k, n < |b|.

The conditions for alignment require that:

• Steps can only be aligned if they have matching control
locations.

• Alignments are unique: each step in a is aligned with
at most one step in b and vice-versa.

• Alignments preserve ordering: e.g., if i is aligned with
j, no earlier step in a may align with a later step in b,
and no later step in a may align with an earlier step in
b. Visually, this means that alignments cannot cross.

See Figure 5 for an example of the consequences of these
constraints. For a given a and b, there may be multiple
alignments consistent with these conditions. In the presence
of loops, there may be several steps in a or b (or both) with
the same control location. There may also be steps in a or
b that are not aligned with any step in the other execution.
These steps are unaligned:

Definition 4.2 (unaligned, unaligna/b(i/j)).

unaligna(i) =

{
1 if ∀j . ¬ align(i, j)
0 otherwise

unalignb(j) =

{
1 if ∀i . ¬ align(i, j)
0 otherwise

where i < |a| and j < |b|.

A step may be impossible to align — either because no
control location in the other execution is matching, or, as
in Figure 5, because certain other alignments preclude the
conditions from holding. It is important to note, however,
that the first condition only requires that if two steps are
aligned, the conditions must hold. There is no requirement
that if the conditions hold, two steps must be aligned. The
empty relation is always a valid alignment.

4.2 The Distance Metricd
Given a and b we define the distance d(a, b) based on the

number of atomic changes (∆s) needed to transform a into
b. The first set of ∆s is possible alterations to predicate
values. ∆p is defined first over steps i and j of a and b. The
sum of individual step ∆ps is then used to define the total
∆p between two executions:

Definition 4.3 (∆p(i, j, v),∆p(a, b)).

∆p(i, j, v) =

{
1 if align(i, j) ∧ pv(sai) 6= pv(sbj)
0 otherwise

where i < |a|, j < |b|, and v < |p(sai)|.

∆p(a, b) =

|a|−1∑
i=0

|b|−1∑
j=0

|p(sai)|−1∑
v=0

∆p(i, j, v)

∆p(i, j, v) is 1 iff step i and step j are aligned and have dif-
fering predicate values for the vth component of their pred-
icate valuations. This comparison is always valid if i and
j are aligned since this requires that they share a control
location.

Changes in actions are defined in a similar alignment-
based manner:

Definition 4.4 (∆α(i, j),∆α(a, b)).

∆α(i, j) =

{
1 if align(i, j) ∧ αai 6= αbj
0 otherwise

where i < |a|, and j < |b|.

∆α(a, b) =

|a|−1∑
i=0

|b|−1∑
j=0

∆α(i, j)

These ∆s account for all possible differences in aligned
states. In order to describe control flow differences between
a and b, the metric d must also take into account the un-
aligned states of the executions:

Definition 4.5 (∆c(a, b)).

∆c(a, b) =

|a|−1∑
i=0

unaligna(i) +

|b|−1∑
j=0

unalignb(j)

The distance metric is then defined as the minimal weighted
sum of predicate, action, and control ∆s, over all possible
alignments:

Definition 4.6 (distance, d(a, b)).

d(a, b) = minalign(Wp·∆p(a, b)+Wα·∆α(a, b)+Wc·∆c(a, b))

Wp, Wα, and Wc may reasonably vary, depending on the
user’s interest in similarity of observable actions, predicate
values, and control locations. However, in accordance with
the principle that it is best to compare steps whenever possi-
ble, it is suggested that Wc be chosen such that it is greater
than the maximum possible ∆p + ∆α for a single step. In
our experimental results, we have uniformly used Wp = 1,
Wα = 1, and Wc = max(|p(sa)|) + 2. With positive val-
ues for these weights, d satisfies the standard nonnegative,
zero, symmetry, and triangle inequality properties of a dis-
tance metric [24]. The use of an alignment-based metric,
such as d, is not intrinsically tied to abstraction. For any
notion of executions based on explicit steps and states, ∆p
(really ∆s: changes to state components other than control
location) could be defined over the appropriate elements.

