
Mutation Testing of Functional Programming
Languages

Duc Le
Oregon State University

ledu@eecs.oregonstate.edu

Mohammad Amin Alipour
Oregon State University

alipour@eecs.oregonstate.edu

Rahul Gopinath
Oregon State University

gopinath@eecs.oregonstate.edu

Alex Groce
Oregon State University

alex@eecs.oregonstate.edu

Abstract—

Mutation testing has been widely studied in imperative
programming languages. The rising popularity of functional
languages and the adoption of functional idioms in traditional
languages (e.g. lambda expressions) requires a new set of studies
for evaluating the effectiveness of mutation testing in a functional
context. In this paper, we report our ongoing effort in apply-
ing mutation testing in functional programming languages. We
describe new mutation operators for functional constructs and
explain why functional languages might facilitate understanding
of mutation testing results. We also introduce MuCheck, our
mutation testing tool for Haskell programs.

1 Keywords—Mutation Analysis, Haskell

I. INTRODUCTION

In mutation testing [1]–[5], the source code of software
under test (the SUT) is modified in small ways (mutated)
multiple times, producing a set of programs that (usually)
behave differently than the original program. A test suite is
then applied to the mutants, and the suite is said to kill a
mutant when some test (that passes for the original program)
fails for the mutant. That counting killed mutants may provide
an effective measure of test suite effectiveness at detecting real
faults is widely known [6], and widely used in software testing
research, especially to evaluate novel testing techniques [7] and
even other coverage techniques [8].

The true potential of mutation testing, however, is not
exploited in its use as a mere score for a test suite. One of
the core advantages of mutation testing over other coverage
measures is that it provides much deeper information about
the inadequacies of a test suite. In particular, statement, branch,
path, dataflow, and even predicate-complete test coverage [9]
omissions can only explain how a test suite fails to exercise
all the behaviors of the SUT. However, when behavior is
fully exercised but the test oracle is faulty (considering some
bad behaviors good), this cannot be exposed by code or
state space coverage. Failing to kill a mutant, however, can
often be ascribed to oracle inadequacy, one of the most
important potential defects in a test suite. This is perhaps
the most fundamental difference between mutation testing and
other coverage approaches. Even when oracle problems are
not considered, however, a failure to kill a mutant provides
information qualitatively different than in most other forms
of test suite evaluation. While simple coverage metrics such
as statement coverage have a direct mapping to understandable

1Technical Report Oregon State University

omissions in a test suite, many more powerful coverages cannot
easily map to omissions. That a path is never explored in
testing may be highly uninteresting, in that the path has no
behavioral consequences. Non-equivalent mutants, however,
always map to a statement that the current test suite would miss
a particular hypothetical fault in the SUT. Mutation testing, like
branch or statement testing, therefore, should be a source not
only of suite quality information, but of information directly
useful in improving a test suite or test oracles. Mutation
testing subsumes the direct information found in e.g., statement
coverage — “You didn’t run this line, so even if it reads
assert(false); you won’t find that bug” — and enriches
it with deeper behavioral information and oracle failures.

In practice, however, to our knowledge surviving mutants
are almost never used to improve test suites or test oracles.
Mutation testing is rarely used for any purpose in real-world
development, though this may be changing [10] slowly, as
computing power increases. Even software researchers well
acquainted with mutation testing, however, essentially use it
only as a way to compare test suites. The few attempts to use
mutations to improve oracle or suite quality are restricted to
simple assertions in unit tests or choosing observation variables
[11], [12]. We ascribe the failure to make use of mutation
testing’s true power to two primary issues:

• First, and most importantly, moving from a surviving
mutant to an understanding of a test suite’s inadequa-
cies is difficult, when the reason is more complex
than that the mutated code is not covered. Even
expert developers and seasoned software engineering
researchers do not find this an easy task.

• Second, the number of equivalent mutants or mutants
that do not change behavior relevant to the testing
in question (e.g., only modifying logging behavior) is
sometimes high.

