
Alex David Groce

Education

Ph.D., Computer Science, Carnegie Mellon University, March 2005
Thesis Title: Error Explanation and Fault Localization with Distance Metrics.
Thesis Committee: Edmund Clarke (chair), David Garlan, Reid Simmons, and Willem Visser

B.S., Computer Science, North Carolina State University, May 1999 (summa cum laude)

B.S., Multidisciplinary Studies, North Carolina State University, May 1999 (summa cum laude)

Minors: English Literature and Science, Technology, and Society

Experience

Summary: I have over fifteen years of experience in research, development, and analysis of complex software sys-
tems. My work focuses on testing, developing, specifying, and understanding critical distributed, embedded,
aerospace, systems, and security software and software/hardware systems, in order to increase the reliabil-
ity, security, and efficiency of these systems. I contributed significantly to the implementation and design of
verification and analysis tools used internationally for research, industrial application, and teaching, including
NASA’s Java PathFinder 2, CBMC, MAGIC, SyMP, JPL’s LogScope, and the Concurrency Workbench (NC).
More recently I have been developing languages and systems tools for software testing. I have been PI or co-PI
on externally funded grants totalling over $9.1M ($1.2M my share), and have authored or co-authored more
than 60 publications, primarily in ACM, IEEE, and top verification and formal methods venues, with over 3,300
citations, an h-index of 29, and an i10-index of 58, according to Google Scholar.

1/2017–present · Associate Professor with Tenure, School of Informatics, Computing, and Cyber Systems,
Northern Arizona University: Explored methods for bringing advanced automated testing techniques into de-
velopment practice, especially for Python and other languages used widely in bioinformatics and other scientific
applications. Continued to advance state-of-the-art in software testing.

9/2015–12/2016 · Associate Professor with Tenure, School of Electrical Engineering and Computer Science,
Oregon State University: Continued investigations of core problems in software and software/hardware sys-
tems understanding and correctness, including lightweight tools for automated testing and understanding by
non-experts. Began investigations of self-repairing and evolving systems for software longevity. Co-chaired
undergraduate curriculum committee.

6/2009–9/2015 · Assistant Professor, School of Electrical Engineering and Computer Science, Oregon State
University: Initiated investigation of methods and metrics for end-user testing of machine learning systems.
Continued work on unified approaches to testing, with new techniques applied to finding flaws in widely used
production-quality C compilers, JavaScript engines, and embedded file systems. Mentored graduate students,
taught graduate and undergraduate classes on software engineering and verification, and served on graduate and
undergraduate curriculum committees and the hiring committee.

2/2011–5/2015 · Consultant, Aries Design Automation, LLC: Provided expertise on verification, testing, and anal-
ysis for SBIR and other projects and proposals. Main consultant on NIST SBIR project “Using Automated
Abstractions to Classify System States for Software Health Monitoring,” aimed at improving systems engineer-
ing of health monitoring systems via code analysis and machine learning.

4/2008–6/2008, 4/2009-6/2009 · Lecturer in Computer Science, part-time, California Institute of Technology:
Taught CS 119, Reliable Software: Testing and Monitoring. Used research and JPL flight system experiences to
introduce state-of-the-art techniques and practical methods for testing and verification to students, with a focus
on automated approaches to executing software in order to find faults.

4/2005–6/2009 · Laboratory for Reliable Software, Jet Propulsion Laboratory: Led test automation development
and design, Mars Science Laboratory (Curiosity rover) Flight Software Internal Test Team. Introduced new
techniques for exploiting traces in static analysis of programs, integrated model checking and dynamic analysis,
developed a successful random testing approach for mission file systems, and contributed to modeling and
verification of Dawn mission launch sequence and fault protection. Led file system acceptance testing for a
NASA Discovery class mission; led model checking and random testing efforts for Mars Science Laboratory
(Curiosity) file storage modules; contributed to design for file systems used to store images, science products,
and telemetry during spaceflight missions. Served on design and code review panels for flight software systems
and hardware drivers. Worked with systems engineers to develop methods for specifying, generating, and
understanding logs of complex spacecraft software and hardware activity.

8/1999–3/2005 · Doctoral student, Carnegie Mellon University: Invented methods for error explanation and fault
isolation using distance metrics, applied to aerospace, security, and micro-kernel code. Invented and imple-
mented novel approaches for counterexample guided abstraction refinement and heuristic search guided model
checking. Implemented Athena proof system for security protocols, devised language and type system for en-
coding security protocols in the SyMP tool. Enriched teaching by incorporating research ideas into instruction,
assignments, and evaluation in undergraduate classes.

5/2002–8/2002 · Summer Student Research Program, RIACS (Research Institute for Advanced Computer
Science)/NASA Ames Research Center, Robust Software Engineering group: Invented and implemented
methods for error explanation, using model checking counterexamples to provide automatic feedback about the
causes and location of errors in complex systems.

5/2001–8/2001 · Summer Student Research Program, RIACS/NASA Ames Research Center, Robust Software
Engineering group: Invented and experimented with novel (and successful) heuristics for model checking Java
programs; implemented heuristic search in the Java PathFinder 2 model checker.

5/2000–8/2000 · Research intern, Bell Laboratories (Murray Hill): Implemented black box checking algorithm
(model checking for an unknown model using finite-state machine learning algorithms) and investigated theo-
retical aspects and applications of the algorithm to software model checking.

5/1999–8/1999 · Summer research assistant, SUNY Stony Brook: Continued work from the previous summer.

5/1998–8/1998 · Summer research assistant, North Carolina State University: Implemented a model checker
based on Alternating Büchi Tableau Automata and developed logical optimizations for ABTAs.

Research Interests

Designing, specifying, coding, testing, verifying, understanding, and debugging complex computer systems. My
research has combined testing, static analysis, formal methods, programming languages, and machine learn-
ing approaches as required. My current focus is on techniques for testing critical systems including JavaScript
engines and other compilers, web browsers, file systems, and more generally, all layers of the Android envi-
ronment, from system libraries to user applications. In the spirit of Henry Petroski’s proposal that progress
in engineering arises from understanding failures, I believe that a deeper understanding of bugs is essential to
better software and systems engineering and better engineering education.

Topics

Software testing: I am exploring the effectiveness and relative ease of (randomized) testing, and the rela-
tionship between testing, runtime verification or dynamic analysis, and model checking using unsound

2

abstractions — including shared models and frameworks for testing and model checking and strategies
based on constraint-solving and machine learning. I am aiding core developers of the Linux kernel to use
mutation analysis to improve kernel systems testing methods, and to verify critical algorithms.

Software model checking: I continue to investigate the use of SAT and SMT solvers for bounded model
checking (CBMC), predicate abstraction-based approaches (MAGIC, SATABS), and explicit-state explo-
ration with SPIN and Java PathFinder.

Understanding complex program executions: I am working with scientists at the United States Forest Ser-
vice to analyze complex models used to predict climate change impacts, with techniques that should also
apply to analyzing model checking and test system executions.

Educational use of analysis tools: I am interested in incorporating mature, robust “research” tools for system
design, debugging, and verification (model checking, random testing, static analysis, delta-debugging, etc.)
into engineering education: I believe such tools not only make for better engineering practice, but make
the learning experience more rewarding and interesting to students.

Honors

ACM 2017 Senior Member

ACM/IEEE International Conference on Software Engineering 2016 Distinguished Poster Award

IEEE International Conference on Software Testing, Verification and Validation (ICST) 2014 Best Paper Award

NASA Software of the Year Award for Mars Science Laboratory Flight Software, 2013 (MSL Flight Software team)

NASA Space Act Award for LogScope Software, 2011

National Science Foundation Faculty Early Career Development (CAREER) Program Award, 2011

JPL Mariner Award for LogScope Testing Software, 2009

JPL Spot Award (for Multi Mission System Architecture Platform (MSAP) File System Testing), 2006

ACM/IEEE International Conference on Software Engineering 2003 ACM SIGSOFT Distinguished Paper Award

NASA “Engineering Innovation” Turning Goals Into Reality (TGIR) Award 2003 (Java PathFinder team)

National Science Foundation Graduate Fellowship

NCSU Class of 1999 College of Humanities and Social Sciences Scholar (valedictorian for CHASS)

Phi Beta Kappa

Funding

“Interfaces, Models, and Monitoring for Resource-aware Transformations that Augment the Lifecycle of Systems
(IMMoRTALS)”, PIs: Matt Gillen (BBN), Doug Schmidt (Vanderbilt), Eric Walkingshaw (Oregon State Uni-
versity), Heng Yin (Syracuse), Co-PIs: Alex Groce, Jules White (Vanderbilt), Jacob Staples (Securboration),
DARPA BRASS (Building Resource Adaptive Software Systems), BAA-15-36, $464,625, $1.6M total Oregon
State University budget, (total project budget $7.7M), October 2015-September 2019.