5. FINDING A SUCCESSFUL EXECUTION
The procedure for finding a successful execution b that is

as similar as possible to a counterexample a is as follows:

1. Unwind the transition relation ofA(P) to a finite depth
to produce a propositional constraint S. Solutions of
S will represent executions of A(P) that do not violate
Spec. Any solution of S represents a potential b to be
compared against the counterexample.

2. For a fixed counterexample a, add to S Boolean vari-
ables for all possible alignments of a and b. For each
i < |a| and j < max(|b|)6, a variable for align(i, j) may
be introduced. Rather than adding all |a| ×max(|b|)
variables, we observe that align(i, j) can only be 1 if it
is possible for c(sai) to equal c(sbj). In many cases, the
unwinding of the transition relation will show that this
condition cannot be satisfied. The constraints given in
Definition 4.1 are also only introduced for alignments
not ruled out by the transition relation.

3. Add ∆-variables for each possible difference between a
and b. For each i < |a|, j < max(|b|), and v < |p(sai)|,
a variable is introduced for: unaligna(i), unalignb(j),
∆p(i, j, v), and ∆α(i, j). The values are constrained in
accordance with the definitions in Section 4. When j ≥
|b| (because the successful execution is shorter than
the unwinding depth), the associated align variable is
forced to be 0, ensuring that ∆s variables for steps not
in b are also 0.

4. Assign weights to the ∆-variables to produce a 0-1
ILP problem. Variables representing unaligna(i) and
unalignb(j) are given a weight equal to Wc. ∆p(i, j, v)
and ∆α(i, j) are weighted according to Wp and Wα,
respectively. The optimization problem is to minimize
the weighted sum over all ∆ variables. This weighted
sum is equal to d(a, b).

5. Use a 0-1 ILP solver to produce an alignment and b
that minimize d(a, b). One of two conditions may make
it impossible to find such a b:

(a) All executions of the program P violate the spec-
ification Spec.

(b) All abstract executions in A(P) that represent
at least one successful execution also represent
at least one counterexample. Because success is
measured in the abstract state-space, no b that
does not represent a counterexample can be found.

Using a shallower unwinding depth may make it pos-
sible to find b even if one of these conditions holds.
An execution that, if extended, will always become a
counterexample will be considered successful if it does
not reach an error state before max(|b|) steps.

6. Check that the execution b is not spurious. If b is
spurious, add a blocking clause to S forcing a different
choice of b and re-solve the ILP problem.

7. Present b to the user. Use the ∆-variable values to
present to the user the changes that must be made to
a in order to avoid the error (and produce b).

In our implementation, we use the pseudo-Boolean solver
PBS [2], which combines a fast SAT procedure with special
techniques for 0-1 ILP, to efficiently perform step 5. Return-
ing to the motivating example (Figure 2), we observe that
it requires 421 Boolean variables to represent the transition
relation for A(P) up to a depth of 12 steps (this is sufficient
to encode all possible executions of the program). An ad-
ditional 110 variables are required to represent the possible

6max(|b|) is the unwinding depth.

alignments and ∆s. The full SAT instance has 531 variables
and 1,841 clauses. The CBMC representation, even without
the overhead of alignment variables, has 1,759 variables and
5,747 clauses.

The output shown in Figure 4 is produced by examining
the values of the ∆ and alignment values in the solution
to the ILP problem. In this case, there is one unaligned
control location in a, at line 10 (the location of the error).
The (aligned) control locations in a and b that follow this
change in control flow (lines 11 and 13) differ in predicate
values, because the assignment of input2 to most has been
performed in a but not in b. The counterexample’s final
action is an assertion failure, while in b the assertion
holds.

6. EXPLAINING LTL PROPERTIES
The above explanation procedure and distance metric can

be applied without modification to explain counterexamples
to Linear Temporal Logic (LTL) formulas. The BMC un-
winding of the abstract transition relation, however, must be
modified to take into account a different notion of a success-
ful execution. The implementation of LTL property expla-
nation described is for abstract executions, but the approach
presented in this section will work for concrete executions
equally well.