In this paper, we propose that these problems can be
greatly mitigated by applying mutation testing to functional
programming languages. Functional programs have important
traits that should make mutation testing more effective for
use by humans intending to improve test suites. The key for
improving testing using mutation testing is the understanding
of why mutants survive a test suite. Functional languages
typically have certain features, including highly compact code,
referential transparency, simplicity of data flow, and well-
defined language semantics, that should make understanding
the reasons a covered mutant survives testing much easier.

Figure 1 shows how we imagine mutation testing fitting

Update Program

Update Oracle Update TestsRun Tests

Mutation Analysis Evaluate Coverage
Fa

ile
d

Te
st

s

Al
l S

uc
ce

ss

Fig. 1. A workflow for effective testing

into an effective testing process. During and after implementa-
tion of the SUT itself, a set of tests and an oracle are developed.
In imperative languages these two aspects of test development
are often tightly interlaced, with the oracle being a set of
assertions in unit tests. In functional programming, it has
become common to apply automated tools such as QuickCheck
[13], which generates random inputs to the SUT, and write
explicit equational specifications for each tested function. In
all cases, once a test suite is defined (either explicitly or
via a generative method such as random testing), tests are
executed. Failing tests lead to fault correction in the SUT
(or, on occasion, in the oracle or test suite), but when all
tests succeed this may indicate not that the SUT is correct
but that the testing or oracle is insufficient. Code coverage
provides information about SUT behavior not explored by the
tests, leading to test improvements. Understanding of surviving
mutants can lead to improvements in either the test generation
process or the test oracle, as the reason a mutant is not
killed indicates. Functional programming already makes part
of this workflow cycle easier for developers to carry out, since
tools like QuickCheck make test and oracle implementation
and debugging easier, and many modern functional languages
(Haskell, F#, OCaml) provide code coverage tools. We propose
that mutation testing fits seamlessly into this workflow, and
can integrate well with the automation already widely used by
functional programmers.

The primary contributions of this paper are threefold.

• We propose that mutation testing can become a con-
siderably more powerful tool for improving testing by
applying it in the context of functional programming
languages, which we argue are in many ways ideally
suited for the testing workflow enabled by mutation
testing (Section II).

• We provide the first (to our knowledge) discussion
of the application of mutation testing to functional
languages, which requires different operators and as-
sumptions than in imperative languages (Section III).

• We demonstrate our claims by applying our mutation
tool, MuCheck, to a case study (Section IV and V).

II. ADVANTAGES OF FUNCTIONAL PROGRAMMING FOR
UNDERSTANDING MUTATION SURVIVAL

In this section, we elaborate our argument that functional
programming languages should make it easier to understand
why a mutation survives testing than traditional imperative

languages. To clarify the difficulties of mutant survival under-
standing in imperative code, we examined a random sample of
45 mutants covered but not detected by 5,000 swarm tests [7]
of the YAFFS2 flash file system [14]. Mutations were gener-
ated by an approach (and software) shown to provide a good
proxy for fault detection by Andrews et.al. [6]. Our original
intention was to identify the cause of each survival, but this
proved to be even more onerous than we had expected. While
our view that understanding the survival of these mutants was
too difficult is an opinion, not a validated empirical result,
our experience with file system development and random
testing [15], and familiarity with (testing) the YAFFS2 source
code specifically gives this opinion some weight.

Compactness. Functional programs are generally thought
to be much more compact than traditional imperative programs
with the same semantic content. For example, the following
Java 8 code (taken from [16]) utilizes the map idiom. Imple-
menting it imperatively can require up tolines of code.

myCollection.parallelStream().map(e-> e.length)

Mutation testing relies on the assumption that programs
are often “almost correct” in a syntactic sense and thus small
syntactic changes should produce realistic bugs that predict
a suite’s ability to detect real faults. In functional languages,
the space of nearby syntactically valid programs is typically
smaller, due to a greater expressive power for each syntactic
unit. This should lead to a smaller, but more meaningful,
set of mutants to examine. Most surviving mutants, if not
equivalent, should indicate serious defects in testing. Moreover,
the greater semantic “weight” of syntactic modification in
smaller programs ought to result in fewer equivalent mutants.