“Advanced Tools for Effective Automated Test Generation”, PIs: Miroslav Velev (Aries Design Automation, LLC),
Alex Groce, NASA Small Business Technology Transfer Phase I T11.01-9878, $52,037 (total budget $125,000),
July 2015-2016.

“Explorations of Testing in the Cloud”, PI: Alex Groce, Amazon Web Services in Education Grants, $10,000, January
2015-2017.

3

“II-EN: Software Tools for Monte-Carlo Optimization”, PI: Alan Fern, Co-PIs: Alex Groce, Sinisa Todorovic, Prasad
Tadepalli, Thomas Dietterich, National Science Foundation CNS-1406049, $442,366, October 2014-September
2017 (infrastructure development for cloud-based optimization tools with ML, graphics, and testing applica-
tions; includes $12,000 dedicated compute time for software testing research).

“Diversity and Feedback in Random Testing for Systems Software”, PIs: Alex Groce, John Regehr (University of
Utah), National Science Foundation CCF-1217824, $242,244 (total budget $491,280), September 2012-2015.

“CAREER: Integrating Automated Software Testing Methods”, PI: Alex Groce, National Science Foundation CCF-
1054876, $400,000, September 2011-2016.

Books, Edited Volumes

Alex Groce and Stefan Leue (eds). Proceedings of the 2nd International Workshop on Causal Reasoning for Em-
bedded and safety-critical Systems Technologies. Electronic Proceedings in Theoretical Computer Science,
Volume 259, October 2017.

Alex Groce and Madanlal Musuvathi (eds). Model Checking Software: Proceedings of the 18th International SPIN
Workshop. Springer-Verlag, LNCS 6823, 2011.

Refereed Journal Publications

Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mittal, Pooria Azimi, Kevin Kellar, and James O’Brien. TSTL:
the Template Scripting Testing Language. International Journal on Software Tools for Technology Transfer,
20(1):57-78, February 2018.

Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and Alex Groce. Mutation Reduction
Strategies Considered Harmful. IEEE Transactions on Reliability, 66(3): 854-874, September 2017.

Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and Alex Groce. Does Choice of
Mutation Tool Matter? Software Quality Journal, 25(3):871-920, September 2017.

Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr. Cause Reduction: Delta
Debugging, Even Without Bugs. Journal of Software Testing, Verification and Reliability, 26(1):40-68, January
2016.

Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko Marinov.
Guidelines for Coverage-Based Comparisons of Non-Adequate Test Suites. ACM Transactions on Software
Engineering and Methodology, 24(4):4-37, August 2015.

Alex Groce, Klaus Havelund, Gerard Holzmann, Rajeev Joshi, and Ru-Gang Xu. Establishing Flight Software
Reliability: Testing, Model Checking, Constraint-Solving, Monitoring and Learning. Annals of Mathematics
and Artificial Intelligence, 70(4):315-348, April 2014.

Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini Shamasunder, Margaret Burnett, Weng-Keen Wong, Simone
Stumpf, Shubhomoy Das, Amber Shinsel, Forrest Bice, and Kevin McIntosh. You Are the Only Possible
Oracle: Effective Test Selection for End Users of Interactive Machine Learning Systems. IEEE Transactions
on Software Engineering, 40(3):307-323, March 2014.

Gerard Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification Techniques. IEEE Transactions on Software
Engineering, 37(6):845-857, November 2011.

Howard Barringer, Alex Groce, Klaus Havelund, and Margaret Smith. Formal Analysis of Log Files. Journal of
Aerospace Computing, Information, and Communication, 7(11):365-390, December 2010.

Gerard Holzmann, Rajeev Joshi, and Alex Groce. Model Driven Code Checking. Automated Software Engineering
Journal, 15(3-4):283-297, December 2008.

4

Alex Groce and Rajeev Joshi. Exploiting Traces in Static Program Analysis: Better Model Checking through printf s.
International Journal on Software Tools for Technology Transfer, 10(2):131-144, March 2008.

Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive Model Checking. Logic Journal of the IGPL,
14(5):729-744, October 2006.

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error Explanation with Distance Metrics. Interna-
tional Journal on Software Tools for Technology Transfer, 8(3):229-247, June 2006.

Alex Groce and Willem Visser. Heuristics for Model Checking Java Programs. International Journal on Software
Tools for Technology Transfer, 6(4):260-276, August 2004.

Sagar Chaki, Edmund Clarke, Alex Groce, Joel Ouaknine, Ofer Strichman, and Karen Yorav. Efficient Verification
of Sequential and Concurrent C Programs. Formal Methods in System Design, Special Issue on Software Model
Checking, 25(2-3):129-166, September-November 2004.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular Verification of Software
Components in C. IEEE Transactions on Software Engineering, 30(6):388-402, June 2004.

Refereed Conference and Workshop Publications

Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang. An Extensible, Regular-Expression-
Based Tool for Multi-Language Mutant Generation. IEEE/ACM International Conference on Automated Soft-
ware Engineering, accepted for publication, Gotherburg, Sweden, May-June 2018 (demonstrations track).

Peter Goodman and Alex Groce. DeepState: Symbolic Unit Testing for C and C++. NDSS Workshop on Binary
Analysis Research, accepted for publication, San Diego, California, February 2018.

Alex Groce and Josie Holmes. Provenance and Pseudo-Provenance for Seeded Learning-Based Automated Test
Generation. NIPS 2017 Interpretable ML Symposium, Long Beach, California, December 2017.

Arpit Christi, Alex Groce, and Rahul Gopinath. Resource Adaptation via Test-Based Software Minimization. IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, pages 61-70, Tucson, Arizona, Septem-
ber 2017 (acceptance rate 21%).

Alex Groce, Josie Holmes, and Kevin Kellar. One Test to Rule Them All. ACM International Symposium on
Software Testing and Analysis, pages 1-11, Santa Barbara, California, July 2017 (acceptance rate 26%).

Alex Groce, Paul Flikkema, and Josie Holmes. Towards Automated Composition of Heterogeneous Tests for Cyber-
Physical Systems. Workshop on Testing Embedded and Cyber-Physical Systems, pages 12-15, Santa Barbara,
California, July 2017.

Josie Holmes and Alex Groce. A Suite of Tools for Making Effective Use of Automatically Generated Tests. ACM
International Symposium on Software Testing and Analysis, pages 356-359, Santa Barbara, California, July 2017
(Tools and Demonstrations track).

Rahul Gopinath, Carlos Jensen, and Alex Groce. The Theory of Composite Faults. IEEE International Conference
on Software Testing, Verification and Validation, pages 47-57, Tokyo, Japan, March 2017 (acceptance rate 27%).

Iftekhar Ahmed, Carlos Jensen, Alex Groce, and Paul McKenney. Applying Mutation Analysis on Kernel Test
Suites: An Experience Report. International Workshop on Mutation Analysis, pages 110-115, Tokyo, Japan,
March 2017.

Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen. Can Testedness be Effectively
Measured? ACM SIGSOFT International Symposium on the Foundations of Software Engineering, pages 547-
558, Seattle, Washington, November 2016 (acceptance rate 27%).

5

Josie Holmes, Alex Groce, and Mohammad Amin Alipour. Mitigating (and Exploiting) Test Reduction Slippage.
Workshop on Automated Software Testing, pages 66-69, Seattle, Washington, November 2016.

Ali Aburas and Alex Groce. A Method Dependence Relations Guided Genetic Algorithm. International Symposium
on Search-Based Software Engineering, pages 267-273, Raleigh, North Carolina, October 2016 (short paper
track).