For reachability properties, successful execution is guar-
anteed by adding constraints such that no error state can
appear in b. For an LTL property Aφ, a successful execu-
tion is a counterexample to A¬φ. A counterexample to Aφ
demonstrates that φ does not hold for all paths. A coun-
terexample to A¬φ demonstrates that φ can hold for some
path. This is not guaranteed to be true (any more than for
reachability it is guaranteed that an execution exists that
does not reach an error state).

LTL model checking in MAGIC uses the standard ap-
proach in which a Büchi automaton for the negation of the
property is constructed [12]. Counterexamples are execu-
tions in the product automaton (the product of the model
and the Büchi automaton for the negation of the property)
that contain a cycle that passes through an accepting state.
Accepting states in the product automaton are projected
from the Büchi automaton. In order to check for success-
ful executions, MAGIC unwinds a Büchi automaton for the
property (rather than its negation) along with the transition
relation and adds constraints requiring a cycle through an
accepting condition to appear in the execution.

The use of a Büchi condition adds an additional possibil-
ity to the list of reasons given in step 5 of the procedure
in Section 5 for inability to find a successful execution b:
the unwinding depth may be insufficient to allow a cycle
through an accepting state. For reachability properties, a
“spurious”7 successful execution can sometimes be produced
by lowering the unwinding depth. For LTL properties, the
unwinding depth may need to be increased in order to find a
successful execution, but any b that is discovered will repre-
sent an infinite behavior, and thus be immune to extension
to error8.

7Here, spurious is used in the sense that the execution will
eventually violate the property, rather than in the sense of
abstraction-introduced behavior.
8Though b may, of course, be a spurious behavior introduced
by abstraction.

! unlock

! unlock
lock

! lock

unlock

2

1 0*

2*

1*
0

Counterexample automaton Successful execution automaton

Büchi automata for (A)G(lock ⇒ F (unlock)), negated and
un-negated. Each state is labeled with a set of constraints:
e.g., state 1 requires both lock and not unlock.

Figure 6: Successful executions for LTL properties.

1 int process () {
2 int x, y, z;

3 z = 0;

4 Lock ();

5 if (x == 0) {
6 if (y == 0)

7 z = 1;

8 }
9 if (y != 0) {
10 z = y;

11 }
12 if (x != 0) {
13 z = 2;

14 Unlock ();

15 }
16 else if (z > 0) {
17 z = 3;

18 Unlock ();

19 }
20 }
21 int main () {
22 while (1) {
23 process ();

24 }
25 }

Figure 7: locks.c

Because determining the unwinding depth sufficient to al-
low for a cycle is difficult, MAGIC will automatically in-
crease the unwinding depth (up to a given maximum) when
it fails to find a solution for b in an LTL explanation.

6.1 Example of LTL Explanation
As an example of the notion of successful execution used

when explaining LTL counterexamples, consider the prop-
erty (A)G(lock ⇒ F (unlock)), which requires that on all
paths, at all steps, locking requires eventually unlocking.
The Büchi automaton on the left in Figure 6 accepts coun-
terexamples to this property: executions in which a lock is
acquired (state 1) but not released (state 2). Because state
2 is the only accepting state, counterexamples must have a
cycle through program states that do not unlock, and can
only reach this state after having locked at least once with-
out unlocking (because state 2 is not an initial state of the
automaton).

The automaton on the right accepts successful executions:

Error explanation deltas:

Predicate changed (steps #0-18):

was: process::y != 0 , process::y < 1

now: process::y > 0

Predicate changed (steps #9-10):

was: process::z < 1

now: process::z > 0

Control location inserted (step #11):

17: process::z = 3

{process::z = [$0 == 3]}

Control location inserted (step #12):

18: process::temp var 6 = Unlock ()

epsilon

Control location inserted (step #13):

process::temp var 6 = Unlock ()

unlock

Control location inserted (step #14):

18: process::temp var 6 = Unlock ()

epsilon

Figure 8: Abstract ∆ values for locks.c.

executions which either never lock or never lock after hav-
ing unlocked (cycles on state 1*), or which unlock infinitely
often (cycles including state 2*). In this case minimizing
the distance to the counterexample increases the chance of
finding a successful execution which locks, as the counterex-
ample will be forced to lock at least once.