Referential Transparency. Referential transparency means
that an expression can be replaced with its value without
changing its behavior — informally, it means that for the same
inputs, a function will always return the same value. Pure
code (with no side effects) in any language is referentially
transparent, but code in a pure functional language is always
referentially transparent. Referential transparency has several
advantages, but in the context of testing perhaps its more
important feature is that a referentially transparent function can
be effectively tested without knowing the context it resides in,
so long as a specification of the relationship between inputs
and outputs can be established. This naturally compositional
verifiability encourages the use of tests and specifications at
the individual function level, which often means that when
a mutant survives a test, it is easy to establish that tests for
the mutated function itself should have detected the problem.
In imperative programs, code much more often depends on
a complex context (initialization of global data structures,
complex pointer-based data structures etc.) or is called partly
for side effects whose validity is difficult to check in isolation,
so complete specification and effective testing for individual
functions is much less frequent.

Simplicity of Data Flow. Attempting to understand why
mutants survive testing in an imperative program often involves
an effort to chase the flow of a modified data value. Of the
45 surviving YAFFS2 mutants, 18 consist of a modification or
deletion of an assignment to a variable. In some cases, these
values are stack-local, and in other cases they are global values.
In either case, understanding the mutant’s survival requires

determining where the value assigned (or not assigned in the
case of statement deletion) is next used. This is difficult in
the case of global variables used throughout the code, and ex-
tremely painful in the case of values assigned through pointer
dereferences, which may in general require understanding the
aliasing structure of the program. For example, one mutant
changes assignment to a field in a structure passed as a pointer
to the mutated function. The function is called in 5 places in
the code, in some cases passing another argument taken as a
pointer. Simply following the data flow in cases like this is very
hard, even though YAFFS2 is not a particularly alias-intensive
program by C standards. In functional code, in contrast, data
flows via one mechanism, function call evaluation. Finding
where a mutated value affects program semantics is a simple
matter of following the callees of the code containing the
mutated value. Equally importantly, in a purely functional
language, there is no equivalent of aliasing. Even in impure
functional languages (e.g. ML), aliasing is far less frequently
used than in languages such as C, C++, and Java. Arguably,
this is one area where object orientation increases the difficulty
of understanding, as many OO styles encourage not only heavy
use of state mutation and references that cannot easily be
understood in a static reading of code, but also make use of
virtual functions, which can further complicate matters. Of
course, code in functional languages often calls a function
taken as a parameter, but in the absence of mutation the effect
of such calls on data flow is much easier to understand.

Clean Semantics. Another perplexing kind of survival is
the case where the mutant’s survival seems, on the face of it,
simply impossible. One mutant of the YAFFS2 code removes
the return statement from a function called in every single test
execution, which reading the code shows “should” result in an
invalid initialization of the emulated flash device. Removing
the return statement from a non-void function in C, however,
results in an undefined program semantics. As it happens, the
compiler we are using produces code such that this clearly
“bad” mutant is in fact equivalent to the original program. The
semantic equivalence is presumably not stable across architec-
tures, but examining such “accidentally equivalent” mutants
that would be detected easily by the suite as soon as they
become non-equivalent can require considerable effort. Before
realizing that the compiler was responsible, we examined the
code to see if the (we assumed) garbage return value was
not being actually used during initialization, etc. This effort
would have been considerably larger in non-initialization code,
where determining that garbage values would lead to a definite
crash would have been much more difficult because of the
difficulty of following the flow of the “wrong” data. In almost
all functional languages, programs with undefined semantics
are caught at compile time. Even functional languages such as
Scheme that lack strong static typing generally guarantee that
improper operations will cause a well-defined error behavior,
rather than arbitrary results. While well-defined semantics
are not unique to functional languages, two very popular
imperative languages (C and C++) make remaining within
the well-defined behavior of the language a challenge even
for normal code, much less mutated code. One mitigation in
C and C++ is to reject mutants where the compiler emits
serious warnings. This has two problems, however: first, it
is insufficient as many undefined behaviors are not detected
by compilers; second, some mutants rejected by the compiler

1type Rational = (Integer, Integer)
2equal:: Rational -> Rational -> Bool
3equal (_,0) (_,0) = True
4equal (_,0) _ = False
5equal _ (_,0) = False
6equal (n1,d1) (n2,d2) = n1*d2 == n2*d1

Fig. 2. An example for pattern matching in Haskell. Function equal checks
the quality of two rational numbers.

might reveal defects in the test suite.