Mohammad Amin Alipour, August Shi, Rahul Gopinath, Darko Marinov, and Alex Groce. Evaluating Non-Adequate
Test-Case Reduction. IEEE/ACM International Conference on Automated Software Engineering, pages 16-26,
Singapore, Singapore, September 2016 (acceptance rate 20%).

Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. Generating Focused Random Tests
Using Directed Swarm Testing. ACM International Symposium on Software Testing and Analysis, pages 70-81,
Saarbrucken, Germany, July 2016 (acceptance rate 25%).

Pranjal Mittal and Alex Groce. Poster: TSTL: A Little Language for Automated Testing Written in Python. PyCon
2016, Portland, Oregon, May-June 2016.

Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. On the Limits of Mutation
Reduction Strategies. ACM/IEEE International Conference on Software Engineering, pages 511-522, Austin,
Texas, May 2016 (acceptance rate 19%).

Rahul Gopinath, Carlos Jensen, and Alex Groce. Poster: Topsy-Turvy: A Smarter and Faster Parallelization of
Mutation Analysis. ACM/IEEE International Conference on Software Engineering, pages 740-743, Austin,
Texas, May 2016 (poster track, acceptance rate 58%), Distinguished Poster Award.

Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. Measuring Effec-
tiveness of Mutant Sets. International Workshop on Mutation Analysis, pages 132-141, Chicago, Illinois, April
2016.

Alex Groce, Iftekhar Ahmed, Carlos Jensen, and Paul E. McKenney. How Verified is My Code? Falsification-
Driven Verification. IEEE/ACM International Conference on Automated Software Engineering, pages 737-748,
Lincoln, Nebraska, November 2015 (acceptance rate 21%), invited for journal submission to ASE.

Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. How Hard Does
Mutation Analysis Have to Be, Anyway? IEEE International Symposium on Software Reliability Engineering,
pages 216-227, Gaithersburg, Maryland, November 2015 (acceptance rate 32%).

Alex Groce, Jervis Pinto, Pooria Azimi, and Pranjal Mittal. TSTL: A Language and Tool for Testing (Demo). ACM
International Symposium on Software Testing and Analysis, pages 414-417, Baltimore, Maryland, July 2015
(Tools and Demonstrations track).

Alex Groce and Jervis Pinto. A Little Language for Testing. NASA Formal Methods Symposium, pages 204-218,
Pasadena, California, April 2015 (acceptance rate 31%).

Yuanli Pei, Arpit Christi, Xiaoli Fern, Alex Groce, and Weng-Keen Wong. Taming a Fuzzer Using Delta Debugging
Trails. International Workshop on Software Mining, Shenzhen, China, December 2014.

Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How Close are they to Real Faults? IEEE International
Symposium on Software Reliability Engineering, pages 189-200, Naples, Italy, November 2014 (acceptance rate
25%).

Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. Coverage and Its Discontents. ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! Essays, part of SPLASH (ACM SIGPLAN
Conference on Systems, Programming, Languages and Applications: Software for Humanity), pages 255-268,
Portland, Oregon, October 2014.

6

Ali Aburas and Alex Groce. An Improved Memetic Algorithm with Method Dependence Relations (MAMDR).
International Conference on Quality Software, pages 11-20, Dallas, Texas, October 2014 (acceptance rate 26%).

Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. Using Test Case Reduction and Prioritization to
Improve Symbolic Execution. ACM International Symposium on Software Testing and Analysis, pages 60-70,
San Jose, California, July 2014 (acceptance rate 28%).

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. MuCheck: an Extensible Tool for Mutation
Testing of Haskell Programs. ACM International Symposium on Software Testing and Analysis, pages 429-432,
San Jose, California, July 2014 (Tools and Demonstration track).

Rahul Gopinath, Carlos Jensen, and Alex Groce. Code Coverage for Suite Evaluation by Developers. ACM/IEEE
International Conference on Software Engineering, pages 72-82, Hyderabad, India, May-June 2014 (acceptance
rate 20%).

Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr. Cause Reduction for
Quick Testing. IEEE International Conference on Software Testing, Verification and Validation, pages 243-252,
Cleveland, Ohio, March-April 2014 (acceptance rate 28%), Best Paper Award, invited for journal submission
to STVR.

Amin Alipour, Alex Groce, Chaoqiang Zhang, Anahita Sanadaji, and Gokul Caushik. Finding Model-Checkable
Needles in Large Source Code Haystacks: Modular Bug-Finding via Static Analysis and Dynamic Invariant
Discovery. International Workshop on Constraints in Formal Verification, San Jose, California, November
2013.

Alex Groce, Chaoqiang Zhang, Mohammad Amin Alipour, Eric Eide, Yang Chen, and John Regehr. Help, Help, I’m
Being Suppressed! The Significance of Suppressors in Software Testing. IEEE International Symposium on
Software Reliability Engineering, pages 390-399, Pasadena, California, November 2013 (acceptance rate 35%).

Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Amin Alipour, and Darko Marinov. Comparing Non-
adequate Test Suites using Coverage Criteria. ACM International Symposium on Software Testing and Analysis,
pages 302-313, Lugano, Switzerland, July 2013 (acceptance rate 26%), invited for journal submission to
ACM TOSEM.

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John Regehr. Taming
Compiler Fuzzers. ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
197-208, Seattle, Washington, June 2013 (acceptance rate 17%).

Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Mohammad Amin Alipour, Martin Erwig, and Camden Lopez.
Lightweight Automated Testing with Adaptation-Based Programming. IEEE International Symposium on Soft-
ware Reliability Engineering, pages 161-170, Dallas, Texas, November 2012 (acceptance rate 30%).

Mohammad Amin Alipour and Alex Groce. Extended Program Invariants: Applications in Testing and Fault Local-
ization. International Workshop on Dynamic Analysis, pages 7-11, Minneapolis, Minnesota, July 2012.

Alex Groce and Martin Erwig. Finding Common Ground: Choose, Assert, and Assume. International Workshop on
Dynamic Analysis, pages 12-17, Minneapolis, Minnesota, July 2012.

Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm Testing. ACM International
Symposium on Software Testing and Analysis, pages 78-88, Minneapolis, Minnesota, July 2012 (acceptance rate
29%).

Alex Groce. Coverage Rewarded: Test Input Generation via Adaptation-Based Programming. IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 380-383, Lawrence, Kansas, November 2011
(short paper, acceptance rate 35%).

7

Mohammad Amin Alipour and Alex Groce. Bounded Model Checking and Feature Omission Diversity. Interna-
tional Workshop on Constraints in Formal Verification, San Jose, California, November 2011.

Amber Shinsel, Todd Kulesza, Margaret Burnett, William Curran, Alex Groce, Simone Stumpf, and Weng-Keen
Wong. Mini-Crowdsourcing End-User Assessment of Intelligent Assistants: A Cost-Benefit Study. IEEE Sym-
posium on Visual Languages and Human-Centric Computing, pages 47-54, Pittsburgh, Pennsylvania, September
2011 (acceptance rate 35%).

Todd Kulesza, Margaret Burnett, Simone Stumpf, Weng-Keen Wong, Shubhomoy Das, Alex Groce, Amber Shinsel,
Forrest Bice and Kevin McIntosh. Where Are My Intelligent Assistant’s Mistakes? A Systematic Testing
Approach. International Symposium on End-User Development, pages 171-186, Brindisi, Italy, June 2011
(acceptance rate 40%).

Alex Groce, Klaus Havelund, and Margaret Smith. From Scripts to Specifications: the Evolution of a Flight Software
Testing Effort. ACM/IEEE International Conference on Software Engineering, pages 129-138, Cape Town,
South Africa, May 2010 (Software Engineering in Practice, acceptance rate 23%).

Alex Groce. (Quickly) Testing the Tester via Path Coverage. International Workshop on Dynamic Analysis, Chicago,
Illinois, July 2009.

James Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu. Random Test Run Length and Effectiveness.
IEEE/ACM International Conference on Automated Software Engineering, pages 19-28, L’Aquila, Italy, Septem-
ber 2008 (acceptance rate 12%).