The code in Figure 7 produces a non-spurious counterex-
ample when checked against the LTL formula (A)G(lock ⇒
F (unlock)) (after 4 iterations of abstraction refinement). It
is possible to exit the body of process without making a
call to Unlock9.

The explanation in Figure 8 describes the conditions in
which the error is present: in the counterexample, y is < 1
but not equal to 0. In the successful execution, y > 0. The
error is avoided because the assignment of y to z on line
10 now ensures that z will satisfy the condition at line 16,
creating a cycle in which process unlocks. The change in
y has focused our attention on the real problem with this
code: the programmer has neglected to take negative values
of y into account, assuming that y != 0 implies y > 0.

7. EXPERIMENTAL RESULTS
We applied the MAGIC implementation of error expla-

nation to several faulty programs. Table 1 summarizes the
results. The results strongly support the claim that finding
a non-spurious successful execution will require very few it-
erations. No benchmark required the addition of even one
blocking clause to prevent a spurious successful execution,
even though in two cases considerable refinement was re-
quired to produce a non-spurious counterexample. Results
not shown in the table also supported this claim, although
iterations were observed for a few artificial (and unrealistic)

9Recall that in MAGIC, uninitialized variables such as x and
y are used to represent nondeterministic choice — perhaps
the results of system calls or user input.

Error explanation deltas:

Action changed (step #25):

was: get client hello

now: {ret = [$0 == -1]}

Control location deleted (step #26):

1213: ret = ssl3 get client hello (s)

{ret = [$0 == 1]}

Predicate changed (step #26):

was: ret == 1

now: ret == -1

Predicate changed (step #27):

was: ret == 1

now: ret == -1

Action changed (step #27):

was: return { $0 == 1 }
now: return { $0 == -1 }

Control location inserted (step #28):

final location

Figure 9: Abstract ∆ values for SSL-1.

examples with LTL properties. The example in Section 6.1
required 4 abstraction refinement iterations and no blocking
clauses.

7.1 Benchmarks
The examples presented in Table 1 are taken from several

sources. The smaller benchmarks were taken from the re-
gression tests for MAGIC (small fragments of Linux kernel
code with seeded errors). Additional benchmarks were taken
from the C source code of OpenSSL-0.9.6c, with seeded er-
rors. In particular, SSL-1 and SSL-2 are from faulty ver-
sions of the initial handshake protocol. Section 7.3 presents
the SSL-1 explanation (Figure 9) in greater detail as a case
study. The final benchmark is the source code for the µC/OS-
II [1] real-time multitasking kernel (RTOS) for microproces-
sors and microcontrollers. The error explained was original
to the source code, rather than added for our experiments.

7.2 Evaluation of Fault Localization
The results presented in this section make use of the scor-

ing function (based on program dependency graphs [18]) for
evaluating fault localization techniques proposed by Renieris
and Reiss [22]. The evaluation method assumes that a cor-
rect version of the program is available. A pdg is a graph
of the structure of a program, with nodes (source code lines
in this case) connected by edges based on data and control
dependencies. A node in the pdg is considered faulty if it
does not match the correct program. The score assigned
to an error report (which is a set of nodes) is a number in
the range 0 - 1, where higher scores are better. Scores ap-
proaching 1 are assigned to reports that contain only faulty
nodes. Scores of 0 are assigned to reports that either include
every node (and thus are useless for localization purposes)
or only contain nodes that are very far from faulty nodes in
the pdg. The score assigned reflects how much of a program
an ideal user (who recognizes faulty lines on sight) could
avoid reading if performing a breadth-first search of the pdg

1210 s->shutdown = 0;

1211 ret = ssl3 get client hello(s);

1212 if (ret <= 0) {
1213 ret = ssl3 get client hello(s);

1214 goto end;

1215 }
1216 got new session = 1;

1217 s->state = 8496;

1218 s->init num = 0;

Figure 10: SSL-1 code fragment.

beginning from the error report. The pdgs used to evaluate
results were computed by CodeSurfer [4].