III. MUTATION OPERATORS FOR FUNCTIONAL
PROGRAMS

In this section we discuss the selection of mutation oper-
ators for functional programming languages. Proper selection
of operators is key to successful mutation testing, given its
underlying rationale of detecting the ability of a test suite
to find “nearby” bugs. Andrews et al. propose four types of
operators for C program mutation testing [6]:

• Replacing integer constant N with one of {0, 1, -1,
N+1, N -1},

• replacing an arithmetic, relational, logical, bitwise log-
ical, increment/decrement, or arithmetic-assignment
operator by another of the same class,

• negating the conditional in if or while statements,
or,

• deleting a statement.

In this section, we propose mutation for basic constructs
of functional programs — we consider these operators suitable
for functional programs, but not sufficient. We use Haskell
notation to illustrate operators. We also discuss the possible
semantic effects of each mutation operator.

A. Reordering Pattern Matching

Pattern matching is a common idiom in functional pro-
grams. It is a form of conditional statement that matches a
variable with respect to its structure to different patterns. Each
pattern is associated with rules, such that if the pattern matches,
rules are executed. The ordering of rules in patterns is often
critical to the behavior of the program. That is, the program
can behave differently on different orders of pattern matching.
The following example illustrates this.

Example. Figure 2 shows an example of pattern matching in
Haskell. This program defines rational numbers, Rational,
as tuples of (numerator,denominator) (Line 1). Function
equal defines a function to check the equality between two
rational numbers (Line 2).It first checks if the denominators
are zero (Line 3). If both denominators and zero, both rational
numbers are equal (note that a fraction with zero in the
denominator evaluates to ∞). Then, in Lines 4 and 5, if
the denominator of one of the numbers is zero, the numbers
are not equal. Otherwise, Line 6 multiplies numerators and
denominators to check equality. Note that symbol _ is a
wildcard that matches all patterns. Suppose we reorder the
pattern matching by moving the pattern on line 6 to an
earlier position, say Line 2. This reordering would change

take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

(a)

take’ _ [] = []
take’ 0 _ = []
take’ n (x:xs) = x : take’(n-1) xs

(b)

Fig. 3. An example of divergence induced by mutation of pattern matching

the semantics of equal and introduces a bug, because now
equal returns true on 0

0 and 1
2 .

Re-ordering of pattern matching statements can also exhibit
subtle behaviors of interest like divergence. Consider the
functions take and take’ in Figure 3 which both return
the first n elements of a list. take and take’ are similar
except in the order of their patterns. Given a computation ⊥
that does not terminate (e.g., a generator of an infinite list),
take 0 ⊥ evaluates to [] while take’ 0 ⊥ evaluates to
⊥, i.e. it does not terminate.

In general, in pattern matching, if patterns of two or more
rules are not mutually exclusive, any change in ordering of
those rules potentially makes a semantically different behavior,
and is likely to be an error in the program.

B. Mutation of lists and list expressions

Lists are the most common data structures in functional
programming languages. Most functional idioms like map
and filter operate on lists. Thus, mutants based on lists are
good candidates for mutations testing. We speculate that the
following mutants represent a majority of list-related bugs.

• Replacing a list with the list identity element, i.e.
empty list.

• Removing a part in list expressions, e.g.
◦ replacing head:tail with tail or [head]
◦ replacing list1 ++ list2 with list2

++ list1, list1, or list2, where
list1 and list2 are lists.

C. Type-aware Function Replacement

In functional programs, functions are first class citizens.
That is, they have types, they can be passed to other higher-
order functions, and they can be returned by a function. In
strongly typed functional languages, the type of a function is
available at compile time. In traditional mutation of imperative
programs, the mutation operators are fairly restricted, and well
known, with “function” replacement usually limited to simple
operators, as in the rules stated above.