Gerard Holzmann, Rajeev Joshi, and Alex Groce. Tackling Large Verification Problems with the Swarm Tool. SPIN
Workshop on Model Checking of Software, pages 134-143, Los Angeles, California, August 2008.

Klaus Havelund, Alex Groce, Gerard Holzmann, Rajeev Joshi, and Margaret Smith. Automated Testing of Planning
Models. Workshop on Model Checking and Artificial Intelligence, pages 90-105, Patras, Greece, July 2008.

Alex Groce and Rajeev Joshi. Random Testing and Model Checking: Building a Common Framework for Nonde-
terministic Exploration. International Workshop on Dynamic Analysis, pages 22-28, Seattle, Washington, July
2008.

Alex Groce and Rajeev Joshi. Extending Model Checking with Dynamic Analysis. Conference on Verification,
Model Checking and Abstract Interpretation, pages 142-156, San Francisco, California, January 2008 (accep-
tance rate 34%).

Nicolas Blanc, Alex Groce, and Daniel Kroening. Verifying C++ with STL Containers via Predicate Abstraction.
IEEE/ACM International Conference on Automated Software Engineering, pages 521-524, Atlanta, Georgia,
November 2007 (short paper, acceptance rate 25%).

Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized Differential Testing as a Prelude to Formal Verifica-
tion. ACM/IEEE International Conference on Software Engineering, pages 621-631, Minneapolis, Minnesota,
May 2007 (Software Engineering in Practice, acceptance rate 27%).

Alex Groce and Rajeev Joshi. Exploiting Traces in Program Analysis. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 379-393, Vienna, Austria, March-April 2006
(acceptance rate 25%), invited for journal submission to STTT.

Daniel Kroening, Alex Groce, and Edmund Clarke. Counterexample Guided Abstraction Refinement via Program
Execution. International Conference on Formal Engineering Methods, pages 224-238, Seattle, Washington,
November 2004 (acceptance rate 27%).

Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining Abstract Counterexamples. ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, pages 73-82, Newport Beach, California, October-
November 2004 (acceptance rate 15%).

8

Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding Counterexamples with explain. International
Conference on Computer Aided Verification, pages 453-456, Boston, Massachusetts, July 2004 (tool paper).

Alex Groce and Daniel Kroening. Making the Most of BMC Counterexamples. Workshop on Bounded Model
Checking, pages 71-84, Boston, Massachusetts, July 2004.

Alex Groce. Error Explanation with Distance Metrics. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 108-122, Barcelona, Spain, March-April 2004 (acceptance rate
26%), invited for journal submission to STTT.

Sagar Chaki, Edmund Clarke, Alex Groce, and Ofer Strichman. Predicate Abstraction with Minimum Predicates.
Advanced Research Working Conference on Correct Hardware Design and Verification Methods, pages 19-34,
L’Aquila, Italy, October 2003 (acceptance rate 37%).

Edjard Mota, Edmund Clarke, W. Oliveira, Alex Groce, J. Kanda, and M. Falcao. VeriAgent: an Approach to
Integrating UML and Formal Verification Tools. Brazilian Workshop on Formal Methods, pages 111-129,
Universidade Federal de Campina Grande, Brazil, October 2003.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular Verification of Software
Components in C. ACM/IEEE International Conference on Software Engineering, pages 385-395, Portland,
Oregon, May 2003 (acceptance rate 13%), ICSE SIGSOFT Distinguished Paper Award, invited for journal
submission to IEEE TSE.

Alex Groce and Willem Visser. What Went Wrong: Explaining Counterexamples. SPIN Workshop on Model
Checking of Software, pages 121-135, Portland, Oregon, May 2003.

Alex Groce and Willem Visser. Model Checking Java Programs using Structural Heuristics. ACM International
Symposium on Software Testing and Analysis, pages 12-21, Rome, Italy, July 2002 (acceptance rate 19%).

Alex Groce, Doron Peled, and Mihalis Yannakakis. AMC: An Adaptive Model Checker. International Conference
on Computer Aided Verification, pages 521-525, Copenhagen, Denmark, July 2002 (tool paper).

Alex Groce and Willem Visser. Heuristic Model Checking for Java Programs. SPIN Workshop on Model Checking
of Software, pages 242-245, Grenoble, France, April 2002 (tool paper).

Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive Model Checking. International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 357-370, Grenoble, France, April 2002
(acceptance rate 31%).

Girish Bhat, Rance Cleaveland, and Alex Groce. Efficient Model Checking Via Büchi Tableau Automata. Inter-
national Conference on Computer Aided Verification, pages 38-52, Paris, France, July 2001 (acceptance rate
29%).

Invited Papers

Miroslav Velev, Chaoqiang Zhang, Ping Gao, and Alex Groce. Exploiting Abstraction, Learning from Random Sim-
ulation, and SVM Classification for Efficient Dynamic Prediction of Software Health Problems. International
Symposium on Quality Electronic Design, Santa Clara, CA, March 2015.

Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto, Tim Bauer, and Mohammad Amin Alipour. Learning-Based
Test Programming for Programmers. International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, pages 572-586, Heraclion, Crete, October 2012.

Howard Barringer, Alex Groce, Klaus Havelund, and Margaret Smith. Formal Analysis of Log Files. SMC-IT
Workshop on Software Reliability for Space Missions, Pasadena CA, July 2009.

9

Howard Barringer, Alex Groce, Klaus Havelund, and Margaret Smith. An Entry Point for Formal Methods: Specifi-
cation and Analysis of Event Logs. 1st Workshop on Formal Methods in Aerospace, Electronic Proceedings of
Theoretical Computer Science (EPTCS), Eindhoven, Holland, November 2009.

Howard Barringer, Klaus Havelund, David Rydeheard, and Alex Groce. Rule Systems for Runtime Verification: A
Short Tutorial. International Workshop on Runtime Verification, pages 1-24, Grenoble, France, June 2009.

Gerard Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification. IEEE/ACM International Conference on
Automated Software Engineering, pages 1-6, L’Aquila, Italy, September 2008.

Alex Groce, Gerard Holzmann, Rajeev Joshi, and Ru-Gang Xu. Putting Flight Software Through the Paces with
Testing, Model Checking, and Constraint-Solving. International Workshop on Constraints in Formal Verifica-
tion, pages 1-15, Sydney, Australia, August 2008.

Gerard Holzmann, Rajeev Joshi, and Alex Groce. New Challenges in Model Checking. 25 Years of Model Checking,
pages 65-76, Seattle, Washington, August 2006.

Columns, Book Reviews, and Magazine Articles

Alex Groce. Bruce Sterling’s Ascendancies: The Best of Bruce Sterling. Passages column, ACM SIGSOFT Software
Engineering Notes, accepted for publication.

Alex Groce. Karl Popper’s The Logic of Scientific Discovery. Passages column, ACM SIGSOFT Software Engineer-
ing Notes, accepted for publication.

Alex Groce. Brian Kernighan and P. J. Plauger’s The Elements of Programming Style (Second Edition). Passages
column, ACM SIGSOFT Software Engineering Notes, 42(4): 5, October 2017.

Alex Groce. Charles Petzold’s Code: The Hidden Language of Computer Hardware and Software. Passages column,
ACM SIGSOFT Software Engineering Notes, 42(3): 9, July 2017.

Alex Groce. Herbert A. Simon’s The Sciences of the Artificial (Third Edition). Passages column, ACM SIGSOFT
Software Engineering Notes, 42(2): 5-6, April 2017.

Alex Groce. Daniel P. Friedman and Matthias Felleisen’s The Little Schemer - 4th edition. Passages column, ACM
SIGSOFT Software Engineering Notes, 41(6): 5-6, November 2016.

Alex Groce. Jon Bentley’s More Programming Pearls: Confessions of a Coder. Passages column, ACM SIGSOFT
Software Engineering Notes, 41(5): 6, September 2016.

Alex Groce. Sherry Turkle’s The Second Self: Computers and the Human Spirit. Passages column, ACM SIGSOFT
Software Engineering Notes, 41(4): 6-7, July 2016

Alex Groce. Samuel C. Florman’s The Existential Pleasures of Engineering. Passages column, ACM SIGSOFT
Software Engineering Notes, 41(3): 4-5, May 2016.