7.3 SSL Explanation
The specification for the SSL handshake protocol requires

that if the get client hello action is performed, then a
send server hello must be performed, or the server call
must return a value of -1. The fault introduced at line 1213
(Figure 10) allows a re-assignment of the return value ret

(and presents another opportunity for a successful client
hello action). In the correct code, the assignment at line
1213 is not present. The counterexample for this property
contains 29 states and actions that a user must sort through
in order to understand the error. Error explanation pro-
duces a successful execution that differs in two actions, two
predicates, and two control locations (∆s in Figure 9). The
key to the error is indicated as being the faulty assignment
at line 1213: if this call fails as the first call did (causing
the branch at line 1212 to be taken), the specification is not
violated. In the counterexample, the server call succeeds,
having failed the first time, and the server returns success
without having responded to the received client hello. In the
successful execution, the second attempt to get a client hello
also fails, and the value of ret correctly indicates failure.
The error has been localized to line 1213, and the precise
conditions under which the faulty assignment will result in
erroneous behavior are indicated.

8. CONCLUSIONS AND FUTURE WORK
Any conclusion about the utility of abstract explanation

beyond the existential claim that for some programs and
errors it works very well would be premature. The scoring
method proposed by Renieris and Reiss provides a quantita-
tive means for comparing fault localizations; unfortunately,
in the absence of competing tools and methods that apply
to the same programs and errors, the raw scores are difficult
to assess.

8.1 Is Abstract Superior to Concrete?
Predicate abstraction tools such as SLAM, BLAST, and

MAGIC are popular because abstraction is a powerful tool
for dealing with the state-space explosion problem. It is at
the least probable that predicate abstraction will typically
scale better than bounded model checking of concrete state-
spaces. Abstract explanation improves the expressiveness
of explanations, allowing ∆s over predicates of values: with
concrete explanation, the change x == y vs. x > y is simply
not expressible. A concrete ∆, in fact, will only refer to the
value of either x or y, but not both, hiding the essential point
that the relationship between these values is important.

Program LOC T(Unwind) T(Search) PredIt Preds ExplIt 1st ∆ Fault Score CE
mutex-n-01.c (lock) 343 0.015 0.027 1 1 1 250 250* 0.785 6
mutex-n-01.c (unlock) 343 0.017 0.027 1 0 1 285 250* 0.993 6
pci-n-01.c 60 0.006 0.062 2 1 1 39 58 0.782 9
pci-rec-n-01.c 64 0.009 0.076 2 0 1 45 32* 0.720 8
SSL-1 2487 0.947 7.118 72 5 1 1213 1213 0.999 29
SSL-2 2487 0.369 3.084 16 5 1 1223 1223 0.999 52
µC/OS-II 2.00 2981 0.109 0.653 1 0 1 1936 1924 0.000 19

Program is the program with an error to be explained. Where a single program was used with multiple specifications, the Spec
is also given. LOC is the # of lines of code for each example. T(Unwind) is total explanation unwinding time, T(Search)
is total explanation search time (all times in seconds). PredIt is the number of iterations required to discover a non-spurious
counterexample and generate the final A(P). Preds gives the final number of predicates needed to disprove the property. ExplIt
is the number of iterations required to find a non-spurious successful execution. 1st ∆ is the line# of the first (in source code
execution ordering) ∆ reported. Fault is the line# of the first fault in the program, with a * beside cases with multiple faults.
Score is the score for the full set of ∆s, by Renieris and Reiss’ evaluation. CE is the number of steps in the counterexample.

Table 1: Experimental results for MAGIC examples.

It might appear that as the number of predicates grows,
abstract explanations would become increasingly difficult to
read. However, only the predicates that must change in or-
der to avoid error will appear in an explanation. In general,
it is reasonable to expect that even with a large number
of predicates, the number of predicate changes would be
roughly equivalent to the number of concrete value changes.
In the case that more predicate changes are present, im-
portant variable relationships would be missing from the
concrete explanation.