Given that strongly typed functional languages offer a
much richer type system, it is tempting to consider replacing
any functions with all type-equivalent functions. However,
this seems in practice to have two problems: (1) it may
introduce a mutation explosion and (2) many of these mutants
do not appear to be likely to correspond to real likely errors.
Therefore, it is more practical to allow users to add rules for
any cases where function replacement is a useful mutation.

There may be some cases that should be included as standard
mutations: for instance, the effect of replacing a function
of type a -> a with the identity function2 is similar to
“statement deletion” mutation that eliminates a computation.

IV. THE MUCHECK TOOL: A SIMPLE DSL FOR
MUTATION TESTING OF HASKELL PROGRAMS

The workflow shown in Figure 1 is already well-supported
in some functional programming languages, with the exception
of the use of mutation testing. The QuickCheck tool [13],
originally developed for Haskell, but since implemented in
many languages, uses automated random testing (generating
what QuickCheck calls arbitrary values of a given type) to test
a program. QuickCheck lets programmers write specifications
of program behavior as functions that take test inputs as
values, and then generates random values to try to falsify the
specification, reporting a counterexample when the property
does not hold. QuickCheck is popular because it is simple,
powerful, and highly configurable. In essence, QuickCheck
provides an expressive Domain Specific Language (DSL) for
writing correctness properties and customizing random input
generators.

MuCheck’s basic design is somewhat inspired by
QuickCheck: rather than aiming at a universally capable
tool, MuCheck aims to be easily extended and modified by
experienced Haskell programmers, and assumes the use of
QuickCheck for test case generation and evaluation.

A. Customizing MuCheck

MuCheck supports a set of customizable standard argu-
ments.

stdArgs = StdArgs {muOps = allOps
, doMutatePatternMatches = True
, doMutateValues = True
, doNegateIfElse = True
, doNegateGuards = True
, maxNumMutants = 30
, genMode = FirstOrderOnly }

muOps is set to use a set of pre-defined mutation
operators, but these can be replaced by user-defined
operators. doMutatePatternMatches specifies
whether MuCheck will permute pattern-matching
cases. doMutateValues enables mutating integer
values, which has four possibilities: (+1), (-1),
0, and 1. doNegateIfElse negates the Boolean
formula of if-then-else statements, while
doNegateGuards provides the same functionality for
guards. maxNumMutants limits the maximum number
of mutants to be generated. There are two possible
values of genMode, either FirstOrderOnly or
FirstAndHigherOrder. FirstOrderOnly limits
the application of mutation operators to one operator per
mutant. FirstAndHigherOrder will apply operators
once, and then re-apply those operators on generated mutants
when possible.

2The identity function does not do any computation and returns the input
as the output.

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort l ++ [x] ++ qsort r

where l = filter (< x) xs
r = filter (>= x) xs

Fig. 4. Implementation of QuickSort in Haskell

B. Mutation Operator Implementation

A mutation operator is a function that replaces the original
value with its mutated replacement. For instance, applying
the operator Ident "pred" ==> Ident "succ" will
replace instances of pred by succ one at a time. The use of
the constructor Ident ensures that only identifiers are affected
by the operator. The statement

Symbol "+" ==>* [Symbol "-", Symbol "*"]

creates two operators, one replacing + with - and one replacing
+ with *. The statement

[Symbol ">", Symbol "<"] *==>*
[Symbol "<=", Symbol ">="]

creates four operators, replacing each of >, < with each of <=,
>=. The three functions ==>, ==>*, and *==>* constitute a
simple DSL available for MuCheck’s users.

Mutation operators simplify tree traversal, yet they can
only deal with cases where the values to mutate are constants.
Changes such as adding 1 to an integer, permuting pattern-
matching cases, etc. cannot be represented using this form
of mutation operator. MuCheck deals with this problem by
inspecting the source code once to retrieve all constant values
such as Int 7. MuCheck then generates operators based on
the retrieved constants. For Int 7, the operators are Int 7
==>* [Int 0, Int 1, Int 6, Int 8].