Alex Groce. Edward R. Tufte’s The Visual Display of Quantitative Information. Passages column, ACM SIGSOFT
Software Engineering Notes, 41(2): 5, March 2016.

Alex Groce. David Agans’ Debugging: the 9 Indispensable Rules for Finding Even the Most Elusive Software and
Hardware Problems. Passages column, ACM SIGSOFT Software Engineering Notes, 41(1): 5, January 2016.

Alex Groce. Donald E. Knuth’s Selected Papers on Computer Science. Passages column, ACM SIGSOFT Software
Engineering Notes, 40(3): 4-5, May 2015.

Alex Groce. George Polya’s How to Solve It: A New Aspect of Mathematical Method. Passages column, ACM
SIGSOFT Software Engineering Notes, 40(2): 5-6, March 2015.

10

Alex Groce. Hugh Kenner’s The Mechanic Muse. Passages column, ACM SIGSOFT Software Engineering Notes,
40(1): 8-9, January 2015.

Alex Groce. Andrew Hunt and David Thomas’ The Pragmatic Programmer: from journeyman to master. Passages
column, ACM SIGSOFT Software Engineering Notes, 39(6): 6-7, November 2014.

Alex Groce. Vernor Vinge’s A Deepness in the Sky. Passages column, ACM SIGSOFT Software Engineering Notes,
39(5): 5, September 2014.

Alex Groce. Tom DeMarco and Timothy Lister’s Waltzing with Bears: Managing Risk on Software Projects.
Passages column, ACM SIGSOFT Software Engineering Notes, 39(4): 8-9, July 2014.

Alex Groce. Henry Petroski’s To Engineer is Human: the Role of Failure in Successful Design. Passages column,
ACM SIGSOFT Software Engineering Notes, 39(3): 6-7, May 2014.

Alex Groce. Jon Bentley’s Programming Pearls. Passages column, ACM SIGSOFT Software Engineering Notes,
39(2): 4-5, March 2014.

Alex Groce. Tracy Kidder’s The Soul of a New Machine. Passages column, ACM SIGSOFT Software Engineering
Notes, 39(1): 6-7, January 2014.

Alex Groce. Frederick P. Brooks, Jr.’s The Mythical Man-Month: Essays on Software Engineering. Passages
column, ACM SIGSOFT Software Engineering Notes, 38(6): 6-7, November 2013.

Alex Groce. Charles Babbage’s Passages from the Life of a Philosopher. Passages column, ACM SIGSOFT Software
Engineering Notes, 38(5): 17-18, September 2013.

Technical Reports

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. Mutation Testing of Functional Programming
Languages. Technical Report, School of Computer Science and Electrical Engineering, Oregon State University,
2014.

Jamie Andrews, Yihao Ross Zhang, and Alex Groce. Comparing Automated Unit Testing Strategies. Technical
Report 736, Department of Computer Science, University of Western Ontario, December 2010.

Brian Kernighan, Dennis Ritchie, Doug McIlroy, Eddie Benowitz, Scott Burleigh, Tim Canham, Benjamin Ci-
chy, Ken Clark, Micah Clark, Len Day, Robert Denise, Will Duquette, Dan Dvorak, Dan Eldred, Ed Gam-
ble, Peter Gluck, Kim Gostelow, Chris Grasso, Alex Groce, Dave Hecox, Gerard Holzmann, Joe Hutcher-
son, Rajeev Joshi, Roger Klemm, Frank Kuykendall, Mary Lam, Steve Larson, Todd Litwin, Tom Lockhart,
Lloyd Manglapus, Kenny Meyer, Alex Murray, Al Niessner, Bob Rasmussen, Len Reder, Glenn Reeves, Kirk
Reinholtz, Mike Roche, Nicolas Rouquette, Steve Scandore, Marcel Schoppers, Dave Smyth, Ken Starr, Igor
Uchenik, Dave Wagner, Garth Watney, Steve Watson, Matt Wette, and Jesse Wright. JPL Institutional Cod-
ing Standard for the C Programming Language. Jet Propulsion Laboratory, web publication, March 3, 2009
(http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf).

Nicolas Blanc, Daniel Kroening, and Alex Groce. Verifying C++ with STL Containers via Predicate Abstraction.
Technical Report 506, ETH Zürich, January 2006.

Alex Groce. Error Explanation and Fault Localization with Distance Metrics. (Ph.D. Thesis) Technical Report
CMU-CS-05-121, Carnegie Mellon University, March 2005.

Alex Groce, Doron Peled, and Mihalis Yannakakis. AMC: An Adaptive Model Checker. ALR-2002-008, Avaya
Labs Research, February 2002.

Alex Groce and Willem Visser. What Went Wrong: Explaining Counterexamples. Technical Report 02-08, RIACS,
USRA, February 2002.

11

Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive Model Checking. ALR-2002-002, Avaya Labs
Research, January 2002.

Sergey Berezin and Alex Groce. SyMP: The Hacker’s Manual. Carnegie Mellon University, web publication, May
12, 2001 (http://www.cs.cmu.edu/˜modelcheck/symp.html).

Sergey Berezin and Alex Groce. SyMP: The User’s Guide. Carnegie Mellon University, web publication, December
27, 2000 (http://www.cs.cmu.edu/˜modelcheck/symp.html).

Professional Activities and Service

Reviewer for IEEE Transactions on Software Engineering (TSE), ACM Transactions on Software Engineering and
Methodology (TOSEM), Journal of the ACM (JACM), Software Tools for Technology Transfer (STTT), Formal
Methods in System Design (FMSD), IEEE Transactions on Parallel and Distributed Systems (TPDS), IEEE
Transactions on Reliability, IEEE Transactions on Embedded Computing Systems (TECS), Information Pro-
cessing Letters (IPL), IEEE Transactions on Computers (TC), IEEE Transactions on Industrial Informatics,
Empirical Software Engineering, Algorithmica, Computers & Security, Microprocessors and Microsystems:
Embedded Hardware Design, Journal on Satisfiability, Boolean Modeling and Computation (JSAT), Journal
of Logic and Computation, Artificial Intelligence, Journal of Computer and System Sciences (JCSS), Software
Testing, Verification and Reliability (STVR), Automated Software Engineering Journal, Annals of Mathematics
and Artificial Intelligence (AMAI), Science of Computer Programming, Journal of Applied Logic (JAL), Journal
of Computer Science and Technology (JCST), Journal of Systems and Software (JSS), PLOS ONE, Information
and Software Technology (IST), The Computer Science Journal, International Conference on Computer Aided
Verification (CAV), International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE), IEEE/ACM
International Conference on Automated Software Engineering (ASE), ACM/IEEE International Conference on
Software Engineering (ICSE), ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages
(POPL), ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), ACM
CHI Conference on Human Factors in Computing Systems (CHI), Verification, Model Checking, and Abstract
Interpretation (VMCAI), International Conference on Software Testing, Verification and Validation (ICST),
Symposium on Automated and Analysis-driven Debugging (AADEBUG), Fundamental Approaches to Software
Engineering (FASE), NASA Formal Methods Symposium (NFM), ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS), Formal Techniques for Networked and Distributed Systems (FORTE),
Asia and South Pacific Design Automation Conference (ASP-DAC), Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR), Formal Methods in Computer-Aided Design (FMCAD), Australasian Computer
Science Conference (ACSC), SPIN Workshop on Model Checking of Software, Workshop on Model Checking
and Artificial Intelligence (MoChArt), Specification and Verification of Component-Based Systems (SAVCBS),
Workshop on Verification and Debugging (V&D), International Workshop on Constraints in Formal Verification
(CFV), Workshop on Software Model Checking (SoftMC), Workshop on Verification and Validation for Plan-
ning and Scheduling Systems (VVPS), IEEE Software Engineering Workshop (SEW), Java Pathfinder Workshop
(JPF), International Workshop on Dynamic Analysis (WODA), and Workshop on Formal Methods for Industrial
Critical Systems (FMICS).

Senior member of ACM (Association for Computing Machinery).