These arguments present a tempting case for the claim
that abstract explanation is simply better than concrete ex-
planation. Experimental results, however, do not support
this conclusion.

8.2 Is Concrete Superior to Abstract?
The result for µC/OS-II in Table 1 is startling: the ex-

planation is of no value for localization! Inspection shows
that the unwinding depth allows the system to avoid the
consequences of a missing return statement by delaying the
calls that expose the error. The counterexample fails almost
immediately after taking the branch guarding the location
of the missing return. Because the counterexample fails im-
mediately after error, any successful execution will be forced
to insert new control locations. The distance metric, unfor-
tunately, ensures that it is “better” to introduce irrelevant
steps that delay the unlock call that exposes the error than
to avoid the branch that ensures failure (which requires that
even more new control locations be added and forces a costly
unalignment after the branch). CBMC [20] and explain

[15], in contrast, produce the optimal explanation, which
avoids taking the branch guarding the missing return loca-
tion. With static single assignment [3], the change for the
untaken branch is represented by a pair of ∆s (one for the
condition and one for the control flow change) and there is
no need to insert new control locations. For errors best ex-
plained purely in terms of control flow, concrete explanation
is just as expressive as abstract execution.

Although MAGIC is capable of model-checking the TCAS
examples [23] used in the original presentation of distance
metric based explanation [14], it fails to produce explana-
tions for the errors discovered. The TCAS counterexamples
are very lengthy and require many alignment variables. To

produce non-spurious executions, numerous predicates must
be introduced at most control locations in the program, al-
though the values on which the predicates are based are
only assigned to at the beginning of execution. The SSA
unwinding used by CBMC only has to produce constraints
for these inputs at possible assignment or branching points.
Because the TCAS code is essentially a computation of a
function with a very small range (3 values) from a large set
of unaltered inputs, CBMC and explain, despite using full
32-bit integers in place of abstract values, produce a much
simpler 0-1 ILP problem than MAGIC.

8.3 Choosing a Distance Metric
It is probably incorrect to ascribe these differences to con-

crete vs. abstract explanation. A tool using SSA with ab-
stract assignments would likely match or improve upon the
results produced by concrete explanation10. To our knowl-
edge, no tool supporting SSA and predicate abstraction cur-
rently exists11. For the time being, for some programs,
CBMC and explain may be the best model checking tools
for error explanation. It may be that the counter-intuitive
SSA-based metric is, in fact, better for some errors than
the alignment-based metric used for abstract explanations
in this paper. Ideally, the choice of an SSA or alignment
based distance metric is orthogonal to the use of an abstract
state-space.

8.4 Conclusions
It is unlikely, explanation being at heart a psychological

notion, that any one approach to error explanation can be
proven to be optimal or even “correct.” That said, the
distance metric approach to explanation [14] is based on
David Lewis’ intuitively appealing notion of causality [21]
and provides an effectively computable notion of explana-
tion. The method was first applied to concrete executions
of programs, using a somewhat counter-intuitive distance
metric influenced by hypothetical values computed by un-
executed code. The approach can be generalized to apply

10In such a tool, SSA would be applied to the abstracted
program, A(P) to generate a BMC instance, in place of the
current direct unwinding of the transition relation.

11CBMC is used for predicate abstraction, but only to pro-
duce a transition relation for non-BMC model checking.

to abstract executions, use a more intuitive distance metric,
and explain Linear Temporal Logic property violations. Ex-
perimental results demonstrate the utility of abstract expla-
nation, but also indicate that the original SSA-based metric
and tool have some advantages over the implementation of
abstract explanation for MAGIC.