V. A SIMPLE CASE STUDY: QUICK SORT

Figure 4 is an implementation of the quick sort algorithm
in Haskell. For testing it with QuickCheck, the programmer
should write specifications in the form of Boolean functions
that, given a test input, determine if the tested code passed
the test. For instance, one simple property of any sort is that
it should be idempotent: sorting a sorted list leaves the list
unchanged:

idempProp xs = xs == qsort (qsort xs)

QuickCheck instantly informs us that this specification does
not hold, and gives a counterexample, automatically reduced
in size:

Prelude Test.QuickCheck> quickCheck idempProp
*** Failed! Falsifiable (after 6 tests and 6 shrinks):
[1,0]

Looking closely, we realize we have incorrectly defined the
idempotency property, forgetting to apply qsort to xs one
on side of the equality:

idempProp xs = qsort xs == qsort (qsort xs)

Now QuickCheck reports no failed tests:

Prelude Test.QuickCheck> quickCheck idempProp
+++ OK, passed 100 tests.

Even without the aid of mutation testing, we can see that
idempotency is not a very complete specification for a sorting
function. We therefore also verify the ordering of elements in
the list:

isSorted [] = True
isSorted (x:[]) = True
isSorted (x:y:xs) | x <= y = isSorted (y:xs)

| otherwise = False
sortedProp xs = isSorted (qsort xs)

Again, QuickCheck shows that all test pass. It is tempting at
this point to believe that we have a complete test and oracle
for sorting. However, mutation testing can reveal that many
mutants survive these properties. If we apply our MuCheck
tool, it reports on the weakness of this specification:

Total number of mutants: 11
Errors: 0 (0%)
Successes (not killed): 5 (45%)
Failures (killed): 6 (54%)

Almost half of qsort mutants survive our “good” specification.
Examining the log, we see the mutants not killed by each
property. That some mutants survive the idempotence property
is not surprising, but that checking sortedness is insufficient
may be a surprise. Because our example code is so short
and simple, there is no need to apply Haskell’s coverage tool
— QuickCheck is certainly covering our code completely.
We therefore examine one of the mutants that survives the
sortedness property:

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x : xs) = qsort l ++ [x] ++ qsort r
where l = filter (<= x) xs

r = filter (>= x) xs

The problem is that the specification does not check that a list,
once sorted, has the same length as the original list. We can
fix our oracle by adding one more property:

lenProp xs = (length xs) == (length (qsort xs))

Adding lenProp to our list of properties to check, we find
that only one mutant survives testing. Examining it shows a
weakness of the current implementation of MuCheck:

qsort :: [Int] -> [Int]
qsort (x : xs) = qsort l ++ [x] ++ qsort r
where l = filter (< x) xs

r = filter (>= x) xs
qsort [] = []

This mutant is based on re-ordering patterns, but in this case
the patterns are non-overlapping so the mutant is equivalent.
Fortunately, this is easy to figure out. At this point, though our
specification is weak (since the precise property to establish is
that the new list is a sorted permutation of the input list), it is
effective for catching faults “near” the original source code of
qsort. If we applied our specification to an algorithm where
producing sorted equal-length results that changed values was a
short syntactic distance from our code, mutation testing would
reveal the need to further refine the specification.

Mutation testing can detect problems that are not simple
oracle insufficiency or coverage inadequacy. Consider the case

where we declare qsort to be a polymorphic sort that applies
to any ordered type, and forget to force our QuickCheck to
generate data of an interesting type, such as Int. Without
this information, QuickCheck generates lists of the unit type,
which is ordered but in a degenerate sense (it only has one
concrete instance). In this event, even the buggy idempotence
property is successful, and code coverage does not reveal
the problems with test input generation. MuCheck fortunately
reports that mutation survival is extremely high for even
obviously bad mutants, which may lead to an examination of
the test generation process (since the oracle is clearly strong
enough to detect these mutants).