ACM, Special Interest Group on Software Engineering (SIGSOFT), Special Interest Group on Programming Lan-
guages (SIGPLAN) member.

ACM SIGSOFT “Passages” classic book review columnist for SIGSOFT Software Engineering Notes.

IEEE, IEEE Computer Society member.

External Reviewer for Natural Sciences and Engineering Research Council of Canada.

Reviewer for NASA Small Business Innovation Research (SBIR) program.

12

External Reviewer for Israel Science Foundation.

External Reviewer for South African National Research Foundation.

Panel and Committee Service

Workshops co-chair · ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’19), Bei-
jing, China, July 2019.

Program committee · 41st ACM/IEEE International Conference on Software Engineering (ICSE’19), Montreal,
Canada, May 2019.

Program committee · 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE’18),
Montpellier, France, September 2018.

Program committee · 40th ACM/IEEE International Conference on Software Engineering (ICSE’18), Gothenburg,
Sweden, May 2018.

Program committee · 17th International Conference on Runtime Verification (RV’17), Seattle, Washington, Septem-
ber 2017.

Program committee · ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’17), Santa
Barbara, California, July 2017.

Program committee · Doctoral Symposium, ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA’17), Santa Barbara, California, July 2017.

Program committee · 2017 Summer Computer Simulation Conference (SCSC’17), Bellevue, Washington, July 2017.

Co-chair · 2nd Workshop on Causal Reasoning for Embedded and safety-critical Systems Technologies (CREST’17),
Uppsala, Sweden, April 2017.

Steering committee · International Workshop on Dynamic Analysis, 2013-2016.

Program committee · 23rd International SPIN Symposium on Model Checking of Software (SPIN’16), Eindhoven,
the Netherlands, April 2016.

Program chair · 9th International Workshop on Constraints in Formal Verification, Austin, Texas, November 2015;
co-located with IEEE/ACM International Conference on Computer-Aided Design.

Program committee · ACM SIGDA Student Research Competition, 34th IEEE/ACM International Conference on
Computer-Aided Design, November 2015.

Program committee · 22nd International SPIN Symposium on Model Checking of Software (SPIN’15), Stellenbosch,
South Africa, August 2015.

Chair · Doctoral symposium at ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA’15), Baltimore, Maryland, July 2015.

Workshops selection committee · 37th ACM/IEEE International Conference on Software Engineering (ICSE’15),
Firenze, Italy, May 2015.

Reviewing committee · 37th ACM/IEEE International Conference on Software Engineering (ICSE’15), Firenze, Italy,
May 2015.

Program committee · 7th NASA Formal Methods Symposium (NFM’15), Pasadena, California, April 2015.

Publicity committee · 8th IEEE International Conference on Software Testing, Verification and Validation (ICST’15),
Graz, Austria, April 2015.

13

Program committee · Research Tool Demonstrations for 22nd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-DEMO’14), Hong Kong, November 2014.

Program committee · ACM SIGDA Student Research Competition, 33rd IEEE/ACM International Conference on
Computer-Aided Design, November 2014.

Program committee · 21st International SPIN Symposium on Model Checking of Software (SPIN’14), San Jose,
California, July 2014.

Program committee · ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’14), San
Jose, California, July 2014.

Program committee · 28th IEEE/ACM International Conference on Automated Software Engineering (ASE’13), Palo
Alto, California, November 2013.

Co-chair · 11th International Workshop on Dynamic Analysis (WODA’13), Houston, Texas, March 2013; co-located
with ACM International Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS).

Workshops selection committee · 35th ACM/IEEE International Conference on Software Engineering (ICSE’13),
San Francisco, California, May 2013.

Co-chair · 18th International Workshop on Model Checking Software (SPIN’11), Snowbird, Utah, July 2011, co-
located with International Conference on Computer Aided Verification (CAV).

Program committee · 3rd NASA Formal Methods Symposium (NFM’11), Pasadena, California, April 2011.

Program committee · 14th International Conference on Fundamental Approaches to Software Engineering (FASE’11),
Saarbrucken, Germany, March 2011.

Program committee · Workshop on Testing, Analysis, and Verification of Cyber-Physical Systems and Internet of
Things (TAV-CPS/IoT’18), Amsterdam, the Netherlands, July 2018; 6th IEEE International Workshop on For-
mal Methods Integration (FMI’18), Salt Lake City, Utah, July 2018; International Workshop on Software Fair-
ness, (FairWare’18), Gothenburg, Sweden, May 2018; 3rd Workshop on formal reasoning about Causation,
Responsibility, and Explanations in Science and Technology (CREST’18), Thessaloniki, Greece, April 2018;
8th IEEE International Workshop on Program Debugging (IWPD’17), Toulouse, France, October 2017; 5th
IEEE International Workshop on Formal Methods Integration, San Diego, California, August 2017; 7th IEEE
International Workshop on Program Debugging (IWPD’16), Ottawa, Canada, October 2016; 4th IEEE Inter-
national Workshop on Formal Methods Integration, Pittsburgh, Pennsylvania, April 2016; 1st Workshop on
Causal-based Reasoning for Embedded and Safety-critical Systems Technologies (CREST’16), Eindhoven, The
Netherlands, April 2016; Java Pathfinder Workshop 2015 (JPF’15); 6th IEEE Workshop on Program Debugging
(IWPD’15), Gaithersburg, Maryland, November 2015; 3rd IEEE International Workshop on Formal Methods
Integration, San Francisco, California, August 2015; 7th Working Conference on Verified Software: Theories,
Tools, and Experiments (VSTTE’15), San Francisco, California, July 2015; 5th IEEE Workshop on Program
Debugging (IWPD’14), Naples, Italy, November 2014; Java Pathfinder Workshop 2014 (JPF’14), Salt Lake
City, Utah, November 2014; 36th Annual IEEE Software Engineering Workshop (SEW-36), Mountain View,
California, August 2014; 8th International Workshop on Constraints in Formal Verification (CFV’13), San Jose,
California, November 2013; Java Pathfinder Workshop 2012 (JPF’12), Raleigh, North Carolina, November
2012; 35th Annual IEEE Software Engineering Workshop (SEW-35), Heraclion, Crete, October 2012; 10th
International Workshop on Dynamic Analysis (WODA’12), Minneapolis, Minnesota, July 2012; 19th Interna-
tional Workshop on Model Checking Software (SPIN’12), Oxford, England, July 2012; 7th International Work-
shop on Constraints in Formal Verification (CFV’11), San Jose, California, November 2011; Java Pathfinder
Workshop 2011 (JPF’11), Lawrence, Kansas, November 2011; 3rd Workshop on Verification and Validation
for Planning and Scheduling Systems (VVPS’11), Freiburg, Germany, June 2011; 34th Annual IEEE Software

14

Engineering Workshop (SEW-34), Limerick, Ireland, June 2011; 9th Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS’10), Santa Fe, New Mexico, November 2010; 8th Workshop on
Specification and Verification of Component-Based Systems (SAVCBS’09), Amsterdam, the Netherlands, Au-
gust 2009; 6th International Workshop on Constraints in Formal Verification (CFV’09), Grenoble, France, June
2009; 7th Workshop on Specification and Verification of Component-Based Systems (SAVCBS’08), Atlanta,
Georgia, November 2008; 14th International Workshop on Model Checking Software (SPIN’07), Berlin, Ger-
many, July 2007; 1st International Workshop on Verification and Debugging (V&D’06), Seattle, Washington,
August 2006.

Teaching

Summary: I developed and taught classes covering testing, analysis, and software engineering to graduate and
undergraduate students. My teaching evaluations over these classes and during my six semesters as a teaching
assistant have been strongly positive. I served on the undergraduate curriculum committee at Oregon State from
2009 until 2015, and (co-)chaired the committee from September 2015-2016.

Spring 2017 · Associate Professor, Northern Arizona University. Taught CS 499, a Special Topics course in auto-
mated software test generation. Topics included basics of automated software testing, and using actual tools
in the field, including TSTL, Csmith, afl-fuzz, and Hypothesis. Class included guest lectures by Linux kernel
developers, testing tool creators, and security-based testing experts.