The most interesting lesson to be drawn from abstract
explanation is that the predicate abstractions introduced to
model checking in order to combat the state-space explo-
sion problem are also useful for improving program under-
standing. The fact that each abstract execution potentially
represents many counterexamples or successful executions
provides an automatic generalization to the logical causes of
an error. It should be possible to exploit this generalization
of program behaviors (or the production of a set of predi-
cates that are relevant to a given property, etc.) for other
program understanding techniques. Rather than viewing
the abstract state-spaces automatically produced by soft-
ware model checkers as disposable artifacts of verification,
we must at least consider the possibility that the abstrac-
tions themselves are valuable by-products that can be mined
for information.

8.5 Future Work
Numerous directions for future error explanation research

are open. The TCAS and µC/OS-II results indicate that
predicate abstraction plus SSA-form BMC might be a fruit-
ful combination for error explanation. Abstraction makes
the presence of irrelevant ∆s in an explanation less likely
but does not fully eliminate the need for causally-aware slic-
ing. Adapting the ∆-slicing method [14] used with concrete
explanations to an alignment-based distance metric poses
interesting challenges. A more extensive empirical study of
explanation approaches and distance metrics is in order, as
are user studies to discover how genuinely useful explana-
tions are for debugging.

9. REFERENCES
[1] http://www.ucos-ii.com/.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah.
PBS: A backtrack search pseudo Boolean solver. In
Symposium on the theory and applications of
satisfiability testing (SAT), pages 346–353, 2002.

[3] B. Alpern, M. Wegman, and F. Zadeck. Detecting
equality of variables in programs. In Principles of
Programming Languages, pages 1–11, 1988.

[4] P. Anderson and T. Teitelbaum. Software inspection
using CodeSurfer. In Workshop on Inspection in
Software Engineering, 2001.

[5] T. Ball, M. Naik, and S. Rajamani. From symptom to
cause: Localizing errors in counterexample traces. In
Principles of Programming Languages, pages 97–105,
2003.

[6] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN
Workshop on Model Checking of Software, pages
103–122, 2001.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and
Algorithms for the Construction and Analysis of
Systems, pages 193–207, 1999.

[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C.

IEEE Transactions on Software Engineering,
30(6):388–402, 2004.

[9] S. Chaki, E. Clarke, A. Groce, and O. Strichman.
Predicate abstraction with minimum predicates. In
Advanced Research Working Conference on Correct
Hardware Design and Verification Methods
(CHARME), pages 19–34, 2003.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
Computer-Aided Verification, pages 154–169, 2000.

[11] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[12] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple
on-the-fly automatic verification of linear temporal
logic. In Protocol Specification Testing and
Verification, pages 3–18, 1995.

[13] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In Computer-Aided Verification,
pages 72–83, 1997.

[14] A. Groce. Error explanation with distance metrics. In
Tools and Algorithms for the Construction and
Analysis of Systems, pages 108–122, 2004.

[15] A. Groce, D. Kroening, and F. Lerda. Understanding
counterexamples with explain. In Computer-Aided
Verification, 2004. To appear.

[16] A. Groce and W. Visser. What went wrong:
Explaining counterexamples. In SPIN Workshop on
Model Checking of Software, pages 121–135, 2003.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In Principles of
Programming Languages, pages 58–70, 2002.

[18] S. Horwitz and T. Reps. The use of program
dependence graphs in software engineering. In
International Conference of Software Engineering,
pages 392–411, 1992.

[19] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in
error traces. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 445–458,
2002.

[20] D. Kroening, E. Clarke, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, pages
168–176, 2004.

[21] D. Lewis. Causation. Journal of Philosophy,
70:556–567, 1973.

[22] M. Renieris and S. Reiss. Fault localization with
nearest neighbor queries. In Automated Software
Engineering, pages 30–39, 2003.

[23] G. Rothermel and M. J. Harrold. Empirical studies of
a safe regression test selection technique. Software
Engineering, 24(6):401–419, 1999.

[24] D. Sankoff and J. Kruskal, editors. Time Warps,
String Edits, and Macromolecules: the Theory and
Practice of Sequence Comparison. Addison Wesley,
1983.

[25] A. Zeller. Isolating cause-effect chains from computer
programs. In Foundations of Software Engineering,
pages 1–10, 2002.

[26] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, 2002.