Finally, mutation testing can help us simplify and un-
derstand our specification, even once it kills all mutants.
The power of different specifications may not be obvious.
For instance, in our quick sort example, the most powerful
specification is the length property, which actually kills all
non-equivalent mutants! The sortedness specification is the
least powerful, killing 54% of mutants. Even idempotence is
more powerful, killing 81% of mutants. In a sense, erroneous
behavior in the presence of duplicates is a more “likely missed”
error in a sorting algorithm than simple failure to produce
sorted results.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes that, while using mutation testing to
understand test suite failures and therefore improve testing
(either by improving the test suite itself or the oracle used
to check correctness) is too difficult for widespread adoption
in imperative programming languages, it may be a valuable
testing practice in functional programming languages. We
argue that certain features more commonly found in functional
than imperative languages make understanding the survival of
mutants a much easier task. Mutation testing in functional
languages requires a somewhat different set of operators, and
we have proposed a useful initial set of such operators. As
with imperative languages, considerable empirical investiga-
tion may eventually be required to establish an ideal set of
operators. A few examples, ranging from trivial (quick sort)
to minor (AVL trees) to realistic (XMonad) demonstrate the
potential of mutation testing as a tool for humans hoping to
improve test suites and oracles. MuCheck, a prototype tool
for mutation testing in Haskell that integrates smoothly with
QuickCheck and enables users to easily modify the set of
mutation operators applied to their programs, is available at
https://bitbucket.org/osu-testing/mucheck.git.

Future work can be divided into four increasingly ambitious
projects. First, as noted our implementation of mutation testing
for Haskell is far from complete and ideal. Further work on op-
erator selection, rejecting equivalent mutants, etc. is required.
Second, mutation testing would almost certainly be useful for
languages other than Haskell. Other popular functional lan-
guages such as those in the ML family (SML/NJ and OCaml)
and the LISP family (Scheme, Clojure) are obvious choices.
Moreover, some of the features that make functional programs
attractive targets for mutation testing have become more and
more widely adopted in languages that are not simply func-
tional languages. Python, Ruby, and other modern scripting
languages provide map, fold, filter, and λ constructs and
other functional features, and are often very concise. The latest

iterations of Java and C++ incorporate some form of lambda
expression. Investigating whether mutation understanding is
more effective when applied to imperative programs written
using a functional style is therefore a third extension. Given
that even when using functional features aliasing and state
mutation are likely to remain widely used, it is far from clear
that the benefits expected in functional languages will be easy
to arrive at in an imperative world. This suggest a fourth
extension: if mutation testing proves to be a valuable addition
to the standard testing workflow in functional languages, it may
be worth building static and dynamic analysis tools designed
specifically to help with understanding mutation survival in
imperative languages. We therefore propose the development
of mutation understanding tools that help provide a causal
explanation for why a given mutant has survived, as the testing
analogues to fault localization and explanation tools for faults
in code.

REFERENCES

[1] J. A. T. Acree, “On mutation,” Ph.D. dissertation, Georgia Institute of
Technology, 1980.

[2] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“Mutation analysis,” Georgia Institute of Technology, Tech. Rep., 1979.

[3] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, pp.
34–41, 1978.

[4] R. Hamlet, “Testing programs with the aid of a compiler,” Software
Engineering, IEEE Transactions on, vol. SE-3, no. 4, pp. 279–290,
1977.

[5] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649–678, 2011.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering, 2005, pp. 402–411.

[7] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,”
in International Symposium on Software Testing and Analysis, 2012,
pp. 78–88.

[8] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov, “Comparing non-adequate test suites using coverage crite-
ria,” in ACM International Symposium on Software Testing and Analysis.
ACM, 2013.

[9] T. Ball, “A theory of predicate-complete test coverage and generation,”
in Formal Methods for Components and Objects. Springer, 2005, pp.
1–22.

[10] H. Coles, “Pit mutation testing,” http://pittest.org/.
[11] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and

oracles,” Software Engineering, IEEE Transactions on, vol. 38, no. 2,
pp. 278–292, 2012.

[12] M. Staats, G. Gay, and M. P. E. Heimdahl, “Automated oracle creation
support, or: how I learned to stop worrying about fault propagation
and love mutation testing,” in International Conference on Software
Engineering, 2012, pp. 870–880.

[13] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” SIGPLAN Not., pp. 53–64, 2011.

[14] “Yaffs: A flash file system for embedded use,” http://www.yaffs.net/.
[15] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing

as a prelude to formal verification,” in International Conference on
Software Engineering, 2007, pp. 621–631.

[16] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing the gap
from imperative to functional programming through refactoring,” in
ESEC/FSE 2013, 2013, pp. 543–553.