Fall 2016 · Associate Professor, Oregon State University. Taught CS 361, first in software engineering sequence,
with emphasis on software architecture, testability, foundations of software engineering as a discipline (readings
including Brooks, Parnas, Butler Lampson, and DeMarco and Lister).

Fall, Winter 2013 · Assistant Professor, Oregon State University. Developed ecampus online version of class in Ap-
plied Software Engineering, focusing on testing, analysis, code review, debugging, and software maintenance;
recorded presentations and selected materials for online learning.

Winter, Spring 2010-2015 · Assistant Professor, Oregon State University. Taught CS 362 and CS 562, undergraduate
and graduate classes in Applied Software Engineering. Focused on theory and practice of software implementa-
tion, including maintenance, code management, static analysis, testing, model checking, hardware interface and
simulation, and debugging. Project-centered courses featured use of an open-source social-networking/project
repository system and innovative exchange of programs for testing. Developed upper-level class on software
security (basic concepts, protocols, security exploits) and reliability. Developed and recorded online version
of class on software testing, analysis, and verification. Taught graduate seminar on Static Analysis and Model
Checking (CS 569), with focus on software security and combining static and dynamic analysis.

Fall 2009 · Assistant Professor, Oregon State University. Developed required courses (to be taught Winter and Spring
terms) on applied software engineering for undergraduate and graduate students (CS 362 and CS 562), with a
focus on design for testability, practical debugging and maintenance, test-driven development, code analysis
and instrumentation, and automated testing and verification. Covered test-driven development as guest lec-
turer in first undergraduate software engineering course (CS 361). Mentored graduate students and initiated a
research program involving graduate and undergraduate students. Served on undergraduate curriculum com-
mittee. Helped develop new undergraduate concentration in software engineering for sustainability and energy
management.

Spring 2008, Spring 2009 · Lecturer, California Institute of Technology, CS 119 Reliable Software: Testing and
Monitoring (developed and taught with Klaus Havelund), third term 2007-2008 and 2008-2009. Topics included
random testing, constraint-based testing, coverage measures, design for testability, static analysis, test-driven
development, automated debugging, and the use of model checkers. Focused on practical application (and
limits) of state-of-the-art methods.

Spring 2007 · External Master’s thesis examiner, Stellenbosch University

15

Fall 2003 · Teaching assistant, Carnegie Mellon University, for undergraduate course 15-212, Principles of Pro-
gramming (introduction to programming in Standard ML, including type discipline and proof by induction):
Formulated assignments, graded assignments and tests, taught a weekly recitation session, and held office hours.

Spring 2000 · Teaching assistant, Carnegie Mellon University, for undergraduate course 15-312, Foundations of
Programming Languages (advanced type theory, continuations, and concurrency): Formulated tests and assign-
ments, graded assignments and tests, lectured in absence of Professor Harper, taught a weekly recitation session,
and held office hours.

Fall 1998 · Teaching assistant, North Carolina State University, for undergraduate course CSC417, Theory of Pro-
gramming Languages (type theory and functional programming in ML): Graded assignments and held weekly
office hours.

Fall 1997, Spring 1998 · Teaching assistant, North Carolina State University, for undergraduate course CSC210,
Programming Concepts (second-level introductory course in C++, including pointers, recursion, and funda-
mental data structures): Graded assignments, held weekly office hours, and provided on-the-spot teaching and
assistance to students in computer labs.

Spring 1997 · Teaching assistant, North Carolina State University, CSC495C, Special Topics (class for professional
C programmers learning C++ and object-oriented design): Graded assignments and held weekly office hours.

Current Students

Arpit Christi, Oregon State University, PhD, Committee Chair

Iftekhar Ahmed, Oregon State University, PhD, Committee Member

Alex Wiggins, Oregon State University, PhD, Committee Member

Austin Sanders, Northern Arizona University, PhD, Committee Member

Graduated Students

Rahul Gopinath, Oregon State University, PhD, Committee Co-Chair

Mohammad Amin Alipour, Oregon State University, PhD, Committee Chair

Ali Aburas, Oregon State University, PhD, Committee Chair

Chaoqiang Zhang, Oregon State University, PhD, Committee Chair

Xin Liu, Oregon State University, MS, Committee Chair

Kazuki Kaneoka, Oregon State University, MS, Committee Chair

Shalini Shamasunder, Oregon State University, MS, Committee Chair

Gokul Caushik, Oregon State University, MEng, Major Advisor

Aravind Palanisami, Oregon State University, MEng, Major Advisor

Pengfei Chen, Oregon State University, MEng, Major Advisor

Soroush Ghorashi, Oregon State University, PhD, Committee Member

Jervis Pinto, Oregon State University, PhD, Committee Member

Todd Kulesza, Oregon State University, PhD, Committee Member

16

Chris Chambers, Oregon State University, PhD, Committee Member

Yang Chen, University of Utah, PhD, External Committee Member

Christopher Bogart, Oregon State University, PhD, Committee Member

Eric Walkingshaw, Oregon State University, PhD, Committee Member

Duc Le, Oregon State University, MS, Committee Member

Darren Forrest, Oregon State University, MS, Committee Member

Prashanth Ayyavu, Oregon State University, MS, Committee Member

Nishanthini Narayanan, Oregon State University, MS, Committee Member

Nitin Mohan, Oregon State University, MS, Committee Member

David Burri, Oregon State University, MS, Committee Member

Madhura Vadvalkar, Oregon State University, MEng, Committee Member

Michael Tichenor, Oregon State University, MS, Committee Member

Alex Diede, Oregon State University, MEng, Committee Member

Invited Seminars

Invited speaker, 7th Halmstad Summer School on Testing, Halmstad, Sweden, June 12-15, 2017.

Dagstuhl Seminar 03491, Understanding Program Dynamics, Schloss Dagstuhl, Wadern, Germany, November 31-
December 5, 2003.

Invited Talks and Panels

“TSTL: a Little (Integrated) Language for Testing”, 7th Halmstad Summer School on Testing, Halmstad, Sweden,
June 12, 2017.

“Presenting TSTL (and the Quest for One Test to Rule them All),” School of Informatics, Computing, and Cybersys-
tems, Northern Arizona University, Flagstaff, AZ, January 22, 2016.

“Understanding and Exploiting Triggers and Suppressors in Testing,” Galois, Inc., Portland, OR, March 3, 2014.

“Making the Most of Random Tests,” Google Inc., Mountain View, CA, February 24, 2014.

“Effective Random Testing for Critical Systems Software,” Arizona State University, Phoenix, AZ, January 13, 2014.

Panelist, “Program Debugging: Transitioning from Research to Practice,” International Workshop on Program De-
bugging, Pasadena, CA, November 4, 2013.

“Learning-Based Test Programming for Programmers,” International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, Heraclion, Crete, October 16, 2012.

“For Truly Thorough Testing, You Have to Leave Things Out,” Northern Arizona University, Flagstaff, AZ, April 11,
2012.

“Traces in Spaces: You Can Learn a Lot About a Program by Running It,” School of Electrical Engineering and
Computer Science Colloquium Series, Oregon State University, Corvallis, OR, February 2, 2009.

17

“Putting Flight Software Through the Paces with Testing, Model Checking, and Constraint-Solving,” International
Workshop on Constraints in Formal Verification / International Verification Workshop, Sydney, Australia, Au-
gust 11, 2008.

“Asking the Right Questions — and Understanding the Answers — in Software Testing,” (with Klaus Havelund),
Information Science and Technology Lunch Bunch, California Institute of Technology, Pasadena, CA, February
19, 2008.

“How to Break a (Flash) File System,” Jet Propulsion Laboratory-Goddard Space Flight Center (JPL-GSFC) Quality
Mission Software Workshop, Santa Barbara, CA, May 2, 2006.

“Exploiting Traces in Program Analysis,” Workshop on Theories, Methods and Tools for Building Systems from
Interacting Components, California Institute of Technology, Pasadena, CA, October 31, 2005.

“Explaining Counterexamples,” IBM T. J. Watson Research Center, Hawthorne, NY, December 20, 2004.

“Explaining Counterexamples,” Microsoft Research, Redmond, WA, November 8, 2004. Similar version presented
as Speakers’ Club seminar at Carnegie Mellon University, Pittsburgh, PA, December 9, 2004.

“Debugging Code with Model Checkers,” Jet Propulsion Laboratory, Pasadena, CA, November 1, 2004.

“Error Explanation via Model Checking,” Dagstuhl Seminar 03491, Understanding Program Dynamics, Schloss
Dagstuhl, Wadern, Germany, December 5, 2003.

Selected Presentations

“Towards Automated Composition of Heterogeneous Tests for Cyber-Physical Systems,” Workshop on Testing Em-
bedded and Cyber-Physical Systems, Santa Barbara, CA, July 13, 2017.

“A Suite of Tools for Making Effective Use of Automatically Generated Tests,” International Symposium on Software
Testing and Analysis, Santa Barbara, CA, July 10, 2017.

“One Test to Rule Them All,” International Symposium on Software Testing and Analysis, Santa Barbara, CA, July
10, 2017.

“Mitigating (and Exploiting) Test Reduction Slippage,” Workshop on Automated Software Testing, Seattle, WA,
November 18, 2016.

“How Verified is My Code? Falsification-Driven Verification,” IEEE/ACM International Conference on Automated
Software Engineering, Lincoln, NE, November 13, 2015.

“A Little Language for Testing,” NASA Formal Methods Symposium, Pasadena, CA, April 28, 2015.

“Coverage and Its Discontents,” Onward! Essays, part of SPLASH (ACM SIGPLAN Conference on Systems, Pro-
gramming, Languages and Applications: Software for Humanity), Portland, OR, October 24, 2014.

“Help! Help! I’m Being Suppressed! The Significance of Suppressors in Software Testing,” IEEE International
Symposium on Software Reliability Engineering, Pasadena, CA, November 6, 2013.

“New Directions in Random Testing: From Mars Rovers to JavaScript Engines,” Galois, Inc. Tech Talk, Portland,
OR, September 12, 2013.

“Beyond the Kitchen Sink: Swarm Testing”, Jet Propulsion Laboratory, Pasadena, CA, May 7, 2013.

“Extended Program Invariants: Applications in Testing and Fault Localization,” International Workshop on Dynamic
Analysis, Minneapolis, MN, July 15, 2012.

“Finding Common Ground: Choose, Assert, and Assume,” International Workshop on Dynamic Analysis, Minneapo-
lis, MN, July 15, 2012.

18

“Coverage Rewarded: Test Input Generation via Adaptation-Based Programming,” IEEE/ACM International Con-
ference on Automated Software Engineering, Lawrence, KS, November 9, 2011.

“Establishing Appropriate User Trust in Machine-Learned Classifiers,” Human/Machine Learning Partnerships, Ore-
gon State University, Corvallis, OR, May 21, 2010.

“Can End Users Test Machine-Learning Classifiers?,” End Users and Machine Learning Day, Oregon State Univer-
sity, Corvallis, OR, February 26, 2010.

“Path Coverage and Its Discontents,” School of Electrical Engineering and Computer Science Colloquium Series,
Oregon State University, Corvallis, OR, February 22, 2010.

“(Quickly) Testing the Tester via Path Coverage,” International Workshop on Dynamic Analysis, Chicago, IL, July
20, 2009.

“Advanced Testing Tools,” (with Klaus Havelund), Engineering and Science Directorate - Software Engineering
Process Group, Jet Propulsion Laboratory, Pasadena CA, April 30, 2009.

“Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration,” Inter-
national Workshop on Dynamic Analysis, Seattle, WA, July 21, 2008.

“Model-Driven Software Verification Methods,” LaRS Advisory Committee Meeting, Jet Propulsion Laboratory,
Pasadena, CA, June 26, 2008.

“Model Checking, Dynamic Analysis, and Unsound Abstractions,” Southern California Workshop on Programming
Languages and Systems, Claremont, CA, February 2, 2008.

“Extending Model Checking with Dynamic Analysis,” Verification, Model Checking and Abstract Interpretation, San
Francisco, CA, January 8, 2008.

“Model-Driven Verification,” Mission Computing and Autonomy Systems Research Program (982) FY07 Year End
Review, Jet Propulsion Laboratory, Pasadena, CA, October 3, 2007.

“Testing the Kepler Flash File System,” LaRS Advisory Committee Meeting, Jet Propulsion Laboratory, Pasadena,
CA, July 27, 2007.

“Randomized Differential Testing as a Prelude to Formal Verification,” ACM/IEEE International Conference on
Software Engineering, Minneapolis, MN, May 24, 2007.

“Strengthening Software Testing,” LaRS Advisory Committee Meeting, Jet Propulsion Laboratory, Pasadena, CA,
July 26, 2006. Similar version presented as Section 316 Brown Bag Lecture at JPL on August 23, 2006.

“LaRS File System Test Approach,” Flight Software Applications and Data Management (316D) Group Meeting, Jet
Propulsion Laboratory, Pasadena, CA, May 16, 2006.

“Exploiting Traces in Program Analysis,” International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Vienna, Austria, March 29, 2006.

“Bounded Model Checking Explained,” LaRS Seminar, Jet Propulsion Laboratory, Pasadena, CA, June 14, 2005.

“Error Explanation and Fault Localization with Distance Metrics,” Thesis Oral, Carnegie Mellon University, Pitts-
burgh, PA, March 3, 2005.

“Counterexample Guided Abstraction Refinement via Program Execution,” International Conference on Formal En-
gineering Methods, Seattle, WA, November 11, 2004.

“Explaining Abstract Counterexamples,”ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, Newport Beach, CA, November 2, 2004.

19

“CBMC and C Model Checking,” MURI (Multidisciplinary University Research Initiative) Review Meeting, An-
napolis, MD, August 16, 2004.

“Java PathFinder,” Software Model Checking Seminar, Carnegie Mellon University, Pittsburgh, PA, July 22, 2004.

“Error Explanation with Distance Metrics,” International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Barcelona, Spain, March 29, 2004.

“Explaining Errors,” MURI (Multidisciplinary University Research Initiative) Workshop, Carnegie Mellon Univer-
sity, Pittsburgh, PA, July 22, 2003.

“Explaining Counterexamples: Causal Analysis and Comparison of Transition Sequences,” Specification and Verifi-
cation Center, Carnegie Mellon University, Pittsburgh, PA, May 20, 2003.

“What Went Wrong: Explaining Counterexamples,” SPIN Workshop on Model Checking of Software, Portland, OR,
May 9, 2003. Earlier versions presented at Specification and Verification Center, Carnegie Mellon University,
Pittsburgh, PA, September 17, 2002, and NASA Ames Research Center/RIACS Seminar, Mountain View, CA,
August 8, 2002.

“Model Checking Java Programs using Structural Heuristics,” International Symposium on Software Testing and
Analysis, Rome, Italy, July 22, 2002.

“Heuristic Model Checking for Java Programs,” SPIN Workshop on Model Checking of Software, Grenoble, France,
April 13, 2002.

“Adaptive Model Checking,” International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Grenoble, France, April 11, 2002.

“Structural Heuristics for Directed Model Checking of Java Programs,” Specification and Verification Center, Carnegie
Mellon University, Pittsburgh PA, March 19, 2002.

“Efficient Model Checking Via Büchi Tableau Automata,” International Conference on Computer Aided Verification,
Paris, France, July 19, 2001.

“Black Box Checking,” Federal University of Rio Grande do Norte, Natal, Brazil, March 29, 2001.

20

References

Edmund M. Clarke, Jr.
FORE Systems Professor of Computer Science
Professor of Electrical and Computer Engineering
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891
412-268-2628
emc+@cs.cmu.edu

Gerard J. Holzmann
JPL Fellow and Senior Research Scientist
Laboratory for Reliable Software
Jet Propulsion Laboratory
4800 Oak Grove Drive
M/S 301-230
Pasadena, CA 91109
818-393-5937
Gerard.J.Holzmann@jpl.nasa.gov

Willem Visser
Professor of Computer Science
Head, Computer Science Division
University of Stellenbosch
Private Bag X1
7602 Matieland
South Africa
+27 21 808 4235
willem@gmail.com

April, 2018

21

